Estimating Aboveground Biomass of Two Different Forest Types in Myanmar from Sentinel-2 Data with Machine Learning and Geostatistical Algorithms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Processing Methods
2.2.1. Sentinel-2 Images Pre-Processing and Indices Extraction
2.2.2. SRTM Data Pre-Processing and Variables Extraction
2.2.3. Texture Features Extraction
2.2.4. Field Forest Inventory Data
2.2.5. Allometric Equation and Calculated AGB
2.3. Aboveground Biomass Detection Methods
2.3.1. Prediction Model Establishment
Random Forest and Stochastic Gradient Boosting Models
Random Forest-Based Kriging Model
2.4. Accuracy Assessment
3. Results
3.1. Variable Importance and Selections
3.2. Validation Metrics for RF and SGB Models
3.3. Semivariogram Analysis Results of RF-Derived Residuals
3.4. Forest AGB Mapping Results Based on RFOK and RFCK Models
4. Discussions
4.1. Sensitivity of Sentinel-2 Derivatives to AGB
4.2. Sensitivity of Topographic Variables to AGB
4.3. Comparison between Models
4.4. Effects of Forest Management on AGB in the Study Sites
4.5. Attainment for SDG and REDD+
5. Conclusions
- (1)
- S-2-derived reflectance, VIs, and textures are effective in predicting the AGB of the two forests if the proper processing techniques are applied;
- (2)
- The RFOK model in the evergreen forest and RFCK model in the deciduous forest provided a more realistic spatial distribution of AGB by considering the spatial correlation than the RF and SGB models with R2 = 0.47, RMSE = 24.91 t/ha and R2 = 0.52, RMSE = 34.72 t/ha due to their spatial correlation between AGB sample plots;
- (3)
- The extraction of textures from wavelet analysis (WA) is suggested to improve estimation for the forests with a complex structure and saturation problems;
- (4)
- In future studies, the accuracy may be improved by combining both the active and passive remotely sensed data to characterize complex forest structures to better estimate the forest AGB and understand their spatial distributions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonan, G.B. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolosin, M.; Harris, N. Tropical Forests and Climate Change: The Latest Science; World Resources Institute: Washington, DC, USA, 2018. [Google Scholar]
- Rodríguez-Veiga, P.; Wheeler, J.; Louis, V.; Tansey, K.; Balzter, H. Quantifying Forest Biomass Carbon Stocks from Space. Curr. For. Rep. 2017, 3, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, H.K.; Brown, S.; Niles, J.O.; Foley, J.A. Monitoring and Estimating Tropical Forest Carbon Stocks: Making REDD a Reality. Environ. Res. Lett. 2007, 2, 045023. [Google Scholar] [CrossRef]
- Basuki, T.M.; van Laake, P.E.; Skidmore, A.K.; Hussin, Y.A. Allometric Equations for Estimating the Above-Ground Biomass in Tropical Lowland Dipterocarp Forests. For. Ecol. Manag. 2009, 257, 1684–1694. [Google Scholar] [CrossRef]
- Dang, A.T.N.; Nandy, S.; Srinet, R.; Luong, N.V.; Ghosh, S.; Senthil Kumar, A. Forest Aboveground Biomass Estimation Using Machine Learning Regression Algorithm in Yok Don National Park, Vietnam. Ecol. Inform. 2019, 50, 24–32. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran, E. A Survey of Remote Sensing-Based Aboveground Biomass Estimation Methods in Forest Ecosystems. Int. J. Digit. Earth 2016, 9, 63–105. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Li, C.; Liu, Z. Forest Aboveground Biomass Estimation Using Landsat 8 and Sentinel-1A Data with Machine Learning Algorithms. Sci. Rep. 2020, 10, 9952. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Li, M.; Huang, C.; Tao, X.; Wei, A. Annual Forest Aboveground Biomass Changes Mapped Using ICESat/GLAS Measurements, Historical Inventory Data, and Time-Series Optical and Radar Imagery for Guangdong Province, China. Agric. For. Meteorol. 2018, 259, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Mon, M.S.; Myint, A.A. Estimating above Ground Biomass of Tropical Mixed Deciduous Forests Using Landsat ETM+ Imagery for Two Reserved Forests in Bago Yoma Region, Myanmar. In Proceedings of the Multi-Scale Forest Biomass Assessment and Monitoring in the Hindu Kush Himalayan Region: A Geospatial Perspective; Murthy, M.S.R., Wesselman, S., Gilani, H., Eds.; International Centre for Integrated Mountain Development: Patan, Nepal, 2015; pp. 165–177. [Google Scholar]
- Madugundu, R.; Nizalapur, V.; Jha, C.S. Estimation of LAI and Above-Ground Biomass in Deciduous Forests: Western Ghats of Karnataka, India. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 211–219. [Google Scholar] [CrossRef]
- Naveenkumar, J.; Arunkumar, K.S.; Sundarapandian, S. Biomass and Carbon Stocks of a Tropical Dry Forest of the Javadi Hills, Eastern Ghats, India. Carbon Manag. 2017, 8, 351–361. [Google Scholar] [CrossRef]
- Gasparri, N.I.; Parmuchi, M.G.; Bono, J.; Karszenbaum, H.; Montenegro, C.L. Assessing Multi-Temporal Landsat 7 ETM+ Images for Estimating above-Ground Biomass in Subtropical Dry Forests of Argentina. J. Arid Environ. 2010, 74, 1262–1270. [Google Scholar] [CrossRef]
- Li, M.; Tan, Y.; Pan, J.; Peng, S. Modeling Forest Aboveground Biomass by Combining Spectrum, Textures and Topographic Features. Front. For. China 2008, 3, 10–15. [Google Scholar] [CrossRef]
- Shen, W.; Li, M.; Huang, C.; Wei, A. Quantifying Live Aboveground Biomass and Forest Disturbance of Mountainous Natural and Plantation Forests in Northern Guangdong, China, Based on Multi-Temporal Landsat, PALSAR and Field Plot Data. Remote Sens. 2016, 8, 595. [Google Scholar] [CrossRef] [Green Version]
- Castillo, J.A.A.; Apan, A.A.; Maraseni, T.N.; Salmo, S.G. Estimation and Mapping of Above-Ground Biomass of Mangrove Forests and Their Replacement Land Uses in the Philippines Using Sentinel Imagery. ISPRS J. Photogramm. Remote Sens. 2017, 134, 70–85. [Google Scholar] [CrossRef]
- Xue, B. Lidar and Machine Learning Estimation of Hardwood Forest Biomass in Mountainous and Bottomland Environments. Master’s Thesis, University of Arkansas, Fayetteville, AR, USA, 2015. [Google Scholar]
- Pham, T.D.; Yokoya, N.; Bui, D.T.; Yoshino, K.; Friess, D.A. Remote Sensing Approaches for Monitoring Mangrove Species, Structure, and Biomass: Opportunities and Challenges. Remote Sens. 2019, 11, 230. [Google Scholar] [CrossRef] [Green Version]
- Laurin, G.V.; Chen, Q.; Lindsell, J.A.; Coomes, D.A.; Del Frate, F.; Guerriero, L.; Pirotti, F.; Valentini, R. Above Ground Biomass Estimation in an African Tropical Forest with Lidar and Hyperspectral Data. ISPRS J. Photogramm. Remote Sens. 2014, 89, 49–58. [Google Scholar] [CrossRef]
- Yuan, X.; Li, L.; Tian, X.; Luo, G.; Chen, X. Estimation of Above-Ground Biomass Using MODIS Satellite Imagery of Multiple Land-Cover Types in China. Remote Sens. Lett. 2016, 7, 1141–1149. [Google Scholar] [CrossRef]
- Blackard, J.A.; Finco, M.V.; Helmer, E.H.; Holden, G.R.; Hoppus, M.L.; Jacobs, D.M. Mapping US Forest Biomass Using Nationwide Forest Inventory Data and Moderate Resolution Information. Remote Sens. Environ. 2008, 112, 1658–1677. [Google Scholar] [CrossRef]
- Su, H.; Shen, W.; Wang, J.; Ali, A.; Li, M. Machine Learning and Geostatistical Approaches for Estimating Aboveground Biomass in Chinese Subtropical Forests. For. Ecosyst. 2020, 7, 64. [Google Scholar] [CrossRef]
- López-Serrano, P.M.; Cárdenas Domínguez, J.L.; Corral-Rivas, J.J.; Jiménez, E.; López-Sánchez, C.A.; Vega-Nieva, D.J. Modeling of Aboveground Biomass with Landsat 8 OLI and Machine Learning in Temperate Forests. Forests 2019, 11, 11. [Google Scholar] [CrossRef] [Green Version]
- Addabbo, P.; Focareta, M.; Marcuccio, S.; Votto, C.; Ullo, S.L. Contribution of Sentinel-2 Data for Applications in Vegetation Monitoring. Acta IMEKO 2016, 5, 44–54. [Google Scholar] [CrossRef]
- Gascon, F.; Ramoino, F.; Deanos, Y. Sentinel-2 Data Exploitation with ESA’s Sentinel-2 Toolbox. EGU Gen. Assem. 2017, 19, 19548. [Google Scholar]
- Imran, A.B.; Khan, K.; Ali, N.; Ahmad, N.; Ali, A.; Shah, K. Narrow Band Based and Broadband Derived Vegetation Indices Using Sentinel-2 Imagery to Estimate Vegetation Biomass. Glob. J. Environ. Sci. Manag. 2020, 6, 97–108. [Google Scholar] [CrossRef]
- Li, H.; Kato, T.; Hayashi, M.; Wu, L. Estimation of Forest Aboveground Biomass of Two Major Conifers in Ibaraki Prefecture, Japan, from PALSAR-2 and Sentinel-2 Data. Remote Sens. 2022, 14, 468. [Google Scholar] [CrossRef]
- Safari, A.; Sohrabi, H. Integration of Synthetic Aperture Radar and Multispectral Data for Aboveground Biomass Retrieval in Zagros Oak Forests, Iran: An Attempt on Sentinel Imagery. Int. J. Remote Sens. 2020, 41, 8069–8095. [Google Scholar] [CrossRef]
- Adamu, B.; Ibrahim, S.; Rasul, A.; Whanda, S.J.; Headboy, P.; Muhammed, I.; Maiha, I.A. Evaluating the Accuracy of Spectral Indices from Sentinel-2 Data for Estimating Forest Biomass in Urban Areas of the Tropical Savanna. Remote Sens. Appl. Soc. Environ. 2021, 22, 100484. [Google Scholar] [CrossRef]
- Nuthammachot, N.; Askar, A.; Stratoulias, D.; Wicaksono, P. Combined Use of Sentinel-1 and Sentinel-2 Data for Improving above-Ground Biomass Estimation. Geocarto Int. 2022, 37, 366–376. [Google Scholar] [CrossRef]
- Taddese, H.; Asrat, Z.; Burud, I.; Gobakken, T.; Ørka, H.O.; Dick, Ø.B.; Næsset, E. Use of Remotely Sensed Data to Enhance Estimation of Aboveground Biomass for the Dry Afromontane Forest in South-Central Ethiopia. Remote Sens. 2020, 12, 3335. [Google Scholar] [CrossRef]
- Li, L.; Zhou, X.; Chen, L.L.; Chen, L.L.; Zhang, Y.; Liu, Y. Estimating Urban Vegetation Biomass from Sentinel-2A Image Data. Forests 2020, 11, 125. [Google Scholar] [CrossRef] [Green Version]
- Pandit, S.; Tsuyuki, S.; Dube, T. Exploring the Inclusion of Sentinel-2 MSI Texture Metrics in above-Ground Biomass Estimation in the Community Forest of Nepal. Geocarto Int. 2019, 35, 1832–1849. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J.; Cadima, J. Principal Component Analysis: A Review and Recent Developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.M.; Behera, M.D. Aboveground Biomass Estimation Using Multi-Sensor Data Synergy and Machine Learning Algorithms in a Dense Tropical Forest. Appl. Geogr. 2018, 96, 29–40. [Google Scholar] [CrossRef]
- Ouma, Y.O.; Tetuko, J.; Tateishi, R. Analysis of Co-occurrence and Discrete Wavelet Transform Textures for Differentiation of Forest and Non-forest Vegetation in Very-high-resolution Optical-sensor Imagery. Int. J. Remote Sens. 2008, 29, 3417–3456. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Ren, C.; Zhang, B.; Wang, Z. Optimal Combination of Predictors and Algorithms for Forest Above-Ground Biomass Mapping from Sentinel and SRTM Data. Remote Sens. 2019, 11, 414. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, X.; Guo, Z. Estimation of Tree Height and Aboveground Biomass of Coniferous Forests in North China Using Stereo ZY-3, Multispectral Sentinel-2, and DEM Data. Ecol. Indic. 2021, 126, 107645. [Google Scholar] [CrossRef]
- Simard, M.; Zhang, K.; Rivera-Monroy, V.H.; Ross, M.S.; Ruiz, P.L.; Castañeda-Moya, E.; Twilley, R.R.; Rodriguez, E. Mapping Height and Biomass of Mangrove Forests in Everglades National Park with SRTM Elevation Data. Photogramm. Eng. Remote Sens. 2006, 72, 299–311. [Google Scholar] [CrossRef]
- Ahmad, A.; Gilani, H.; Ahmad, S.R. Forest Aboveground Biomass Estimation and Mapping through High-Resolution Optical Satellite Imagery—A Literature Review. Forests 2021, 12, 914. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, C.; Xu, H.; Wang, G. Estimating Aboveground Biomass of Pinus Densata-Dominated Forests Using Landsat Time Series and Permanent Sample Plot Data. J. For. Res. 2019, 30, 1689–1706. [Google Scholar] [CrossRef]
- Ye, Q.; Yu, S.; Liu, J.; Zhao, Q.; Zhao, Z. Aboveground Biomass Estimation of Black Locust Planted Forests with Aspect Variable Using Machine Learning Regression Algorithms. Ecol. Indic. 2021, 129, 107948. [Google Scholar] [CrossRef]
- Torres, C.; Almeida, D.; Soares, L.; Eduardo, L.; Cruz, D.O.; Pierre, J.; Balbaud, H.; Daniele, A.; Rocha, F.; Pereira, D.S.; et al. Combining LiDAR and Hyperspectral Data for Aboveground Biomass Modeling in the Brazilian Amazon Using Di Ff Erent Regression Algorithms. Remote Sens. Environ. 2019, 232, 111323. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.H. Stochastic Gradient Boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Ren, C.; Zhang, B.; Wang, Z. Assessment of Multi-Wavelength SAR and Multispectral Instrument Data for Forest Aboveground Biomass Mapping Using Random Forest Kriging. For. Ecol. Manag. 2019, 447, 12–25. [Google Scholar] [CrossRef]
- Wang, C.; Myint, S.W. Environmental Concerns of Deforestation in Myanmar 2001–2010. Remote Sens. 2016, 8, 728. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Natural Resources and Environmental Conservation; Forest Department. Forestry in Myanmar; Winn, U.O., Ed.; Ministry of Natural Resources and Environmental Conservation: Naypyitaw, Myanmar, 2020; Volume 53, ISBN 9788578110796.
- FAO; Forest Department, Myanmar. Country Report: Forest Resource Assessment 2015, Myanmar; FAO: Rome, Italy, 2014.
- Forest Department, Myanmar, UN-REDD program. Forest Reference Level (FRL) of Myanmar; Ministry of Natural Resources and Environmental Conservation: Naypyitaw, Myanmar, 2018.
- Banskota, A.; Wynne, R.H.; Kayastha, N. Improving Within-Genus Tree Species Discrimination Using the Discrete Wavelet Transform Applied to Airborne Hyperspectral Data. Int. J. Remote Sens. 2011, 32, 3551–3563. [Google Scholar] [CrossRef] [Green Version]
- Maung, W.S. Assessing the Natural Recovery of Mangroves after Human Disturbance Using Neural Network Classification and Sentinel-2 Imagery in Wunbaik Mangrove Forest, Myanmar. Remote Sens. 2021, 13, 52. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with Erts. In Third ERTS Symposium; NASA SP-351; NASA: Washington, DC, USA, 1974; Volume 351. [Google Scholar]
- Karlson, M.; Ostwald, M.; Reese, H.; Sanou, J.; Tankoano, B.; Mattsson, E. Mapping Tree Canopy Cover and Aboveground Biomass in Sudano-Sahelian Woodlands Using Landsat 8 and Random Forest. Remote Sens. 2015, 7, 10017–10041. [Google Scholar] [CrossRef] [Green Version]
- Richardson, A.J.; Wiegand, C.L. Distinguishing Vegetation from Soil Background Information. Photogramm. Eng. Remote Sens. 1977, 43, 1541–1552. [Google Scholar]
- Sims, D.A.; Gamon, J.A. Relationships between Leaf Pigment Content and Spectral Reflectance across a Wide Range of Species, Leaf Structures and Developmental Stages. Remote Sens. Environ. 2002, 4257, 337–354. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a Two-Band Enhanced Vegetation Index without a Blue Band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Alam, M.J.; Rahman, K.M.; Asna, S.M.; Muazzam, N.; Ahmed, I.; Chowdhury, M.Z. Comparative Studies on IFAT, ELISA & DAT for Serodiagnosis of Visceral Leishmaniasis in Bangladesh. Bangladesh Med. Res. Counc. Bull. 1996, 22, 27–32. [Google Scholar] [PubMed]
- Gitelson, A.A.; Merzlyak, M.N. Signature Analysis of Leaf Reflectance Spectra: Algorithm Development for Remote Sensing of Chlorophyll. J. Plant Physiol. 1996, 148, 494–500. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Birth, G.S.; Mcvey, G.R. Measuring the Color of Growing Turf with a Reflectance Spectrophotometer Is Grown Primarily. Agron. J. 1968, 60, 2–5. [Google Scholar] [CrossRef]
- Delegido, J.; Verrelst, J.; Alonso, L.; Moreno, J. Evaluation of Sentinel-2 Red-Edge Bands for Empirical Estimation of Green LAI and Chlorophyll Content. Sensors 2011, 11, 7063–7081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, P.; Dash, J.; Curran, P.J. International Journal of Remote The MERIS Terrestrial Chlorophyll Index. Int. J. Remote Sens. 2014, 25, 5403–5413. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Gong, W.; Hu, X.; Gong, J. Forest Type Identification with Random Forest Using Sentinel-1A, Sentinel-2A, Multi-Temporal Landsat-8 and DEM Data. Remote Sens. 2018, 10, 946. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Shen, H.; Shen, A.; Deng, J.; Gan, M.; Zhu, J.; Xu, H.; Wang, K. Comparison of Machine-Learning Methods for above-Ground Biomass Estimation Based on Landsat Imagery. J. Appl. Remote Sens. 2016, 10, 035010. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, J.; Liang, S.; Li, X.; Li, M. An Evaluation of Eight Machine Learning Regression Algorithms for Forest Aboveground Biomass Estimation from Multiple Satellite Data Products. Remote Sens. 2020, 12, 4015. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by RandomForest. R News 2002, 2, 18–22. [Google Scholar]
- Elith, J.; Leathwick, J.R.; Hastie, T. A Working Guide to Boosted Regression Trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef] [PubMed]
- Hengl, T.; Heuvelink, G.B.M.; Rossiter, D.G. About Regression-Kriging: From Equations to Case Studies. Comput. Geosci. 2007, 33, 1301–1315. [Google Scholar] [CrossRef]
- Cressie, N. The Origins of Kriging 1. Math. Geol. 1990, 22, 239–252. [Google Scholar] [CrossRef]
- Pandit, S.; Tsuyuki, S.; Dube, T. Estimating Above-Ground Biomass in Sub-Tropical Buffer Zone Community Forests, Nepal, Using Sentinel 2 Data. Remote Sens. 2018, 10, 601. [Google Scholar] [CrossRef] [Green Version]
- Ferwerda, J.G.; Skidmore, A.K.; Mutanga, O. Nitrogen Detection with Hyperspectral Normalized Ratio Indices across Multiple Plant Species. Int. J. Remote Sens. 2005, 26, 4083–4095. [Google Scholar] [CrossRef]
- Baloloy, A.B.; Blanco, A.C.; Candido, C.G.; Argamosa, R.J.L.; Dumalag, J.B.L.C.; Dimapilis, L.L.C.; Paringit, E.C. Estimation of mangrove forest aboveground biomass using multispectral bands, vegetation indices and biophysical variables derived from optical satellite imageries: Rapideye, planetscope and sentinel-2. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 4, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Mngadi, M.; Odindi, J.; Mutanga, O. The Utility of Sentinel-2 Spectral Data in Quantifying above-Ground Carbon Stock in an Urban Reforested Landscape. Remote Sens. 2021, 13, 4281. [Google Scholar] [CrossRef]
- Forkuor, G.; Zoungrana, J.B.B.; Dimobe, K.; Ouattara, B.; Vadrevu, K.P.; Tondoh, J.E. Above-Ground Biomass Mapping in West African Dryland Forest Using Sentinel-1 and 2 Datasets—A Case Study. Remote Sens. Environ. 2020, 236, 111496. [Google Scholar] [CrossRef]
- Ewald, F.; Poblete-Olivares, J.; Rivero, L.; Lopatin, J.; Galleguillos, M. Using Sentinel-2 and Canopy Height Models to Derive a Landscape-Level Biomass Map Covering Multiple Vegetation Types. Int. J. Appl. Earth Obs. Geoinf. 2021, 94, 102236. [Google Scholar] [CrossRef]
- Eckert, S. Improved Forest Biomass and Carbon Estimations Using Texture Measures from WorldView-2 Satellite Data. Remote Sens. 2012, 4, 810–829. [Google Scholar] [CrossRef] [Green Version]
- Cutler, M.E.J.; Boyd, D.S.; Foody, G.M.; Vetrivel, A. Estimating Tropical Forest Biomass with a Combination of SAR Image Texture and Landsat TM Data: An Assessment of Predictions between Regions. ISPRS J. Photogramm. Remote Sens. 2012, 70, 66–77. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Guo, Q.; Xue, B.; Hu, T.; Alvarez, O.; Tao, S.; Fang, J. Spatial Distribution of Forest Aboveground Biomass in China: Estimation through Combination of Spaceborne Lidar, Optical Imagery, and Forest Inventory Data. Remote Sens. Environ. 2016, 173, 187–199. [Google Scholar] [CrossRef] [Green Version]
- Yohannes, H.; Soromessa, T. Carbon Stock Analysis along Slope and Slope Aspect Gradient in Gedo Forest: Implications for Climate Change Mitigation. J. Earth Sci. Clim. Chang. 2015, 6, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Ren, C.; Zhang, B.; Wang, Z.; Xi, Y. Estimation of Forest Above-Ground Biomass by Geographically Weighted Regression and Machine Learning with Sentinel Imagery. Forests 2018, 9, 582. [Google Scholar] [CrossRef] [Green Version]
- Tun, K.; Stefano, J.; Volkova, L. Forest Management Influences Aboveground Carbon and Tree Species Diversity in Myanmar’s Mixed Deciduous Forests. Forests 2016, 7, 217. [Google Scholar] [CrossRef] [Green Version]
- Petersen, K.; Varela, J.B. INDC ANALYSIS: An Overview of the Forestry Sector. In INDC ANALYSIS: An Overview of the Forestry Sector; World Wide Fund for Nature: Gland, Switzerland, 2015; pp. 1–9. [Google Scholar]
Image/Product | Tile Number and Acquisition Date | Cloud % | Bands Used for Modeling | Spatial Resolution (m) | Central Wavelength (nm) |
---|---|---|---|---|---|
S-2 L1C Product | T47RLL on 26 January 2017 | 3.63 | B2 (blue) | 10 | 490 |
B3 (green) | 10 | 560 | |||
B4 (red) | 10 | 665 | |||
T46QHL on 5 February 2017 | 0.18 | B5 (red edge) | 20 | 705 | |
B6 (red edge) | 20 | 740 | |||
B7 (red edge) | 20 | 783 | |||
B8 (NIR) | 10 | 842 | |||
B8A (red edge) | 20 | 865 | |||
B11 (SWIR1) | 20 | 1610 | |||
B12 (SWIR2) | 20 | 2190 |
Satellite Data | Bands and Indices | Formula | |
---|---|---|---|
Sentinel-2 Level-2A 10 m-resolution | Multispectral bands | Band 2 | BLUE |
Band 3 | GREEN | ||
Band 4 | RED | ||
Band 5 | RE1 | ||
Band 6 | RE2 | ||
Band 7 | RE3 | ||
Band 8 | NIR | ||
Band 8A | RE4 | ||
Band 11 | SWIR1 | ||
Band 12 | SWIR2 | ||
Vegetation indices (Broad bands) | NDVI | NIR − RED/NIR + RED | |
SAVI | 1.5 × (NIR − RED)/(NIR + RED + L) | ||
EVI | 2.5 × (NIR − RED/NIR + 2.4RED + 1) | ||
GNDVI | (NIR − GREEN)/(NIR + GREEN) | ||
WDVI | (NIR − 0.5 × RED) | ||
SR | (NIR/RED) | ||
NDWI | NIR − SWIR2/NIR + SWIR2 | ||
NDI45 | (RE1 − RED)/(RE1 + RED) | ||
MTCI | (RE2 − RE1)/(RE1 − RED) | ||
Vegetation indices (Narrow red-edge bands) | RENDVI | NIR − RE1/NIR + RE1 | |
REEVI | 2.5 × (NIR − RE1/NIR + 2.4RE1 + 1) | ||
Resampled SRTM DEM (10 m) | Elevation | Ele | - |
Slope | Slope | - | |
Aspect | Asp | - |
Data | GLCM Texture | Formula | Reference |
---|---|---|---|
PC1 image from 10 m resolution bands of S-2 L2A | mean | Robert [64] | |
variance | |||
homogeneity | |||
contract | |||
dissimilarity | |||
entropy | |||
second moment | |||
correlation |
Forest Type | Number of Sample Plots | AGB (t/ha) Value Range | Median | Mean | Std. Deviation | Number of Sample Plot Used in Modeling | |
---|---|---|---|---|---|---|---|
Training | Validation | ||||||
Evergreen | 88 | 0.57–151.64 | 38.40 | 49.00 | 39.206 | 71 | 17 |
Deciduous | 170 | 2.74–215.24 | 100.02 | 98.00 | 51.73 | 140 | 30 |
Forest Type | Model | R2 | RMSE (t/ha) | RMSE% | MAE (t/ha) | Bias | Bias% | RI |
---|---|---|---|---|---|---|---|---|
NH Evergreen | RF | 0.47 | 25.45 | 51.44 | 22.45 | 0.15 | 0.29 | - |
NH Evergreen | SGB | 0.35 | 32.02 | 64.72 | 27.03 | 2.48 | 5.03 | - |
NH Evergreen | RFOK | 0.47 | 24.91 | 50.34 | 22.19 | 3.35 | 6.76 | 0.021 |
NH Evergreen | RFCK | 0.46 | 25.75 | 52.04 | 57.67 | −49.27 | −99.57 | −0.011 |
YM Deciduous | RF | 0.38 | 40.23 | 44.09 | 33.07 | 6.18 | 6.77 | - |
YM Deciduous | SGB | 0.35 | 41.85 | 45.88 | 33.00 | 6.91 | 7.58 | - |
YM Deciduous | RFOK | 0.52 | 34.84 | 38.19 | 27.51 | 0.30 | 0.33 | 0.134 |
YM Deciduous | RFCK | 0.52 | 34.72 | 38.06 | 27.47 | 0.06 | 0.06 | 0.137 |
Forest Type | Residual Mean (t/ha) | Std. Deviation (t/ha) | Value Range (t/ha) | Skewness | Kurtosis |
---|---|---|---|---|---|
NH Evergreen | −0.91 | 15.38 | −45.90–34.52 | −0.31 | 3.57 |
YM Deciduous | −1.60 | 23.12 | −75.97–82.43 | −0.03 | 4.50 |
Model Parameter | Theoretical Model | Nugget | Sill | Nugget/Sill | Range (m) | R2 | RMSE (t/ha) |
---|---|---|---|---|---|---|---|
NH Evergreen OK | Gaussian | 138.53 | 145.09 | 0.95 | 99.57 | 0.19 | 12.42 |
NH Evergreen CK | Gaussian | 249.63 | 249.75 | 0.99 | 9611 | 0.15 | 18.69 |
YM Deciduous OK | Gaussian | 245.93 | 324.58 | 0.76 | 10123 | 0.58 | 24.38 |
YM Deciduous CK | Gaussian | 239.97 | 326.26 | 0.74 | 9890 | 0.62 | 22.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wai, P.; Su, H.; Li, M. Estimating Aboveground Biomass of Two Different Forest Types in Myanmar from Sentinel-2 Data with Machine Learning and Geostatistical Algorithms. Remote Sens. 2022, 14, 2146. https://doi.org/10.3390/rs14092146
Wai P, Su H, Li M. Estimating Aboveground Biomass of Two Different Forest Types in Myanmar from Sentinel-2 Data with Machine Learning and Geostatistical Algorithms. Remote Sensing. 2022; 14(9):2146. https://doi.org/10.3390/rs14092146
Chicago/Turabian StyleWai, Phyo, Huiyi Su, and Mingshi Li. 2022. "Estimating Aboveground Biomass of Two Different Forest Types in Myanmar from Sentinel-2 Data with Machine Learning and Geostatistical Algorithms" Remote Sensing 14, no. 9: 2146. https://doi.org/10.3390/rs14092146
APA StyleWai, P., Su, H., & Li, M. (2022). Estimating Aboveground Biomass of Two Different Forest Types in Myanmar from Sentinel-2 Data with Machine Learning and Geostatistical Algorithms. Remote Sensing, 14(9), 2146. https://doi.org/10.3390/rs14092146