Landslide Risk Assessment Using a Combined Approach Based on InSAR and Random Forest
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Landslide Inventory
3.2. Factors Influencing Landslides
- Slope and profile curvature: A slope gradient is the measurement of the steepness of a surface. If the slope is too low, the gravitational potential energy is insufficient, and if the slope is too high, the material accumulation cannot provide the material basis for landslides. A profile curvature is used to describe the complexity of the terrain, which is divided into convex, straight, and concave profiles, and reflects convergent and divergent drainages in addition to variations in erosion rate [49]. In the study, the slope and profile curvature were calculated using ArcGIS and a DEM with a spatial resolution of 2 m (Figure 4a,b).
- Relief: A relief represents the elevation difference within a certain range of the slope and determines the gravitational potential energy. Only enough gravitational potential energy can cause landslides (Figure 4c).
- NDVI: The NDVI reflects the vegetation cover in the study area. High vegetation coverage is needed to stabilize the slope by the root system and reduce the development of landslides [50]. The NDVI value was calculated using the expression NDVI = (NIR − R)/(NIR + R) from Landsat-8 images, where NIR is the reflectivity of the near-infrared portion of the electromagnetic spectrum and R is the reflectivity of the red portion of the electromagnetic spectrum (Figure 4d).
- Landslide density and building density: The landslide density directly reflects the development quantity of disasters in an area. In urban areas, construction activity is one of the most dominant human activities that cause slope instability. Settlement along slopes in urban areas is an important factor in slope failure. Therefore, we used building density to reflect the effect of human activities on slope stability. Landslide density and building density were calculated for the slope units by vectorizing landslides and building contours and then interpolating them into grid data (Figure 3 and Figure 4e,f).
3.3. DInSAR
3.4. Random Forest
4. Results
4.1. Characteristics of Landslides
4.2. Landslide Susceptibility Mapping
4.3. Landslide Hazard Mapping
4.4. Landslide Risk Mapping
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Froude, M.J.; Petley, D.N. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Yan, D.; Zhao, T. Probabilistic evaluation of loess landslide impact using multivariate model. Landslides 2021, 18, 1011–1023. [Google Scholar] [CrossRef]
- Peng, J.; Fan, Z.; Wu, D.; Zhuang, J.; Dai, F.; Chen, W.; Zhao, C. Heavy rainfall triggered loess–mudstone landslide and subsequent debris flow in Tianshui, China. Eng. Geol. 2015, 186, 79–90. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Mao, H. Influence of human activity on landslide susceptibility development in the Three Gorges area. Nat. Hazards 2020, 104, 2115–2151. [Google Scholar] [CrossRef]
- Fell, R.; Corominas, J.; Bonnard, C.; Cascini, L.; Leroi, E.; Savage, W.Z. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng. Geol. 2008, 102, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Dai, F.C.; Lee, C.F.; Ngai, Y.Y. Landslide risk assessment and management: An overview. Eng. Geol. 2002, 64, 65–87. [Google Scholar] [CrossRef]
- Huang, J.; Lyamin, A.V.; Griffiths, D.V.; Krabbenhoft, K.; Sloan, S.W. Quantitative risk assessment of landslide by limit analysis and random fields. Comput. Geotech. 2013, 53, 60–67. [Google Scholar] [CrossRef]
- Tan, Q.; Bai, M.; Zhou, P.; Hu, J.; Qin, X. Geological hazard risk assessment of line landslide based on remotely sensed data and GIS. Measurement 2021, 169, 108370. [Google Scholar] [CrossRef]
- Zhao, M.; Liu, X. Regional risk assessment for urban major hazards based on GIS geoprocessing to improve public safety. Saf. Sci. 2016, 87, 18–24. [Google Scholar] [CrossRef]
- Trigila, A.; Iadanza, C.; Esposito, C.; Scarascia-Mugnozza, G. Comparison of Logistic Regression and Random Forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy). Geomorphology 2015, 249, 119–136. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Rahmati, O. Prediction of the landslide susceptibility: Which algorithm, which precision? Catena 2018, 162, 177–192. [Google Scholar] [CrossRef]
- Huang, F.; Yin, K.; Huang, J.; Gui, L.; Wang, P. Landslide susceptibility mapping based on self-organizing-map network and extreme learning machine. Eng. Geol. 2017, 223, 11–22. [Google Scholar] [CrossRef]
- Godt, J.W.; Baum, R.L.; Savage, W.Z.; Salciarini, D.; Schulz, W.H.; Harp, E.L. Transient deterministic shallow landslide modeling: Requirements for susceptibility and hazard assessments in a GIS framework. Eng. Geol. 2008, 102, 214–226. [Google Scholar] [CrossRef]
- Frattini, P.; Crosta, G.B.; Fusi, N.; Dal Negro, P. Shallow landslides in pyroclastic soils: A distributed modelling approach for hazard assessment. Eng. Geol. 2004, 73, 277–295. [Google Scholar] [CrossRef]
- Pradhan, A.M.S.; Kim, Y.T. Evaluation of a combined spatial multi-criteria evaluation model and deterministic model for landslide susceptibility mapping. Catena 2016, 140, 125–139. [Google Scholar] [CrossRef]
- Huang, F.; Cao, Z.; Guo, J.; Jiang, S.H.; Guo, Z. Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping. Catena 2020, 191, 104580. [Google Scholar] [CrossRef]
- Yalcin, A. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. Catena 2008, 72, 1–12. [Google Scholar] [CrossRef]
- Zhu, A.; Miao, Y.; Wang, R.; Zhu, T.; Deng, Y.; Liu, J.; Yang, L.; Qin, C.; Hong, H. A comparative study of an expert knowledge-based model and two data-driven models for landslide susceptibility mapping. Catena 2018, 166, 317–327. [Google Scholar] [CrossRef]
- Shu, H.; Hürlimann, M.; Molowny-Horas, R.; González, M.; Pinyol, J.; Abancó, C.; Ma, J. Relation between land cover and landslide susceptibility in Val d’Aran, Pyrenees (Spain): Historical aspects, present situation and forward prediction. Sci. Total Environ. 2019, 693, 133557. [Google Scholar] [CrossRef]
- Reichenbach, P.; Rossi, M.; Malamud, B.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Yansari, Z.T.; Panagos, P.; Pradhan, B. Analysis and evaluation of landslide susceptibility: A review on articles published during 2005–2016 (periods of 2005–2012 and 2013–2016). Arab. J. Geosci. 2018, 11, 193. [Google Scholar] [CrossRef]
- Ramani, S.E.; Pitchaimani, K.; Gnanamanickam, V.R. GIS based landslide susceptibility mapping of Tevankarai Ar sub-watershed, Kodaikkanal, India using binary logistic regression analysis. J. Mt. Sci. Engl. 2011, 8, 505–517. [Google Scholar] [CrossRef]
- Budimir, M.E.A.; Atkinson, P.M.; Lewis, H.G. A systematic review of landslide probability mapping using logistic regression. Landslides 2015, 12, 419–436. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.; Shafique, M.; Khan, M.A.; Bacha, M.A.; Shah, S.U.; Calligaris, C. Landslide susceptibility assessment using Frequency Ratio, a case study of northern Pakistan. Egypt. J. Remote Sens. Space Sci. 2019, 22, 11–24. [Google Scholar] [CrossRef]
- Rabby, Y.W.; Li, Y. Landslide Susceptibility Mapping Using Integrated Methods: A Case Study in the Chittagong Hilly Areas, Bangladesh. Geosciences 2020, 10, 483. [Google Scholar] [CrossRef]
- Neuhäuser, B.; Damm, B.; Terhorst, B. GIS-based assessment of landslide susceptibility on the base of the Weights-of-Evidence model. Landslides 2012, 9, 511–528. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Colkesen, I.; Sahin, E.K. Machine Learning Techniques in Landslide Susceptibility Mapping: A Survey and a Case Study. In Landslides: Theory, Practice and Modelling; Pradhan, S.P., Vishal, V., Singh, T.N., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 283–301. [Google Scholar] [CrossRef]
- Ma, Z.; Mei, G.; Piccialli, F. Machine learning for landslides prevention: A survey. Neural Comput. Appl. 2021, 33, 10881–10907. [Google Scholar] [CrossRef]
- Chen, X.; Chen, W. GIS-based landslide susceptibility assessment using optimized hybrid machine learning methods. Catena 2021, 196, 104833. [Google Scholar] [CrossRef]
- Behnia, P.; Blais-Stevens, A. Landslide susceptibility modelling using the quantitative random forest method along the northern portion of the Yukon Alaska Highway Corridor, Canada. Nat. Hazards 2018, 90, 1407–1426. [Google Scholar] [CrossRef]
- Hong, H.; Liu, J.; Bui, D.T.; Pradhan, B.; Acharya, T.D.; Pham, B.T.; Zhu, A.; Chen, W.; Ahmad, B.B. Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China). Catena 2018, 163, 399–413. [Google Scholar] [CrossRef]
- Goetz, J.N.; Brenning, A.; Petschko, H.; Leopold, P. Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Comput. Geosci. 2015, 81, 1–11. [Google Scholar] [CrossRef]
- Xie, Z.; Chen, G.; Meng, X.; Zhang, Y.; Qiao, L.; Tan, L. A comparative study of landslide susceptibility mapping using weight of evidence, logistic regression and support vector machine and evaluated by SBAS-InSAR monitoring: Zhouqu to Wudu segment in Bailong River Basin, China. Environ. Earth Sci. 2017, 76, 313. [Google Scholar] [CrossRef]
- Chen, W.; Xie, X.; Wang, J.; Pradhan, B.; Hong, H.; Bui, D.T.; Duan, Z.; Ma, J. A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. Catena 2017, 151, 147–160. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Ye, Z.; Jiang, S.; Huang, J.; Chang, Z.; Chen, J. Uncertainty study of landslide susceptibility prediction considering the different attribute interval numbers of environmental factors and different data-based models. Catena 2021, 202, 105250. [Google Scholar] [CrossRef]
- Guzzetti, F.; Carrara, A.; Cardinali, M.; Reichenbach, P. Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 1999, 31, 181–216. [Google Scholar] [CrossRef]
- Erener, A.; Düzgün, H.S.B. Landslide susceptibility assessment: What are the effects of mapping unit and mapping method? Environ. Earth Sci. 2012, 66, 859–877. [Google Scholar] [CrossRef]
- Jacobs, L.; Kervyn, M.; Poesen, J.; Reichenbach, P.; Rossi, M.; Marchesini, I.; Alvioli, M.; Dewitte, O. Dealing with heterogeneous landslide information for landslide susceptibility assessment: Comparing a pixel-based and slope unit-based approach. In Proceedings of the EGU General Assembly Conference, Vienna, Austria, 23–28 April 2017; p. 6260. [Google Scholar]
- Ba, Q.; Chen, Y.; Deng, S.; Yang, J.; Li, H. A comparison of slope units and grid cells as mapping units for landslide susceptibility assessment. Earth Sci. Inform. 2018, 11, 373–388. [Google Scholar] [CrossRef]
- Jacobs, L.; Kervyn, M.; Reichenbach, P.; Rossi, M.; Marchesini, I.; Alvioli, M.; Dewitte, O. Regional susceptibility assessments with heterogeneous landslide information: Slope unit- vs. pixel-based approach. Geomorphology 2020, 356, 107084. [Google Scholar] [CrossRef]
- Peng, J.; Wang, Q.; Zhuang, J.; Leng, Y.; Fan, Z.; Wang, S. Dynamic formation mechanism of landslide disaster on the Loess Plateau. J. Geomech. 2020, 26, 714–730. [Google Scholar] [CrossRef]
- Xue, Q.; Zhang, M.; Li, L. Loess landslide susceptibility evaluation based on slope unit and information value method in Baota District, Yan’ an. Geol. Bull. China 2015, 34, 118–125. [Google Scholar]
- Gao, B.; Wang, X. Risk Zoning of Landslide Based on SINMAP Model in Yan’an City. Bull. Soil Water Conserv. 2019, 39, 211–216. (In Chinese) [Google Scholar] [CrossRef]
- Yang, L.; Mou, X.; Li, C.; Zheng, X.; Yue, D. Risk assessment of geological hazards in Baota District, Yan’ an City, Shanxi, China. Mt. Res. 2020, 38, 679–690. [Google Scholar] [CrossRef]
- Ciampalini, A.; Raspini, F.; Lagomarsino, D.; Catani, F.; Casagli, N. Landslide susceptibility map refinement using PSInSAR data. Remote Sens. Environ. 2016, 184, 302–315. [Google Scholar] [CrossRef]
- Ma, R. Analysis of trend and mutation characteristics of precipitation in yan’an city during past 45 years. J. Yanan Univ. Nat. Sci. Ed. 2016, 35, 95–99. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, Z.; Zhu, Y. Distribution Regularity and Development Characteristics of Landslides in Yan’an. Geol. Sci. Technol. Inf. 2017, 36, 236–243. [Google Scholar] [CrossRef]
- Van Westen, C.J.; Castellanos, E.; Kuriakose, S.L. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Eng. Geol. 2008, 102, 112–131. [Google Scholar] [CrossRef]
- Sharma, R.H. Evaluating the effect of slope curvature on slope stability by a numerical analysis. Aust. J. Earth Sci. 2013, 60, 283–290. [Google Scholar] [CrossRef]
- Tang, Y.; Feng, F.; Guo, Z.; Feng, W.; Li, Z.; Wang, J.; Sun, Q.; Ma, H.; Li, Y. Integrating principal component analysis with statistically-based models for analysis of causal factors and landslide susceptibility mapping: A comparative study from the loess plateau area in Shanxi (China). J. Clean. Prod. 2020, 277, 124159. [Google Scholar] [CrossRef]
- Ho, J.Y.; Lee, K.T.; Chang, T.C.; Wang, Z.Y.; Liao, Y.H. Influences of spatial distribution of soil thickness on shallow landslide prediction. Eng. Geol. 2012, 124, 38–46. [Google Scholar] [CrossRef]
- Zhang, M.; Tan, X.; Dong, Y.; Sun, P.; Dong, P.; Lu, N. Initial analysis on environmental effect of cutting hills to backfill ditch project on Loess Plateau—Take Yan’ an New District as an example. Geol. Rev. 2019, 65, 1409–1421. [Google Scholar] [CrossRef]
- Aksu, G.; Güzeller, C.; Eser, T. The Effect of the Normalization Method Used in Different Sample Sizes on the Success of Artificial Neural Network Model. Int. J. Assess. Tools Educ. 2019, 6, 170–192. [Google Scholar] [CrossRef] [Green Version]
- Colesanti, C.; Wasowski, J. Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry. Eng. Geol. 2006, 88, 173–199. [Google Scholar] [CrossRef]
- Wegmüller, U.; Strozzi, T.; Tosi, L. Differential SAR interferometry for land subsidence monitoring: Methodology and examples. In Proceedings of the Sixth International Symposium on Land Subsidence, Ravenna, Italy, 24–29 September 2000. [Google Scholar]
- Pasquali, P.; Pellegrini, R.; Prati, C.; Rocca, F. Combination of interferograms from ascending and descending orbits. In Proceedings of the IGARSS ‘94—1994 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 8–12 August 1994; Volume 2, pp. 733–735. [Google Scholar]
- Yu, X.; Xue, D.; Chen, F. Analysis of Influence of Vegetation Coverage and Slope on SAR Interferometric Coherence. Mt. Res. 2020, 38, 926–934. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Jia, C.; Chen, S.; Li, H. SBAS-InSAR Based Deformation Detection of Urban Land, Created from Mega-Scale Mountain Excavating and Valley Filling in the Loess Plateau: The Case Study of Yan’an City. Remote Sens. 2019, 11, 1673. [Google Scholar] [CrossRef] [Green Version]
- Liao, M.; Zhang, R.; Lv, J.; Yu, B.; Pang, J.; Li, R.; Xiang, W.; Tao, W. Subsidence Monitoring of Fill Area in Yan’an New District Based on Sentinel-1A Time Series Imagery. Remote Sens. 2021, 13, 3044. [Google Scholar] [CrossRef]
- Chen, W.; Pourghasemi, H.R.; Panahi, M.; Kornejady, A.; Wang, J.; Xie, X.; Cao, S. Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques. Geomorphology 2017, 297, 69–85. [Google Scholar] [CrossRef]
- Zhao, F.; Meng, X.; Zhang, Y.; Chen, G.; Su, X.; Yue, D. Landslide Susceptibility Mapping of Karakorum Highway Combined with the Application of SBAS-InSAR Technology. Sensors 2019, 19, 2685. [Google Scholar] [CrossRef] [Green Version]
- Lu, P.; Catani, F.; Tofani, V.; Casagli, N. Quantitative hazard and risk assessment for slow-moving landslides from Persistent Scatterer Interferometry. Landslides 2014, 11, 685–696. [Google Scholar] [CrossRef]
- Hammad, M.; Van Leeuwen, B.; Mucsi, L. Integration of gis and advanced remote sensing techniques for landslide hazard assessment: A case study of northwest syria. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, VI-3/W1-2020, 27–34. [Google Scholar] [CrossRef]
- Saaty, T.L. Multicriteria decision making: The analytic hierarchy process: Planning, priority setting resource allocation. Resour. Alloc. 1990, 2, 1–20. [Google Scholar]
- Frédéric, L.; Asté, J.; Leroi, E. Vulnerability assessment of elements exposed to mass-movement: Working toward a better risk perception. In Landslides-Glissements de Terrain; Balkema: Rotterdam, The Netherlands, 1996; pp. 263–270. [Google Scholar]
- Akgun, A.; Kıncal, C.; Pradhan, B. Application of remote sensing data and GIS for landslide risk assessment as an environmental threat to Izmir city (west Turkey). Environ. Monit. Assess. 2012, 184, 5453–5470. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Xue, Q.; Li, Q.; Sun, P. Slope classification system for loess collapse risk assessment. J. Eng. Geol. 2012, 20, 378–386. [Google Scholar]
- Tang, Y.; Zhang, M.; Xue, Q. Landslide risk assessment methods and flow on a large scale—A case study of loess landslides risk assessment in Yan’an urban districts, Shaanxi, China. Geol. Bull. China 2011, 30, 166–172. [Google Scholar]
- Galli, M.; Ardizzone, F.; Cardinali, M.; Guzzetti, F.; Reichenbach, P. Comparing landslide inventory maps. Geomorphology 2008, 94, 268–289. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pourghasemi, H.R. Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia. Geosci. Front. 2021, 12, 639–655. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, X.; Novellino, A.; Dijkstra, T.; Chen, G.; Jordan, C.; Li, Y.; Su, X. Characterization of pre-failure deformation and evolution of a large earthflow using InSAR monitoring and optical image interpretation. Landslides 2021, 19, 35–50. [Google Scholar] [CrossRef]
- Confuorto, P.; Medici, C.; Bianchini, S.; Del Soldato, M.; Rosi, A.; Segoni, S.; Casagli, N. Machine Learning for Defining the Probability of Sentinel-1 Based Deformation Trend Changes Occurrence. Remote Sens. 2022, 14, 1748. [Google Scholar] [CrossRef]
- Ambrosi, C.; Strozzi, T.; Scapozza, C.; Wegmüller, U. Landslide hazard assessment in the Himalayas (Nepal and Bhutan) based on Earth-Observation data. Eng. Geol. 2018, 237, 217–228. [Google Scholar] [CrossRef]
- Mondini, A.C.; Guzzetti, F.; Chang, K.; Monserrat, O.; Martha, T.R.; Manconi, A. Landslide failures detection and mapping using Synthetic Aperture Radar: Past, present and future. Earth Sci. Rev. 2021, 216, 103574. [Google Scholar] [CrossRef]
- Kang, Y.; Lu, Z.; Zhao, C.; Xu, Y.; Kim, J.; Gallegos, A.J. InSAR monitoring of creeping landslides in mountainous regions: A case study in Eldorado National Forest, California. Remote Sens. Environ. 2021, 258, 112400. [Google Scholar] [CrossRef]
Factors | Min | Max | Standard Deviation |
---|---|---|---|
Slope (°) | 0 | 86.8 | 15.5 |
Profile curvature | −497.4 | 499.0 | 33.6 |
Relief (m) | 8 | 166.6 | 29.4 |
NDVI | −0.23 | 0.98 | 0.18 |
Landslide density | 0 | 0.27 | 0.06 |
Build density | 0 | 0.22 | 0.04 |
Loess thickness (m) | 8.0 | 160.2 | 29.3 |
Bedrock thickness (m) | 0 | 24.5 | 3.4 |
Deformation (m) | 0.11 | −0.09 | 0.014 |
Sensor | PALSAR-2 |
---|---|
Wavelength | 23 cm |
Band | L |
Acquired time | 5 November 2018 |
20 May 2019 | |
Orbit direction | Ascending |
Angle of incidence | 32.5° |
Polarization | HH |
Observation mode | Fine |
Resolution | 10 m |
Normal baseline | 140.798 m |
Absolute time baseline | 196 days |
Max displacement | 0.150 m |
Min displacement | −0.172 m |
Standard deviation | 0.018 m |
Type | Length (m) | Width (m) | Height (m) | Slope (°) | Area (103m2) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Loess | 243 | <50 | 26 | <50 | 25 | ≤30 | 7 | ≤20 | 10 | ≤5 | 73 | |
50–100 | 108 | 50–100 | 107 | 30–60 | 113 | 20–30 | 95 | 5–10 | 73 | |||
L | 100–150 | 104 | 100–150 | 99 | 60–90 | 118 | 30–40 | 174 | 10–15 | 59 | ||
Loess-bedrock | 91 | 150–200 | 50 | 150–200 | 41 | 90–120 | 69 | 40–50 | 55 | 15–20 | 46 | |
200–250 | 22 | 200–250 | 31 | 120–150 | 24 | >50 | 0 | 20–25 | 17 | |||
>250 | 24 | >250 | 31 | >150 | 3 | 25 | 66 | |||||
Loess | 285 | ≤50 | 76 | ≤50 | 35 | ≤30 | 19 | ≤20 | 12 | ≤5 | 145 | |
50–100 | 218 | 50–100 | 160 | 30–60 | 184 | 20–30 | 59 | 5–10 | 143 | |||
U | Bedrock | 5 | 100–150 | 82 | 100–150 | 138 | 60–90 | 161 | 30–40 | 231 | 10–15 | 61 |
150–200 | 19 | 150–200 | 39 | 90–120 | 40 | 40–50 | 108 | 15–20 | 28 | |||
Loess-bedrock | 121 | 200–250 | 10 | 200–250 | 18 | 120–150 | 6 | >50 | 1 | 20–25 | 12 | |
>250 | 6 | >250 | 21 | >150 | 1 | >25 | 22 |
RF | Predicted | Recall | ||
---|---|---|---|---|
Non-Landslide | Landslide | |||
Actual | Non-landslide | 543 | 73 | 0.881 |
Landslide | 43 | 541 | 0.926 | |
Precision | 0.927 | 0.881 | 0.903 |
Slope Units | VH | H | M | L | |
---|---|---|---|---|---|
Susceptibility zone | Number | 291 | 401 | 495 | 654 |
Total areas | 5.8 | 4.3 | 4.6 | 6.9 | |
Proportion (N) | 16% | 22% | 27% | 36% | |
Landslides | 122 | 96 | 62 | 54 | |
Unstable slopes | 138 | 147 | 96 | 30 | |
Hazard zone | Number | 293 | 439 | 583 | 526 |
Total areas | 6.4 | 4.7 | 6 | 4.5 | |
Proportion (N) | 16% | 24% | 32% | 29% | |
Landslides | 123 | 89 | 77 | 45 | |
Unstable slopes | 131 | 149 | 93 | 38 | |
Risk zone | Number | 116 | 377 | 560 | 788 |
Total areas | 2.0 | 4.4 | 6.0 | 9.2 | |
Proportion (N) | 6% | 20% | 30% | 43% | |
Landslides | 55 | 78 | 99 | 102 | |
Unstable slopes | 41 | 132 | 133 | 105 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Zhang, Y.; Liang, Y.; Sun, P.; Li, Y.; Su, X.; Wang, A.; Meng, X. Landslide Risk Assessment Using a Combined Approach Based on InSAR and Random Forest. Remote Sens. 2022, 14, 2131. https://doi.org/10.3390/rs14092131
Liu W, Zhang Y, Liang Y, Sun P, Li Y, Su X, Wang A, Meng X. Landslide Risk Assessment Using a Combined Approach Based on InSAR and Random Forest. Remote Sensing. 2022; 14(9):2131. https://doi.org/10.3390/rs14092131
Chicago/Turabian StyleLiu, Wangcai, Yi Zhang, Yiwen Liang, Pingping Sun, Yuanxi Li, Xiaojun Su, Aijie Wang, and Xingmin Meng. 2022. "Landslide Risk Assessment Using a Combined Approach Based on InSAR and Random Forest" Remote Sensing 14, no. 9: 2131. https://doi.org/10.3390/rs14092131
APA StyleLiu, W., Zhang, Y., Liang, Y., Sun, P., Li, Y., Su, X., Wang, A., & Meng, X. (2022). Landslide Risk Assessment Using a Combined Approach Based on InSAR and Random Forest. Remote Sensing, 14(9), 2131. https://doi.org/10.3390/rs14092131