The Impact of Dynamic Emissivity–Temperature Trends on Spaceborne Data: Applications to the 2001 Mount Etna Eruption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Emissivity from Radiance Spectra
2.2. FTIR Data Analysis and Creation of a ‘Dynamic Emissivity–Temperature Rule’
2.3. Radiant Heat Flux from Spaceborne Data
3. Results
3.1. Laboratory-Based FTIR Results
3.1.1. Mean Integrated Emissivity for Remote Sensing Applications
3.1.2. Mean Emissivity for Lava Flow Modelling
3.2. Spaceborne Data Results: Computation of Radiant Heat Flux
3.2.1. Landsat 7-ETM+ Data
3.2.2. MODIS Data
3.3. Lava Flow Modelling Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Harris, A.J.L. Thermal Remote Sensing of Active Volcanoes: A User’s Manual; Cambridge University Press: Cambridge, UK, 2013; Volume 9780521859, ISBN 9781139029346. [Google Scholar]
- Blackett, M. Early analysis of landsat-8 thermal infrared sensor imagery of volcanic activity. Remote Sens. 2014, 6, 2282–2295. [Google Scholar] [CrossRef] [Green Version]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Sòria, G.; Romaguera, M.; Guanter, L.; Moreno, J.; Plaza, A.; Martínez, P. Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE Trans. Geosci. Remote Sens. 2008, 46, 316–327. [Google Scholar] [CrossRef]
- Cappello, A.; Bilotta, G.; Neri, M.; Del Negro, C. Probabilistic modeling of future volcanic eruptions at Mount Etna. J. Geophys. Res. Solid Earth 2013, 118, 1925–1935. [Google Scholar] [CrossRef] [Green Version]
- Cappello, A.; Ganci, G.; Bilotta, G.; Hérault, A.; Zago, V.; Del Negro, C. Satellite-driven modeling approach for monitoring lava flow hazards during the 2017 etna eruption. Ann. Geophys. 2019, 62, 1–13. [Google Scholar] [CrossRef]
- Ganci, G.; Cappello, A.; Bilotta, G.; Herault, A.; Zago, V.; Del Negro, C. Mapping volcanic deposits of the 2011–2015 etna eruptive events using satellite remote sensing. Front. Earth Sci. 2018, 6, 83. [Google Scholar] [CrossRef]
- Coltelli, M.; Proietti, C.; Branca, S.; Marsella, M.; Andronico, D.; Lodato, L. Analysis of the 2001 lava flow eruption of Mt. Etna from three-dimensional mapping. J. Geophys. Res. Earth Surf. 2007, 112, 1–18. [Google Scholar] [CrossRef]
- Hulley, G.C.; Hook, S.J.; Abbott, E.; Malakar, N.; Islam, T.; Abrams, M. The ASTER Global Emissivity Dataset (ASTER GED): Mapping Earth’s emissivity at 100 meter spatial scale. Geophys. Res. Lett. 2015, 42, 7966–7976. [Google Scholar] [CrossRef]
- Rogic, N.; Cappello, A.; Ferrucci, F. Role of Emissivity in Lava Flow ‘Distance-to-Run’ Estimates from Satellite-Based Volcano Monitoring. Remote Sens. 2019, 11, 662. [Google Scholar] [CrossRef] [Green Version]
- Flynn, L.P.; Harris, A.J.L.; Rothery, D.A.; Oppenheimer, C. High-spatial-resolution thermal remote sensing of active volcanic features using landsat and hyperspectral data. Geophys. Monogr. Ser. 2000, 116, 161–177. [Google Scholar] [CrossRef]
- Lee, R.J.; Ramsey, M.S.; King, P.L. Development of a new laboratory technique for high-temperature thermal emission spectroscopy of silicate melts. J. Geophys. Res. Solid Earth 2013, 118, 1968–1983. [Google Scholar] [CrossRef] [Green Version]
- Ramsey, M.; Chevrel, M.; Coppola, D.; Harris, A. The influence of emissivity on the thermo-rheological modeling of the channelized lava flows at Tolbachik volcano. Ann. Geophys. 2019, 61, 1–24. [Google Scholar] [CrossRef]
- Rogic, N.; Cappello, A.; Ganci, G.; Maturilli, A.; Rymer, H.; Blake, S.; Ferrucci, F. Spaceborne EO and a combination of inverse and forward modelling for monitoring lava flow advance. Remote Sens. 2019, 11, 3032. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.O.; Ramsey, M.S. Uncertainty Analysis of Remotely-Acquired Thermal Infrared Data to Extract the Thermal Properties of Active Lava Surfaces. Remote Sens. 2020, 12, 193. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.O.; Williams, D.B.; Lee, R.J.; Ramsey, M.S. Quantitative Thermal Emission Spectroscopy at High Temperatures: A Laboratory Approach for Measurement and Calibration. J. Geophys. Res. Solid Earth 2021, 126, e2021JB022157. [Google Scholar] [CrossRef]
- Thompson, J.O.; Ramsey, M.S. The influence of variable emissivity on lava flow propagation modeling. Bull. Volcanol. 2021, 83, 41. [Google Scholar] [CrossRef]
- Plank, S.; Marchese, F.; Filizzola, C.; Pergola, N.; Neri, M.; Nolde, M.; Martinis, S. The July/August 2019 Lava Flows at the Sciara del Fuoco, stromboli-analysis from multi-sensor infrared satellite imagery. Remote Sens. 2019, 11, 2879. [Google Scholar] [CrossRef] [Green Version]
- Murphy, S.W.; Filho, C.R.d.S.; Wright, R.; Sabatino, G.; Pabon, R.C. HOTMAP: Global hot target detection at moderate spatial resolution. Remote Sens. Environ. 2016, 177, 78–88. [Google Scholar] [CrossRef]
- Marchese, F.; Genzano, N.; Neri, M.; Falconieri, A.; Mazzeo, G.; Pergola, N. A multi-channel algorithm for mapping volcanic thermal anomalies by means of sentinel-2 MSI and Landsat-8 OLI data. Remote Sens. 2019, 11, 2876. [Google Scholar] [CrossRef] [Green Version]
- Harris, A.J.L.; Murray, J.B.; Aries, S.E.; Davies, M.A.; Flynn, L.P.; Wooster, M.J.; Wright, R.; Rothery, D.A. Effusion rate trends at Etna and Krafla and their implications for eruptive mechanisms. J. Volcanol. Geotherm. Res. 2000, 102, 237–269. [Google Scholar] [CrossRef]
- Lautze, N.C.; Harris, A.J.L.; Bailey, J.E.; Ripepe, M.; Calvari, S.; Dehn, J.; Rowland, S.K.; Evans-Jones, K. Pulsed lava effusion at Mount Etna during 2001. J. Volcanol. Geotherm. Res. 2004, 137, 231–246. [Google Scholar] [CrossRef]
- Ruff, S.W.; Christensen, P.R.; Barbera, P.W.; Anderson, D.L. Quantitative thermal emission spectroscopy of minerals: A laboratory technique for measurement and calibration. J. Geophys. Res. Solid Earth 1997, 102, 14899–14913. [Google Scholar] [CrossRef]
- Hamilton, V.E.; Wyatt, M.B.; McSween, H.Y.; Christensen, P.R. Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy 2. Application to Martian surface spectra from the Mars Global Surveyor Thermal Emission Spectrometer. J. Geophys. Res. E Planets 2001, 106, 14733–14746. [Google Scholar] [CrossRef] [Green Version]
- Wright, R.; Blackett, M.; Hill-Butler, C. Some observations regarding the thermal flux from Earth’s erupting volcanoes for the period of 2000 to 2014. Geophys. Res. Lett. 2015, 42, 282–289. [Google Scholar] [CrossRef]
- Barsi, J.A.; Schott, J.R.; Palluconi, F.D.; Hook, S.J. Validation of a web-based atmospheric correction tool for single thermal band instruments. Earth Obs. Syst. X 2005, 5882, 58820E. [Google Scholar] [CrossRef]
- Ganci, G.; Vicari, A.; Bonfiglio, S.; Gallo, G.; del Negro, C. A texton-based cloud detection algorithm for MSG-SEVIRI multispectral images. Geomat. Nat. Hazards Risk 2011, 2, 279–290. [Google Scholar] [CrossRef]
- Ganci, G.; Vicari, A.; Fortuna, L.; del Negro, C. The HOTSAT volcano monitoring system based on combined use of SEVIRI and MODIS multispectral data. Ann. Geophys. 2011, 54, 544–550. [Google Scholar] [CrossRef]
- Ganci, G.; Cappello, A.; Bilotta, G.; Del Negro, C. How the variety of satellite remote sensing data over volcanoes can assist hazard monitoring efforts: The 2011 eruption of Nabro volcano. Remote Sens. Environ. 2020, 236, 111426. [Google Scholar] [CrossRef]
- Wooster, M.J.; Zhukov, B.; Oertel, D. Fire radiative energy for quantitative study of biomass burning: Derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sens. Environ. 2003, 86, 83–107. [Google Scholar] [CrossRef]
- Dozier, J. A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sens. Environ. 1981, 11, 221–229. [Google Scholar] [CrossRef]
- Giordano, D.; Dingwell, D.B. Viscosity of hydrous Etna basalt: Implications for Plinian-style basaltic eruptions. Bull. Volcanol. 2003, 65, 8–14. [Google Scholar] [CrossRef]
- Hirn, B.; Di Bartola, C.; Ferrucci, F. Spaceborne monitoring 2000–2005 of the Pu’u ’O’o-Kupaianaha (Hawaii) eruption by synergetic merge of multispectral payloads ASTER and MODIS. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2848–2856. [Google Scholar] [CrossRef]
- Matson, M.; Dozier, J. Identification of subresolution high temperature sources using a thermal IR sensor. Photogramm. Eng. Remote Sens. 1981, 47, 1311–1318. [Google Scholar]
- Rothery, D.A.; Francis, P.W.; Wood, C.A. Volcano monitoring using short wavelength infrared data from satellites. J. Geophys. Res. 1988, 93, 7993–8008. [Google Scholar] [CrossRef]
- Oppenheimer, C. Thermal distributions of hot volcanic surfaces constrained using three infrared bands of remote sensing data. Geophys. Res. Lett. 1993, 20, 431–434. [Google Scholar] [CrossRef]
- Harris, A.J.L. Electronic Supplement 5: The dual-band method: A history of its application to volcanic hot spots. In Thermal Remote Sensing of Active Volcanoes: A User’s Manual; Cambridge University Press: Cambridge, UK, 2013; pp. 1–26. [Google Scholar]
- Harris, A.J.L. Electronic Supplement 6: The dual-band method: Worked examples. In Thermal Remote Sensing of Active Volcanoes: A User’s Manual; Cambridge University Press: Cambridge, UK, 2013; pp. 1–25. [Google Scholar]
- USA. Department of the Interior. USA. Geological Survey Global Visualisation (GloVis) Viewer. Available online: https://glovis.usgs.gov/ (accessed on 1 September 2019).
- Lee, R.J.; King, P.L.; Ramsey, M.S. Spectral analysis of synthetic quartzofeldspathic glasses using laboratory thermal infrared spectroscopy. J. Geophys. Res. Solid Earth 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Ganci, G.; Bilotta, G.; Cappello, A.; Herault, A.; Del Negro, C. HOTSAT: A multiplatform system for the thermal monitoring of volcanic activity using satellite data. Geol. Soc. Spec. Publ. 2016, 426, 207–221. [Google Scholar] [CrossRef]
- Zuccarello, F.; Bilotta, G.; Cappello, A.; Ganci, G. Effusion Rates on Mt. Etna and Their Influence on Lava Flow Hazard Assessment. Remote Sens. 2022, 14, 1366. [Google Scholar] [CrossRef]
- Cappello, A.; Bilotta, G.; Ganci, G. Modelling of geophysical flows through GPUFLOW. Appl. Sci. 2022. submitted. [Google Scholar]
- Bilotta, G.; Cappello, A.; Hérault, A.; Vicari, A.; Russo, G.; Del Negro, C. Sensitivity analysis of the MAGFLOW Cellular Automaton model for lava flow simulation. Environ. Model. Softw. 2012, 35, 122–131. [Google Scholar] [CrossRef]
- Bilotta, G.; Cappello, A.; Hérault, A.; Del Negro, C. Influence of topographic data uncertainties and model resolution on the numerical simulation of lava flows. Environ. Model. Softw. 2019, 112, 1–15. [Google Scholar] [CrossRef]
- Kereszturi, G.; Cappello, A.; Ganci, G.; Procter, J.; Németh, K.; Del Negro, C.; Cronin, S.J. Numerical simulation of basaltic lava flows in the auckland volcanic field, New Zealand—Implication for volcanic hazard assessment. Bull. Volcanol. 2014, 76, 879. [Google Scholar] [CrossRef]
- Kereszturi, G.; Németh, K.; Moufti, M.R.; Cappello, A.; Murcia, H.; Ganci, G.; Del Negro, C.; Procter, J.; Zahran, H.M.A. Emplacement conditions of the 1256 AD Al-Madinah lava flow field in Harrat Rahat, Kingdom of Saudi Arabia-Insights from surface morphology and lava flow simulations. J. Volcanol. Geotherm. Res. 2016, 309, 14–30. [Google Scholar] [CrossRef]
- Cappello, A.; Ganci, G.; Calvari, S.; Perez, N.M.; Hernandez, P.A.; Silva, S.V.; Cabral, J.; Del Negro, C. Lava flow hazard modelling during the 2014–2015 Fogo eruption, Cape Verde. J. Geophys. Res. Solid Earth 2016, 121, 2290–2303. [Google Scholar] [CrossRef] [Green Version]
- Del Negro, C.; Cappello, A.; Neri, M.; Bilotta, G.; Hérault, A.; Ganci, G. Lava flow hazards at Mount Etna: Constraints imposed by eruptive history and numerical simulations. Sci. Rep. 2013, 3, 3493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappello, A.; Zanon, V.; Del Negro, C.; Ferreira, T.J.L.; Queiroz, M.G.P.S. Exploring lava-flow hazards at Pico Island, Azores Archipelago (Portugal). Terra Nova 2015, 27, 156. [Google Scholar] [CrossRef]
- Pedrazzi, D.; Cappello, A.; Zanon, V.; Del Negro, C. Impact of effusive eruptions from the Eguas–Carvão fissure system, São Miguel Island, Azores Archipelago (Portugal). J. Volcanol. Geotherm. Res. 2015, 291, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Cappello, A.; Geshi, N.; Neri, M.; Del Negro, C. Lava flow hazards—An impending threat at Miyakejima volcano, Japan. J. Volcanol. Geotherm. Res. 2015, 308, 1–9. [Google Scholar] [CrossRef]
- Del Negro, C.; Cappello, A.; Bilotta, G.; Ganci, G.; Hérault, A.; Zago, V. Living at the edge of an active volcano: Risk from lava flows on Mt. Etna. GSA Bull. 2020, 132, 1615–1625. [Google Scholar] [CrossRef]
- Centorrino, V.; Bilotta, G.; Cappello, A.; Ganci, G.; Corradino, C.; Del Negro, C. A particle swarm optimization–based heuristic to optimize the configuration of artificial barriers for the mitigation of lava flow risk. Environ. Model. Softw. 2021, 139, 105023. [Google Scholar] [CrossRef]
- Abtahi, A.A.; Kahle, A.B.; Abbott, E.A.; Gillespie, A.R.; Sabol, D.; Yamada, G.; Pieri, D. Emissivity Changes in Basalt Cooling after Eruption from PU’U O’O, Kilauea, Hawaii. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 6–10 December 2002; Volume 2002, p. V71A-1263. [Google Scholar]
- Coppola, D.; Laiolo, M.; Piscopo, D.; Cigolini, C. Rheological control on the radiant density of active lava flows and domes. J. Volcanol. Geotherm. Res. 2013, 249, 39–48. [Google Scholar] [CrossRef]
- Bilotta, G.; Hérault, A.; Cappello, A.; Ganci, G.; Del Negro, C. GPUSPH: A Smoothed Particle Hydrodynamics model for the thermal and rheological evolution of lava flows. Geol. Soc. Spec. Publ. 2016, 426, 387–408. [Google Scholar] [CrossRef]
- Zago, V.; Bilotta, G.; Hérault, A.; Dalrymple, R.A.; Fortuna, L.; Cappello, A.; Ganci, G.; Del Negro, C. Semi-implicit 3D SPH on GPU for lava flows. J. Comput. Phys. 2018, 375, 854–870. [Google Scholar] [CrossRef]
- Zago, V.; Bilotta, G.; Cappello, A.; Dalrymple, R.A.; Fortuna, L.; Ganci, G.; Hérault, A.; Del Negro, C. Preliminary validation of lava benchmark tests on the gpusph particle engine. Ann. Geophys. 2019, 62, VO224. [Google Scholar] [CrossRef]
WAVELENGTH | ESTIMATE | STANDARD ERROR | CONFIDENCE INTERVAL | |
---|---|---|---|---|
SWIR | 1 | 3.07 × 10−1 | 1.97 × 10−1 | {−3.17 × 10−1, 9.32 × 10−1} |
T | 1.13 × 10−3 | 3.75 × 10−4 | {−5.57 × 10−5, 2.32 × 10−3} | |
−6.09 × 10−7 | 1.74 × 10−7 | {−1.16 × 10−6, −5.67 × 10−8} | ||
MIR | 1 | 8.56 × 10−1 | 9.86 × 10−2 | {5.44 × 10−1, 1.17} |
T | 7.07 × 10−5 | 1.88 × 10−4 | {−5.24 × 10−4, 6.65 × 10−4} | |
−2.52 × 10−7 | 8.71 × 10−8 | {−5.29 × 10−7, 2.38 × 10−8} | ||
TIR_31 | 1 | 1.03 | 1.98 × 10−2 | {9.72 × 10−1, 1.10} |
T | −7.33 × 10−5 | 3.77 × 10−5 | {−1.93 × 10−4, 4.63 × 10−5} | |
−1.29 × 10−8 | 1.75 × 10−8 | {−6.85 × 10−8, 4.27 × 10−8} | ||
TIR_32 | 1 | 1.03 | 1.61 × 10−2 | {9.76 × 10−1, 1.08} |
T | −4.62 × 10−5 | 3.07 × 10−5 | {−1.44 × 10−4, 5.12 × 10−5} | |
−2.61 × 10−8 | 1.43 × 10−8 | {−7.13 × 10−8, 1.91 × 10−8} |
Temperature (K) | 773 | 823 | 873 | 923 | 973 | 1023 | 1073 | 1123 | 1173 | 1223 | 1273 | 1323 | 1373 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SWIR 1 | 0.805 | 0.804 | 0.837 | 0.867 | 0.857 | 0.846 | 0.825 | 0.805 | 0.825 | 0.791 | 0.736 | 0.755 | 0.753 |
SWIR 2 | 0.805 | 0.804 | 0.837 | 0.867 | 0.857 | 0.846 | 0.825 | 0.805 | 0.825 | 0.791 | 0.736 | 0.755 | 0.753 |
Error (Series) | 0.012 | 0.047 | 0.012 | 0.016 | 0.004 | 0.007 | 0.010 | 0.021 | 0.025 | 0.020 | 0.022 | 0.029 | 0.032 |
Radiance SWIR1 | 2.14 | 4.50 | 8.10 | 14.3 | 23.0 | 34.8 | 50.96 | 70.71 | 101.4 | 131.1 | 161.8 | 214.6 | 267.3 |
Radiance SWIR2 | 4.30 | 7.60 | 11.4 | 17.5 | 25.4 | 33.4 | 44.8 | 56.3 | 75.8 | 90.5 | 104.4 | 130.8 | 151.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rogic, N.; Bilotta, G.; Ganci, G.; Thompson, J.O.; Cappello, A.; Rymer, H.; Ramsey, M.S.; Ferrucci, F. The Impact of Dynamic Emissivity–Temperature Trends on Spaceborne Data: Applications to the 2001 Mount Etna Eruption. Remote Sens. 2022, 14, 1641. https://doi.org/10.3390/rs14071641
Rogic N, Bilotta G, Ganci G, Thompson JO, Cappello A, Rymer H, Ramsey MS, Ferrucci F. The Impact of Dynamic Emissivity–Temperature Trends on Spaceborne Data: Applications to the 2001 Mount Etna Eruption. Remote Sensing. 2022; 14(7):1641. https://doi.org/10.3390/rs14071641
Chicago/Turabian StyleRogic, Nikola, Giuseppe Bilotta, Gaetana Ganci, James O. Thompson, Annalisa Cappello, Hazel Rymer, Michael S. Ramsey, and Fabrizio Ferrucci. 2022. "The Impact of Dynamic Emissivity–Temperature Trends on Spaceborne Data: Applications to the 2001 Mount Etna Eruption" Remote Sensing 14, no. 7: 1641. https://doi.org/10.3390/rs14071641
APA StyleRogic, N., Bilotta, G., Ganci, G., Thompson, J. O., Cappello, A., Rymer, H., Ramsey, M. S., & Ferrucci, F. (2022). The Impact of Dynamic Emissivity–Temperature Trends on Spaceborne Data: Applications to the 2001 Mount Etna Eruption. Remote Sensing, 14(7), 1641. https://doi.org/10.3390/rs14071641