Effects of Mulching on Maize Yield and Evapotranspiration in the Heihe River Basin, Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Acquisition of Spatial Heterogeneity Variables
2.2.1. Land Use Data
2.2.2. Meteorological Data
2.2.3. Soil Variables
2.2.4. Sowing Date Retrieval
2.2.5. Canopy Coverage Retrieval
2.3. G-AquaCrop Model Parameterization & Yield and ET Simulation
2.3.1. G-AquaCrop Model
2.3.2. Setting Simulation Scenarios for the G-AquaCrop Model
2.3.3. Tuning and Simulation of G-AquaCrop Model
2.4. Relationship between Mulching Areas and Meteorological Variables
3. Results
3.1. Spatial Distribution of Sowing Date
3.2. Spatial Distribution of Y under Different Scenarios
3.3. Change in Y after Film Mulching
3.4. ET Changes after Film Mulching
3.5. Suggestions for Film Mulching According to Changes in Yield
3.6. Suggestions Based on ET Changes
3.7. Suggestions Based on Y and ET Changes
3.8. Relationship between Mulching Areas and Meteorological Variables
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Li, Y.F.; Li, J.S. Effects of nitrogen management on the growth and yield of mulched and drip-irrigated maize in Northeast Black Soil Regions. J. Hydraul. Eng. 2014, 45, 529–536. (In Chinese) [Google Scholar]
- Li, S.X.; Wang, Z.H.; Li, S.Q.; Gao, Y.J.; Tian, X.H. Effect of plastic sheet mulch, wheat straw mulch, and maize growth on water loss by evaporation in dryland areas of China. Agric. Water Manag. 2013, 116, 39–49. [Google Scholar] [CrossRef]
- Qin, W.; Hu, C.; Oenema, O. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: A meta-analysis. Sci. Rep. 2015, 5, 16210. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Sustainable intensification of China’s agroecosystems by conservation agriculture. Int. Soil Water Conserv. Res. 2018, 6, 1–12. [Google Scholar] [CrossRef]
- Li, Q.; Li, H.; Zhang, L.; Zhang, S.; Chen, Y. Mulching improves yield and water-use efficiency of potato cropping in China: A meta-analysis. Field Crop. Res. 2018, 221, 50–60. [Google Scholar] [CrossRef]
- Gao, H.; Yan, C.; Liu, Q.; Li, Z.; Yang, X.; Qi, R. Exploring optimal soil mulching to enhance yield and water use efficiency in maize cropping in China: A meta-analysis. Agric. Water Manag. 2019, 225, 105741. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Q.; Jia, W.; Yan, C.; Wang, J. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ. Pollut. 2020, 260, 114096. [Google Scholar] [CrossRef]
- Kang, S.; Hao, X.; Du, T.; Tong, L.; Su, X.; Lu, H.; Li, X.; Huo, Z.; Li, S.; Ding, R. Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice. Agric. Water Manag. 2017, 179, 5–17. [Google Scholar] [CrossRef]
- Jiang, X. Study on China’s Food Security and the “Three Rural Issues”. J. Shanxi Agric. Sci. 2014, 42, 771–785. (In Chinese) [Google Scholar]
- Wang, J.; Li, Y.; Huang, J.; Yan, T.; Sun, T. Growing water scarcity, food security and government responses in China. Glob. Food Secur. 2017, 14, 9–17. [Google Scholar] [CrossRef]
- He, J.; Yang, X.; Li, Z.; Zhang, X.; Tang, Q. Spatiotemporal Variations of Meteorological Droughts in China During 1961–2014: An Investigation Based on Multi-Threshold Identification. Int. J. Disaster Risk Sci. 2016, 7, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Ayantobo, O.O.; Li, Y.; Song, S.; Yao, N. Spatial comparability of drought characteristics and related return periods in mainland China over 1961–2013. J. Hydrol. 2017, 550, 549–567. [Google Scholar] [CrossRef]
- Fu, J.; Niu, J.; Kang, S.; Adeloye, A.; Du, T. Crop production in the Hexi Corridor challenged by future climate change. J. Hydrol. 2019, 579, 124197. [Google Scholar] [CrossRef]
- Niu, J.; Kang, S.; Zhang, X.; Fu, J. Vulnerability analysis based on drought and vegetation dynamics. Ecol. Indic. 2019, 105, 329–336. [Google Scholar] [CrossRef]
- Zhang, W.; Nie, Z.; Liu, S.; Wang, J. Threshold of influence of water resources in the Heihe River valley, northwestern Gansu, China on the ecological environment variation of the lower reaches. Geol. Bull. China 2006, 25, 244–250. (In Chinese) [Google Scholar]
- Li, X.; Lu, L.; Cheng, G.; Xiao, H. Quantifying landscape structure of the Heihe River Basin, north-west China using FRAGSTATS. J. Arid Environ. 2001, 48, 521–535. [Google Scholar] [CrossRef]
- Zhou, J.; Hu, B.X.; Cheng, G.; Wang, G.; Li, X. Development of a three-dimensional watershed modelling system for water cycle in the middle part of the Heihe rivershed, in the west of China. Hydrol. Process. 2011, 25, 1964–1978. [Google Scholar] [CrossRef]
- Yaghi, T.; Arslan, A.; Naoum, F. Cucumber (Cucumis sativus, L.) water use efficiency (WUE) under plastic mulch and drip irrigation. Agric. Water Manag. 2013, 128, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Liu, E.K.; He, W.Q.; Yan, C.R. ‘White revolution’ to ‘white pollution’—agricultural plastic film mulch in China. Environ. Res. Lett. 2014, 9, 091001. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.J.; Liu, W.; Wang, E.; Zhou, T.; Xin, P. Residual plastic mulch fragments effects on soil physical properties and water flow behavior in the Minqin Oasis, northwestern China. Soil Tillage Res. 2017, 166, 100–107. [Google Scholar] [CrossRef]
- Gao, H.; Yan, C.; Liu, Q.; Ding, W.; Chen, B.; Li, Z. Effects of plastic mulching and plastic residue on agricultural production: A meta-analysis. Sci. Total Environ. 2019, 651, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Rockström, J. Biomass production in dry tropical zones: How to increase water productivity. In Land and Water Integration and River Basin Management; FAO: Rome, Italy, 1995; pp. 31–48. [Google Scholar]
- Kijne, J.W.; Barker, R.; Molden, D. Water Productivity in Agriculture: Limits and Opportunities for Improvement; CAB International: Wallingford, UK, 2003. [Google Scholar]
- Comas, L.H.; Trout, T.J.; DeJonge, K.C.; Zhang, H.; Gleason, S.M. Water productivity under strategic growth stage-based deficit irrigation in maize. Agric. Water Manag. 2019, 212, 433–440. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop—The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agron. J. 2009, 101, 426–437. [Google Scholar] [CrossRef] [Green Version]
- Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. AquaCrop—The FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agron. J. 2009, 101, 438–447. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, T.C.; Heng, L.; Steduto, P.; Rojas-Lara, B.; Raes, D.; Fereres, E. AquaCrop—The FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agron. J. 2009, 101, 448–459. [Google Scholar] [CrossRef]
- van Diepen, C.A.; Wolf, J.; van Keulen, H.; Rappoldt, C. WOFOST: A simulation model of crop production. Soil Use Manag. 1989, 5, 16–24. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Williams, J.R. EPIC-Erosion/Productivity Impact Calculator: 1. Model Documentation; U.S. Department of Agriculture, Agricultural Research Service: Springfield, VA, USA, 1990; pp. 206–207. [Google Scholar]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Keating, B.A.; Carberry, P.S.; Hammer, G.L.; Probert, M.E.; Robertson, M.J.; Holzworth, D.; Huth, N.I.; Hargreaves, J.N.G.; Meinke, H.; Hochman, Z.; et al. An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron. 2003, 18, 267–288. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; Zhang, L.; Liang, Y.; Dawes, W. Simulation of winter wheat yield and water use efficiency in the Loess Plateau of China using WAVES. Agric. Syst. 2003, 78, 355–367. [Google Scholar] [CrossRef]
- Ran, H.; Kang, S.; Li, F.; Tong, L.; Ding, R.; Du, T.; Li, S.; Zhang, X. Performance of AquaCrop and SIMDualKc models in evapotranspiration partitioning on full and deficit irrigated maize for seed production under plastic film-mulch in an arid region of China. Agric. Syst. 2017, 151, 20–32. [Google Scholar] [CrossRef]
- Rosa, R.D.; Paredes, P.; Rodrigues, G.C.; Alves, I.; Fernando, R.M.; Pereira, L.S.; Allen, R.G. Implementing the dual crop coefficient approach in interactive software. 1. Background and computational strategy. Agric. Water Manag. 2012, 103, 8–24. [Google Scholar] [CrossRef]
- Shen, Q.; Ding, R.; Du, T.; Tong, L.; Li, S. Water Use Effectiveness Is Enhanced Using Film Mulch Through Increasing Transpiration and Decreasing Evapotranspiration. Water 2019, 11, 1153. [Google Scholar] [CrossRef] [Green Version]
- Donatelli, M.; Magarey, R.D.; Bregaglio, S.; Willocquet, L.; Whish, J.P.M.; Savary, S. Modelling the impacts of pests and diseases on agricultural systems. Agric. Syst. 2017, 155, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Tigkas, D.; Tsakiris, G. Early Estimation of Drought Impacts on Rainfed Wheat Yield in Mediterranean Climate. Environ. Process. 2015, 2, 97–114. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Yu, N.; Zhao, Y. Irrigation Scheduling Optimization for Cotton Based on the AquaCrop Model. Water Resour. Manag. 2019, 33, 39–55. [Google Scholar] [CrossRef]
- Xing, Y.; Liu, D.; Wang, P. Advances of the coupling application of remote sensing information and crop growth model. Adv. Earth Sci. 2009, 24, 444–451. (In Chinese) [Google Scholar]
- Meng, J.-H.; Wu, B.-F.; Du, X.; Zhang, F.-F.; Zhang, M.; Dong, T.-F. A review and outlook of applying remote sensing to precision agriculture. Remote Sens. Land Resour. 2011, 90, 1–7. (In Chinese) [Google Scholar]
- Li, C.; Wang, J.; Wang, X.; Liu, F.; Li, R. Methods for integration of remote sensing data and crop model and their prospects in agricultural application. Trans. Chin. Soc. Agric. Eng. 2008, 24, 295–301. (In Chinese) [Google Scholar]
- Jin, X.; Li, Z.; Feng, H.; Ren, Z.; Li, S. Estimation of maize yield by assimilating biomass and canopy cover derived from hyperspectral data into the AquaCrop model. Agric. Water Manag. 2020, 227, 105846. [Google Scholar] [CrossRef]
- Sakamoto, T.; Nguyen, N.V.; Ohno, H.; Ishitsuka, N.; Yokozawa, M. Spatio–temporal distribution of rice phenology and cropping systems in the Mekong Delta with special reference to the seasonal water flow of the Mekong and Bassac rivers. Remote Sens. Environ. 2006, 100, 1–16. [Google Scholar] [CrossRef]
- Lorite, I.J.; García-Vila, M.; Santos, C.; Ruiz-Ramos, M.; Fereres, E. AquaData and AquaGIS: Two computer utilities for temporal and spatial simulations of water-limited yield with AquaCrop. Comput. Electron. Agric. 2013, 96, 227–237. [Google Scholar] [CrossRef] [Green Version]
- Han, C.; Zhang, B.; Chen, H.; Wei, Z.; Liu, Y. Spatially distributed crop model based on remote sensing. Agric. Water Manag. 2019, 218, 165–173. [Google Scholar] [CrossRef]
- Han, C.; Zhang, B.; Chen, H.; Liu, Y.; Wei, Z. Novel approach of upscaling the FAO AquaCrop model into regional scale by using distributed crop parameters derived from remote sensing data. Agric. Water Manag. 2020, 240, 106288. [Google Scholar] [CrossRef]
- Feng, Q.; Liu, W.; Su, Y.; Zhang, Y.; Si, J. Distribution and evolution of water chemistry in Heihe River basin. Environ. Earth Sci. 2004, 45, 947–956. [Google Scholar] [CrossRef]
- Wang, J.; Meng, J.J. Characteristics and Tendencies of Annual Runoff Variations in the Heihe River Basin during the Past 60 years. Sci. Geogr. Sin. 2008, 28, 83–88. (In Chinese) [Google Scholar]
- Chen, X.-L. The Ecological Water Dispatching in the Heihe River from 2000 to 2004. J. Arid. Land Res. Environ. 2006, 20, 104–108. (In Chinese) [Google Scholar]
- Lai, Z.-Q.; Li, S.; Li, C.-G.; Nan, Z.-T.; Yu, W.-J. Improvement and Applications of SWAT Model in the Upper-middle Heihe River Basin. J. Nat. Res. 2013, 28, 1404–1413. (In Chinese) [Google Scholar]
- Niu, J.; Liu, Q.; Kang, S.; Zhang, X. The response of crop water productivity to climatic variation in the upper-middle reaches of the Heihe River basin, Northwest China. J. Hydrol. 2018, 563, 909–926. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration–Guidelines for Computing Crop Water Requirements FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; p. 300. [Google Scholar]
- Zhang, G.; Song, X. Digital Soil Mapping Dataset of Soil Texture in the Heihe River Basin (2012–2014); National Tibetan Plateau Data Center: Beijing, China, 2017. [Google Scholar]
- Zhang, G.; Song, X. Digital Soil Mapping Dataset of Hydrological Parameters in the Heihe River Basin (2012); National Tibetan Plateau Data Center: Beijing, China, 2017. [Google Scholar]
- Pan, Y.; Li, L.; Zhang, J.; Liang, S.; Zhu, X.; Sulla-Menashe, D. Winter wheat area estimation from MODIS-EVI time series data using the Crop Proportion Phenology Index. Remote Sens. Environ. 2012, 119, 232–242. [Google Scholar] [CrossRef]
- Pan, Z.; Huang, J.; Zhou, Q.; Wang, L.; Cheng, Y.; Zhang, H.; Blackburn, G.A.; Yan, J.; Liu, J. Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 188–197. [Google Scholar] [CrossRef] [Green Version]
- Manfron, G.; Delmotte, S.; Busetto, L.; Hossard, L.; Ranghetti, L.; Brivio, P.A.; Boschetti, M. Estimating inter-annual variability in winter wheat sowing dates from satellite time series in Camargue, France. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 190–201. [Google Scholar] [CrossRef]
- Dubovyk, O.; Landmann, T.; Erasmus, B.F.; Tewes, A.; Schellberg, J. Monitoring vegetation dynamics with medium resolution MODIS-EVI time series at sub-regional scale in southern Africa. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 175–183. [Google Scholar] [CrossRef]
- Son, N.-T.; Chen, C.-F.; Chen, C.-R.; Duc, H.-N.; Chang, L.-Y. A Phenology-Based Classification of Time-Series MODIS Data for Rice Crop Monitoring in Mekong Delta, Vietnam. Remote Sens. 2013, 6, 135–156. [Google Scholar] [CrossRef] [Green Version]
- Vyas, S.; Nigam, R.; Patel, N.K.; Panigrahy, S. Extracting Regional Pattern of Wheat Sowing Dates Using Multispectral and High Temporal Observations from Indian Geostationary Satellite. J. Indian Soc. Remote Sens. 2013, 41, 855–864. [Google Scholar] [CrossRef]
- Kang, S.Z. Multi-Process Coupling and Efficient Water Use Regulation of Agricultural Water Conversion in Oasis in Arid of Northwest China; Science Press: Beijing, China, 2019; pp. 36–37. [Google Scholar]
- Maas, S.J. Use of remotely-sensed information in agricultural crop growth models. Ecol. Model. 1988, 41, 247–268. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Wardlow, B.; Keydan, G.P.; Leavitt, B. An evaluation of MODIS 250-m data for green LAI estimation in crops. Geophys. Res. Lett. 2007, 34, 20403. [Google Scholar] [CrossRef]
- Lei, H.; Yang, D.; Cai, J.; Wang, F. Long-term variability of the carbon balance in a large irrigated area along the lower Yellow River from 1984 to 2006. Sci. China Earth Sci. 2013, 56, 671–683. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the International Conference on Neural Networks (ICNN 95), Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Jakubik, J.; Binding, A.; Feuerriegel, S. Directed particle swarm optimization with Gaussian-process-based function forecasting. Eur. J. Oper. Res. 2021, 295, 157–169. [Google Scholar] [CrossRef]
- Zhang, Z. Effects of Regulated Deficit Irrigation on Seed Maize. Master’s Thesis, Gansu Agricultural University, Lanzhou, China, 2012. (In Chinese). [Google Scholar]
- Jiang, Y. Simulation Analysis and Optimal Regulation for Agro-Hydrological Processes and Water Use Efficiency on Multiple Scales of the Middle Heihe River Basin. Ph.D. Thesis, China Agricultural University, Beijing, China, 2017. (In Chinese). [Google Scholar]
- Wu, T. Several key links of maize seed production. Nongcun Shiyong Keji Xinxi 2011, 5, 16. (In Chinese) [Google Scholar]
- Zhang, W.; Tian, Y.; Sun, Z.; Zheng, C. How does plastic film mulching affect crop water productivity in an arid river basin? Agric. Water Manag. 2021, 258, 107218. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, L.; Liu, J. Selecting appropriate spatial scale for mapping plastic-mulched farmland with satellite remote sensing imagery. Remote Sens. 2017, 9, 265. [Google Scholar]
- Wang, H.H. Study on the Polarized Reflectance Characteristics of Agricultural Thin Membrane. Master’s Thesis, Northeast Normal University, Changchun, China, 2007. (In Chinese). [Google Scholar]
- Lu, L.; Di, L.; Ye, Y. A Decision-Tree Classifier for Extracting Transparent Plastic-Mulched Landcover from Landsat-5 TM Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4548–4558. [Google Scholar] [CrossRef]
- Lu, L.; Hang, D.; Di, L. Threshold model for detecting transparent plastic-mulched landcover using moderate-resolution imaging spectroradiometer time series data: A case study in southern Xinjiang, China. J. Appl. Remote Sens. 2015, 9, 097094. [Google Scholar] [CrossRef]
Irrigation technology | Technology Name | Water Application Efficiency (%) | Surface Soil Wetting Area (%) |
Border √ | 60 | 80 | |
Sprinkler | 75 | 100 | |
Drip | 90 | 30 | |
Soil management | Mulching Method | Material Factor (fm) | Mulching Cover Area (%) |
No mulching √ | 0 | 0 | |
Organic mulching | 0.5 | 100 | |
Plastic mulching √ | 1 | 70 | |
Soil fertility | Soil Fertility limiting | Soil Fertility Stress (%) | |
No limiting √ | 0 | ||
20–99% | 74–2 | ||
Irrigation schedule | Date | Water Irrigation Quantity (mm) | |
5/31 | 166 | ||
6/30 | 166 | ||
7/31 | 166 | ||
8/31 | 165 |
Parameters | Description | Default Value | Calibrated Value |
---|---|---|---|
KcTr,x | Crop coefficient when canopy is complete but prior to senescence | 1.05 | 1.00–1.25 |
cc0 | Soil surface covered by an individual seedling at 90% emergence (cm2/plant) | 6.5 | 5.00–8.00 |
Numpph | Number of plants per hectare | 50,000–100,000 | 50,000–100,000 |
CGC | Canopy growth coefficient (fraction per day) | No reference is given on the calendar mode | 0.03–0.07 |
CCx | Maximum canopy cover (%) | 65–99 | 60–100 |
CDC | Canopy decline coefficient (fraction per day) | No reference is given on the calendar mode | 0.03–0.07 |
mat | Time from sowing to maturity, i.e., length of crop cycle (day) | No reference is given on the calendar mode | 153–183 |
wp | Water productivity normalized for ETo and CO2 (gram/m2) | 33.7 | 20.0–40.0 |
HI0 | Reference harvest index (%) | 48–52 | 30–55 |
Field Stations | Coordinate | Crop | Parameter | Year | n | Data Sources |
---|---|---|---|---|---|---|
1 | (100°07′ E, 39°21′ N) | Spring Maize | Yield | 2011 | 1 | Zhang (2012) [67] |
2 | (100°20′ E, 38°51′ N) | Spring Maize | Yield | 2012, 2013 | 2 | Jiang (2017) [68] |
Canopy Coverage | 2013 | 7 | ||||
3 | (100°34′ E, 38°57′ N) | Spring Maize | Yield | 2012, 2013 | 2 | Jiang (2017) [68] |
Canopy Coverage | 2013 | 3 |
Counties /Indicators | 2011 | 2012 | 2013 | 2014 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
YY | YN | YM | YY | YN | YM | YY | YN | YM | YY | YN | YM | |
Shandan | 9.75 | 7.27 | 7.27 | 9.76 | 8.15 | 8.15 | 9.15 | 5.46 | 5.46 | 9.57 | 3.50 | 3.51 |
Minle | 8.22 | 7.90 | 7.90 | 8.08 | 8.27 | 8.53 | 8.25 | 8.29 | 8.29 | 8.59 | 6.81 | 6.81 |
Ganzhou | 8.34 | 8.60 | 8.59 | 8.08 | 9.87 | 9.87 | 8.08 | 9.88 | 9.88 | 8.65 | 8.07 | 8.07 |
Linze | 8.22 | 9.23 | 9.44 | 6.95 | 8.53 | 10.96 | 7.03 | 10.58 | 10.58 | 7.40 | 9.01 | 9.01 |
Gaotai | 8.42 | 9.86 | 10.14 | 7.29 | 11.36 | 11.35 | 7.28 | 9.86 | 9.86 | 7.77 | 10.31 | 10.32 |
Sunan | 7.77 | 8.69 | 8.76 | 7.55 | 9.93 | 9.93 | 6.32 | 9.31 | 9.31 | 6.88 | 8.95 | 8.97 |
Suzhou | 8.59 | 9.60 | 10.02 | 9.45 | 10.08 | 10.08 | 9.29 | 9.79 | 9.79 | 9.25 | 10.59 | 10.61 |
Jiayuguan | 10.57 | 10.57 | 10.58 | 7.90 | 9.99 | 9.99 | 11.48 | 9.73 | 9.73 | 11.86 | 11.62 | 11.64 |
Jinta | 10.52 | 8.79 | 8.80 | 11.91 | 10.47 | 10.48 | 11.35 | 9.34 | 9.36 | 10.96 | 10.01 | 10.02 |
Yumen | 9.94 | 8.33 | 8.33 | 10.64 | 10.47 | 10.47 | 9.37 | 8.04 | 8.07 | 8.90 | 7.54 | 7.55 |
RMSE (t/ha) | 1.29 | - | 2.03 | - | 2.33 | - | 2.44 | - | ||||
NRMSE | 14.37 | - | 23.17 | - | 26.57 | - | 27.13 | - | ||||
MBE (t/ha) | −0.15 | - | 0.77 | - | 0.27 | - | −0.37 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Q.; Niu, J.; Sivakumar, B.; Lu, N. Effects of Mulching on Maize Yield and Evapotranspiration in the Heihe River Basin, Northwest China. Remote Sens. 2022, 14, 700. https://doi.org/10.3390/rs14030700
Shen Q, Niu J, Sivakumar B, Lu N. Effects of Mulching on Maize Yield and Evapotranspiration in the Heihe River Basin, Northwest China. Remote Sensing. 2022; 14(3):700. https://doi.org/10.3390/rs14030700
Chicago/Turabian StyleShen, Qianxi, Jun Niu, Bellie Sivakumar, and Na Lu. 2022. "Effects of Mulching on Maize Yield and Evapotranspiration in the Heihe River Basin, Northwest China" Remote Sensing 14, no. 3: 700. https://doi.org/10.3390/rs14030700
APA StyleShen, Q., Niu, J., Sivakumar, B., & Lu, N. (2022). Effects of Mulching on Maize Yield and Evapotranspiration in the Heihe River Basin, Northwest China. Remote Sensing, 14(3), 700. https://doi.org/10.3390/rs14030700