Influence of Energy and Water Cycle Key Parameters on Drought in Mongolian Plateau during 1979–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Study Area
2.3. Methods
3. Results and Discussion
3.1. Spatiotemporal Variation Characteristics of Drought
3.2. Spatiotemporal Variation Characteristics of Key Energy and Water Cycle Parameters
3.2.1. Energy Cycle Key Parameters
3.2.2. Water Cycle Key Parameters
3.2.3. The Interaction of Energy and Water Cycle Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bao, S.; Letu, H.; Zhao, J.; Lei, Y.; Zhao, C.; Li, J.; Tana, G.; Liu, C.; Guo, E.; Zhang, J.; et al. Spatiotemporal distributions of cloud radiative forcing and response to cloud parameters over the Mongolian Plateau during 2003–2017. Int. J. Clim. 2020, 40, 4082–4101. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; ISBN 92-5-104219-5. [Google Scholar]
- Wu, S.; Yin, Y.; Zheng, D.; Yang, Q. Moisture conditions and climate trends in China during the period 1971–2000. Int. J. Clim. 2006, 26, 193–206. [Google Scholar] [CrossRef]
- Weerts, A.; Winsemius, H.; Dutra, E.; Beckers, J.; Brolsma, R.J.; Van Beek, L.P.H.; Pappenberger, F.; Westerhoff, R.; Bierkens, M.F.P. Seasonal Predictability of Water Scarcity at the Global Scale. Geophys. Res. Abstr. 2013, 15, EGU2013-6060. [Google Scholar]
- Ma, Z.G.; Huang, G.G.; Gan, W.G.; Chen, M. Multiscale temporal characteristics of the dryness/wetness over northern China during the last century. China J. Atmos. Sci. 2005, 29, 671–681. [Google Scholar]
- Jin, L.; Zhang, J.; Wang, R.; Bao, Y.; Guo, E. Analysis for Spatio-Temporal Variation Characteristics of Droughts in Different Climatic Regions of the Mongolian Plateau Based on SPEI. Sustainability 2019, 11, 5767. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Filho, W.L.; Yin, J.; Hu, R.; Wang, J.; Yang, C.; Yin, S.; Bao, Y.; Ayal, D.Y. Assessing vegetation response to multi-time-scale drought across inner Mongolia plateau. J. Clean. Prod. 2018, 179, 210–216. [Google Scholar] [CrossRef]
- Bao, G.; Liu, Y.; Liu, N.; Linderholm, H. Drought variability in eastern Mongolian Plateau and its linkages to the large-scale climate forcing. Clim. Dyn. 2015, 44, 717–733. [Google Scholar] [CrossRef]
- Hessl, A.E.; Anchukaitis, K.J.; Jelsema, C.; Cook, B.; Byambasuren, O.; Leland, C.; Nachin, B.; Pederson, N.; Tian, H.; Hayles, L.A. Past and future drought in Mongolia. Sci. Adv. 2018, 4, e1701832. [Google Scholar] [CrossRef] [Green Version]
- Tong, S.; Lai, Q.; Zhang, J.; Bao, Y.; Lusi, A.; Ma, Q.; Li, X.; Zhang, F. Spatiotemporal drought variability on the Mongolian Plateau from 1980–2014 based on the SPEI-PM, intensity analysis and Hurst exponent. Sci. Total Environ. 2018, 615, 1557–1565. [Google Scholar] [CrossRef]
- Gao, T.; Si, Y.; Yu, X.; Wulan; Yang, P.; Gao, J. A seasonal forecast scheme for the Inner Mongolia spring drought. Arch. Meteorol. Geophys. Bioclimatol. B 2018, 135, 519–532. [Google Scholar] [CrossRef]
- Pedram, S.; Wang, X.; Liu, T.; Duan, L. Simulated dynamics of soil water and pore vapor in a semiarid sandy ecosystem. J. Arid Environ. 2018, 151, 58–82. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Feng, Y.; Wang, J. Remote sensing monitoring the spatio-temporal changes of aridification in the Mongolian Plateau based on the general Ts-NDVI space, 1981–2012. J. Earth Syst. Sci. 2017, 126, 58. [Google Scholar] [CrossRef]
- Bremer, D.J.; Auen, L.M.; Ham, J.M.; Owensby, C.E. Evapotranspiration in a Prairie Ecosystem. Agron. J. 2001, 93, 338–348. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Cooper, D.J.; Han, S.; Zhu, L.; Cooper, D.J.; Han, S.; Yang, J.; Zhang, Y.; Li, Z.; Zhao, H.; et al. Influence of the Atlantic Multidecadal Oscillation on drought in northern Daxing’an Mountains, Northeast China. Catena 2021, 198, 105017. [Google Scholar] [CrossRef]
- Hu, Y.; Wen, J.; Ma, Y.; Huang, Y.; Xu, J. Research on the Relationship Between the Spatial and Temporal Variation of Greenup and Precipitation in Mongolian Plateau. In Proceedings of the 2018 7th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Hangzhou, China, 6–9 August 2018; pp. 1–5. [Google Scholar]
- Nandintsetseg, B.; Boldgiv, B.J.; Chang, J.; Ciais, P.; Davaanyam, E.; Batbold, A.; Bat-Oyun, T.; Stenseth, N.C. Risk and vulnerability of Mongolian grasslands under climate change. Environ. Res. Lett. 2021, 16, 034035. [Google Scholar] [CrossRef]
- Dimitriadou, S.; Nikolakopoulos, K.G. Evapotranspiration Trends and Interactions in Light of the Anthropogenic Footprint and the Climate Crisis: A Review. Hydrology 2021, 8, 163. [Google Scholar] [CrossRef]
- Penman, H.L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. A 1948, 193, 120–145. [Google Scholar]
- Alley, W.M. The Palmer drought severity index: Limitations and assumptions. J. Appl. Meteorol. Climatol. 1984, 23, 1100–1109. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Bauer, P.; Lopez, P.; Moreau, E.; Chevallier, F.; Benedetti, A.; Bonazzola, M. The European Centre for Medium-Range Weather Forecasts Global Rainfall Data Assimilation Experimentation. In Measuring Precipitation from Space; Springer: Berlin/Heidelberg, Germany, 2007; pp. 447–457. [Google Scholar]
- Balsamo, G.; Albergel, C.; Beljaars, A.; Boussetta, S.; Brun, E.; Cloke, H.; Dee, D.; Dutra, E.; Muñoz-Sabater, J.; Pappenberger, F.; et al. ERA-Interim/Land: A global land surface reanalysis data set. Hydrol. Earth Syst. Sci. 2015, 19, 389–407. [Google Scholar] [CrossRef] [Green Version]
- Betts, A.K.; Hong, S.-Y.; Pan, H.-L. Comparison of NCEP-NCAR Reanalysis with 1987 FIFE Data. Mon. Weather Rev. 1996, 124, 1480–1498. [Google Scholar] [CrossRef] [Green Version]
- Young, D.T.; Perraut, S.; Roux, A.; de Villedary, C.; Gendrin, R.; Korth, A.; Kremser, G.; Jones, D. Wave-particle interactions near ΩHe+observed on GEOS 1 and 2 1. Propagation of ion cyclotron waves in He+-rich plasma. J. Geophys. Res. Earth Surf. 1981, 86, 6755–6772. [Google Scholar] [CrossRef]
- Molod, A.; Hackert, E.; Vikhliaev, Y.; Zhao, B.; Barahona, D.; Vernieres, G.; Borovikov, A.; Kovach, R.M.; Marshak, J.; Schubert, S.; et al. GEOS-S2S Version 2: The GMAO High-Resolution Coupled Model and Assimilation System for Seasonal Prediction. J. Geophys. Res. Atmos. 2020, 125, e2019JD031767. [Google Scholar] [CrossRef]
- Urraca, R.; Huld, T.; Gracia-Amillo, A.; Martínez-De-Pisón, F.; Kaspar, F.; Sanz-Garcia, A. Evaluation of global horizontal irradiance estimates from ERA5 and COSMO-REA6 reanalyses using ground and satellite-based data. Sol. Energy 2018, 164, 339–354. [Google Scholar] [CrossRef]
- Letu, H.; Nakajima, T.Y.; Wang, T.X.; Shang, H.Z.; Ma, R.; Yang, K.; Baran, A.J.; Riedi, J.; Ishimoto, H.; Yoshida, M.; et al. A new benchmark for surface radiation products over the East Asia-Pacific region retrieved from the Himawari-8/AHI next-generation geostationary satellite. Bull. Am. Meteorol. Soc. 2021, 16, 034035. [Google Scholar] [CrossRef]
- Bengtsson, L.; Hagemann, S.; Hodges, K.I. Can climate trends be calculated from reanalysis data? J. Geophys. Res. Earth Surf. 2004, 109, D11111. [Google Scholar] [CrossRef] [Green Version]
- Bao, S.; Letu, H.; Zhao, C.; Tana, G.; Shang, H.; Wang, T.; Lige, B.; Bao, Y.; Purevjav, G.; He, J.; et al. Spatiotemporal Distributions of Cloud Parameters and the Temperature Response Over the Mongolian Plateau During 2006–2015 Based on MODIS Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 549–558. [Google Scholar] [CrossRef]
- Torres-Alavez, J. Quantifying the Relative Roles of Land Use Change and Remote Forcing on the 1930s Dust Bowl Drought. Ph.D. Thesis, The University of Nebraska, Lincoln, NE, USA, 2018. [Google Scholar]
- Yao, Y.; Liang, S.; Qin, Q.; Wang, K.; Zhao, S. Monitoring global land surface drought based on a hybrid evapotranspiration model. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 447–457. [Google Scholar] [CrossRef]
- Qian, Y.; Kaiser, D.P.; Leung, L.R.; Xu, M. More frequent cloud-free sky and less surface solar radiation in China from 1955 to 2000. Geophys. Res. Lett. 2006, 33, L01812. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Letu, H.; Lei, Y.; Guo, E.; Bao, S.; Zhang, Y.; Tana, G.; Bao, Y. Influence of Energy and Water Cycle Key Parameters on Drought in Mongolian Plateau during 1979–2020. Remote Sens. 2022, 14, 685. https://doi.org/10.3390/rs14030685
He J, Letu H, Lei Y, Guo E, Bao S, Zhang Y, Tana G, Bao Y. Influence of Energy and Water Cycle Key Parameters on Drought in Mongolian Plateau during 1979–2020. Remote Sensing. 2022; 14(3):685. https://doi.org/10.3390/rs14030685
Chicago/Turabian StyleHe, Jie, Husi Letu, Yonghui Lei, Enliang Guo, Shanhu Bao, Yongqiang Zhang, Gegen Tana, and Yuhai Bao. 2022. "Influence of Energy and Water Cycle Key Parameters on Drought in Mongolian Plateau during 1979–2020" Remote Sensing 14, no. 3: 685. https://doi.org/10.3390/rs14030685
APA StyleHe, J., Letu, H., Lei, Y., Guo, E., Bao, S., Zhang, Y., Tana, G., & Bao, Y. (2022). Influence of Energy and Water Cycle Key Parameters on Drought in Mongolian Plateau during 1979–2020. Remote Sensing, 14(3), 685. https://doi.org/10.3390/rs14030685