Satellite Imaging Techniques for Ground Movement Monitoring of a Deep Pipeline Trench Backfilled with Recycled Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Summary of Materials, Construction, and Instrumentation
2.2. Satellite Data
2.3. Satellite Imaging and Analysis
3. Results
3.1. Field Monitoring
3.2. InSAR Estimates
4. Discussions
4.1. Comparison between the Field Monitoring and InSAR Analysis
4.2. Temporal Variation
4.3. Spatiotemporal Variation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fityus, S.G.; Smith, D.W.; Allman, M.A. Expansive Soil Test Site near Newcastle. J. Geotech. Geoenviron. Eng. 2004, 130, 686–695. [Google Scholar] [CrossRef]
- Li, J.; Cameron, D.A.; Ren, G. Case Study and Back Analysis of a Residential Building Damaged by Expansive Soils. Comput. Geotech. 2014, 56, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Rajeev, P.; Kodikara, J. Numerical Analysis of an Experimental Pipe Buried in Swelling Soil. Comput. Geotech. 2011, 38, 897–904. [Google Scholar] [CrossRef]
- Water Services Association of Australia. WSA Conduit Inspection Reporting Code of Australia Version 2.2; Water Services Association of Australia: Docklands, VIC, Australia, 2008. [Google Scholar]
- Karunarathne, A.M.A.N.; Gad, E.F.; Rajeev, P. Effect of Insitu Moisture Content in Shrink-Swell Index. Geotech. Geol. Eng. 2020, 38, 6385–6392. [Google Scholar] [CrossRef]
- Richards, R.A. Should Selection for Yield in Saline Regions Be Made on Saline or Non-Saline Soils? Euphytica 1983, 32, 431–438. [Google Scholar] [CrossRef]
- Gedara, S.D.D.A.; Wasantha, P.L.P.; Teodosio, B.; Li, J. An Experimental Study of the Size Effect on Core Shrinkage Behaviour of Reactive Soils. Transp. Geotech. 2022, 33, 100709. [Google Scholar] [CrossRef]
- Tran, K.M.; Bui, H.H.; Sánchez, M.; Kodikara, J. A DEM Approach to Study Desiccation Processes in Slurry Soils. Comput. Geotech. 2020, 120, 103448. [Google Scholar] [CrossRef]
- Tran, K.M.; Bui, H.H.; Nguyen, G.D. A Hybrid Discrete-Continuum Approach to Model Hydro-Mechanical Behaviour of Soil during Desiccation. arXiv 2021, arXiv:2106.04676. [Google Scholar]
- Gandini, A.; Quesada, L.; Prieto, I.; Garmendia, L. Climate Change Risk Assessment: A Holistic Multi-Stakeholder Methodology for the Sustainable Development of Cities. Sustain. Cities Soc. 2021, 65, 102641. [Google Scholar] [CrossRef]
- Uchehara, I.; Moore, D.; Jafarifar, N.; Omotayo, T. Sustainability Rating System for Highway Design—A Key Focus for Developing Sustainable Cities and Societies in Nigeria. Sustain. Cities Soc. 2022, 78, 103620. [Google Scholar] [CrossRef]
- Fauzi, A.; Djauhari, Z.; Juniansyah Fauzi, U. Soil Engineering Properties Improvement by Utilization of Cut Waste Plastic and Crushed Waste Glass as Additive. Int. J. Eng. Technol. 2016, 8, 15–18. [Google Scholar] [CrossRef]
- Imteaz, M.A.; Arulrajah, A.; Horpibulsuk, S.; Ahsan, A. Environmental Suitability and Carbon Footprint Savings of Recycled Tyre Crumbs for Road Applications. Int. J. Environ. Res. 2018, 12, 693–702. [Google Scholar] [CrossRef]
- Yaghoubi, E.; Yaghoubi, M.; Guerrieri, M.; Sudarsanan, N. Improving Expansive Clay Subgrades Using Recycled Glass: Resilient Modulus Characteristics and Pavement Performance. Constr. Build. Mater. 2021, 302, 124384. [Google Scholar] [CrossRef]
- Yaghoubi, E.; Al-Taie, A.; Disfani, M.; Fragomeni, S. Recycled Aggregate Mixtures for Backfilling Sewer Trenches in Nontrafficable Areas. Int. J. Geomech. 2022, 22, 04021308. [Google Scholar] [CrossRef]
- Al-Taie, A.; Yaghoubi, E.; Disfani, M.; Fragomeni, S.; Gmehling, E. Field Performance Evaluation of Recycled Aggregate Blends Used for Backfilling Deep Excavated Trenches. Int. J. Geomech. 2022. Revised in 2022. [Google Scholar]
- Plank, S. Rapid Damage Assessment by Means of Multi-Temporal SAR—A Comprehensive Review and Outlook to Sentinel-1. Remote. Sens. 2014, 6, 4870–4906. [Google Scholar] [CrossRef] [Green Version]
- European Space Agency. European Space Agency Sentinel-1 SAR User Guide; European Space Agency: Paris, France, 2020. [Google Scholar]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent Scatterer Interferometry: A Review. ISPRS J. Photogramm. Remote. Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Lu, P.; Bai, S.; Tofani, V.; Casagli, N. Landslides Detection through Optimized Hot Spot Analysis on Persistent Scatterers and Distributed Scatterers. ISPRS J. Photogramm. Remote. Sens. 2019, 156, 147–159. [Google Scholar] [CrossRef]
- Schlögl, M.; Widhalm, B.; Avian, M. Comprehensive Time-Series Analysis of Bridge Deformation Using Differential Satellite Radar Interferometry Based on Sentinel-1. ISPRS J. Photogramm. Remote Sens. 2021, 172, 132–146. [Google Scholar] [CrossRef]
- Johnston, P.J.; Filmer, M.S.; Fuhrmann, T. Evaluation of Methods for Connecting InSAR to a Terrestrial Reference Frame in the Latrobe Valley, Australia. J. Geod. 2021, 95, 115. [Google Scholar] [CrossRef]
- Teodosio, B.; Wasantha, P.L.P.; Yaghoubi, E.; Guerrieri, M.; Fragomeni, S.; van Staden, R.C. Monitoring of Geohazards Using Differential Interferometric Satellite Aperture Radar in Australia. Int. J. Remote Sens. 2022, 43, 3769–3802. [Google Scholar] [CrossRef]
- Parker, A.L.; Castellazzi, P.; Fuhrmann, T.; Garthwaite, M.C.; Featherstone, W.E. Applications of Satellite Radar Imagery for Hazard Monitoring: Insights from Australia. Remote. Sens. 2021, 13, 1422. [Google Scholar] [CrossRef]
- Du, Z.; Ge, L.; Li, X.; Ng, A. Subsidence Monitoring over the Southern Coalfield, Australia Using Both L-Band and C-Band SAR Time Series Analysis. Remote. Sens. 2016, 8, 543. [Google Scholar] [CrossRef] [Green Version]
- De Novellis, V.; Atzori, S.; De Luca, C.; Manzo, M.; Valerio, E.; Bonano, M.; Cardaci, C.; Castaldo, R.; Di Bucci, D.; Manunta, M.; et al. DInSAR Analysis and Analytical Modeling of Mount Etna Displacements: The December 2018 Volcano-Tectonic Crisis. Geophys. Res. Lett. 2019, 46, 5817–5827. [Google Scholar] [CrossRef] [Green Version]
- Look, B.G. Handbook of Geotechnical Investigation and Design Tables; Taylor & Francis: New York, NY, USA, 2014. [Google Scholar]
- UTS. UTS Design Guidelines P-PO.01.15; UTS: Ultimo, Australia, 2018. [Google Scholar]
- Kimmerling, R. Geotechnical Engineering Circular No. 6 Shallow Foundations; United States Federal Highway Administration, Office of Bridge Technology: New York, NY, USA, 2002.
- ASTM-D422; Standard Test Method for Particle-Size Analysis of Soils. ASTM International: West Conshohocken, PA, USA, 2007.
- ASTM-C127; Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate. ASTM International: West Conshohocken, PA, USA, 2012.
- ASTM-D2487; Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International: West Conshohocken, PA, USA, 2011.
- ASTM-D698; Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 Ft-Lbf/Ft3 (600 KN-m/M3)). ASTM International: West Conshohocken, PA, USA, 2012.
- ASTM-D854; Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM International: West Conshohocken, PA, USA, 2010.
- ASTM-D4318; Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International: West Conshohocken, PA, USA, 2017.
- Main Roads Western Australia. Melbourne Retail Water Agencies Backfill Specification; Main Roads Western Australia: Melbourne, Australia, 2013. [Google Scholar]
- Geudtner, D.; Torres, R.; Snoeij, P.; Davidson, M.; Rommen, B. Sentinel-1 System Capabilities and Applications. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1457–1460. [Google Scholar]
- De Zan, F.; Monti Guarnieri, A. TOPSAR: Terrain Observation by Progressive Scans. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2352–2360. [Google Scholar] [CrossRef]
- Meyer, F.; Bamler, R.; Jakowski, N.; Fritz, T. The Potential of Low-Frequency SAR Systems for Mapping Ionospheric TEC Distributions. IEEE Geosci. Remote. Sens. Lett. 2006, 3, 560–564. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar Interferogram Filtering for Geophysical Applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef] [Green Version]
- Costantini, M. A Novel Phase Unwrapping Method Based on Network Programming. IEEE Trans. Geosci. Remote. Sens. 1998, 36, 813–821. [Google Scholar] [CrossRef]
- Hooper, A.J.; Bekaert, D.P.S.; Hussain, E.; Spaans, K. StaMPS/MTI Manual Version 4.1b; School of Earth and Environment, University of Leeds: Leeds, UK, 2018. [Google Scholar]
- Pasquali, P.; Cantone, A.; Riccardi, P.; Defilippi, M.; Ogushi, F.; Gagliano, S.; Tamura, M. Mapping of Ground Deformations with Interferometric Stacking Techniques. Land Appl. Radar Remote Sens 2014, 1, 233–259. [Google Scholar]
- Dobos, E.; Kovács, I.P.; Kovács, D.M.; Ronczyk, L.; Sz\Hucs, P.; Perger, L.; Mikita, V. Surface Deformation Monitoring and Risk Mapping in the Surroundings of the Solotvyno Salt Mine (Ukraine) between 1992 and 2021. Sustainability 2022, 14, 7531. [Google Scholar] [CrossRef]
- Li, Y.; Zuo, X.; Xiong, P.; You, H.; Zhang, H.; Yang, F.; Zhao, Y.; Yang, Y.; Liu, Y. Deformation Monitoring and Analysis of Kunyang Phosphate Mine Fusion with InSAR and GPS Measurements. Adv. Space Res. 2022, 69, 2637–2658. [Google Scholar] [CrossRef]
Material | SB-1 | SB-2 | Specification | |
---|---|---|---|---|
RG:RP:RT content (% by mass) | 77:09:14 | 84:05:11 | -- | |
Particle composition (%) | >4.75 mm | 29 | 22 | ASTM-D422 (2007) [30] |
4.75–0.075 mm | 69 | 76 | ||
<0.075 mm | 2 | 2 | ||
Maximum particle size (Dmax), mm | 19.0 | 19.0 | -- | |
Specific gravity (Gs) | 1.93 | 2.07 | ASTM-C127 (2012) [31] | |
Coefficient of uniformity (Cu) | 10.00 | 9.06 | ||
Coefficient of curvature (Cc) | 1.49 | 1.30 | ||
USCS classification | SW | SW | ASTM-D2487 (2011) [32] | |
Standard Proctor compaction | OMC (%) | 9.50 | 7.9 | ASTM-D698 (2012) [33] |
MDD (kN/m3) | 1.36 | 1.37 |
Soil Property | Value | Specification |
---|---|---|
Specific gravity Gs | 2.71 | ASTM-D854 (2010) [34] |
Sand (4.75–0.075) mm | 3 | ASTM-D422 (2007) [30] |
Fine content (<0.075 mm) | 97 | |
Liquid limit (LL) (%) | 61 | ASTM-D4318 (2017) [35] |
Plastic limit (PL) (%) | 30 | |
Plasticity index (PI) (%) | 31 | |
USCS classification | CH | ASTM-D2487 (2011) [32] |
SP No. | Area 1 | Area 2 | ||||
---|---|---|---|---|---|---|
Depth (m) | Distance * (m) | Material | Depth (m) | Distance * (m) | Material | |
1 | 0.2 | 5.36 | RS-1 | 0.2 | 1.50 | SB-2 |
2 | 0.2 | 3.25 | RS-1 | 3.0 | 2.50 | SB-2 |
3 | 0.2 | 2.13 | RS-1 | 0.2 | 3.25 | SB-2 |
4 | 0.2 | 1.82 | SB-1 | 1.5 | 4.00 | SB-2 |
5 | 0.2 | 2.92 | SB-1 | 0.2 | 5.50 | SB-2 |
6 | 0.2 | 3.84 | SB-1 | 1.5 | 16.75 | RS-2 |
7 | 0.2 | 6.50 | RS-1 | 0.2 | 18.25 | RS-2 |
Coefficient of Variation, CoV, in % | |||||||||
Method | Early CoV (%) | Middle CoV (%) | Final CoV (%) | ||||||
Whole Strip | Area 1 | Area 2 | Whole Strip | Area 1 | Area 2 | Whole Strip | Area 1 | Area 2 | |
SP | 162 | 37 | 16 | 132 | 97 | 109 | 114 | 90 | 113 |
DInSAR | 76 | 77 | 26 | 74 | 201 | 11 | 55 | 19 | 75 |
PSI | 151 | 50 | - | 79 | 73 | - | 82 | 76 | - |
SBAS | 109 | 14 | 34 | 61 | 11 | 73 | 103 | 71 | 90 |
Minimum Value in mm | |||||||||
Method | Early Min Value (mm) | Middle Min Value (mm) | Final Min Value (mm) | ||||||
Whole Strip | Area 1 | Area 2 | Whole Strip | Area 1 | Area 2 | Whole Strip | Area 1 | Area 2 | |
SP | −0.63 | 2.90 | −0.63 | −49.97 | −9.47 | −49.97 | −109.60 | −35.51 | −109.60 |
DInSAR | 1.94 | 1.94 | 13.38 | −0.36 | 0.36 | 5.28 | −62.70 | −30.70 | −62.70 |
PSI | −13.84 | −13.84 | - | −33.58 | −33.58 | - | −41.35 | −41.35 | - |
SBAS | −11.80 | −1.87 | −11.80 | −36.35 | −13.74 | −36.35 | −84.75 | −30.17 | −84.75 |
Maximum value in mm | |||||||||
Method | Early Max Value (mm) | Middle Max Value (mm) | Final Max Value (mm) | ||||||
Whole Strip | Area 1 | Area 2 | Whole Strip | Area 1 | Area 2 | Whole Strip | Area 1 | Area 2 | |
SP | 4.93 | 4.93 | −0.50 | −1.76 | −1.76 | −6.49 | −7.97 | −7.97 | −12.00 |
DInSAR | 27.01 | 6.62 | 19.42 | 6.19 | 5.99 | 6.19 | −10.56 | −21.01 | −10.56 |
PSI | 2.89 | −4.56 | - | −0.60 | −3.69 | - | −5.80 | −8.90 | - |
SBAS | 0.85 | −1.44 | −5.74 | −9.72 | −11.00 | −11.03 | −4.15 | −4.15 | −6.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teodosio, B.; Al-Taie, A.; Yaghoubi, E.; Wasantha, P.L.P. Satellite Imaging Techniques for Ground Movement Monitoring of a Deep Pipeline Trench Backfilled with Recycled Materials. Remote Sens. 2023, 15, 204. https://doi.org/10.3390/rs15010204
Teodosio B, Al-Taie A, Yaghoubi E, Wasantha PLP. Satellite Imaging Techniques for Ground Movement Monitoring of a Deep Pipeline Trench Backfilled with Recycled Materials. Remote Sensing. 2023; 15(1):204. https://doi.org/10.3390/rs15010204
Chicago/Turabian StyleTeodosio, B., A. Al-Taie, E. Yaghoubi, and P. L. P. Wasantha. 2023. "Satellite Imaging Techniques for Ground Movement Monitoring of a Deep Pipeline Trench Backfilled with Recycled Materials" Remote Sensing 15, no. 1: 204. https://doi.org/10.3390/rs15010204