Revisiting the Past: Replicability of a Historic Long-Term Vegetation Dynamics Assessment in the Era of Big Data Analytics
Abstract
:1. Introduction
1.1. Case Study: Understanding Grazing Pressure in the European Mediterranean from Landsat Time Series
1.2. Objectives
2. Data
2.1. Landsat
2.2. Auxiliary Data
3. Methods
3.1. Step 1: Analysis-Ready Data (ARD)
3.1.1. Preprocessing of the Full Dataset
3.1.2. Dataset Reduction for Vegetation Dynamics 1.0
3.2. Step 2: Time Series Analysis
3.2.1. Spectral Unmixing
3.2.2. Land Surface Phenology for Vegetation Dynamics 2.0
3.2.3. Trend Analysis
3.2.4. Trend + Change Analysis
3.3. Postprocessing: Vegetation Dynamics Syndrome Classification
3.4. Validation
4. Results and Discussion
4.1. Comparison of Long-Term Vegetation Change between Vegetation Dynamics 1.0 and Vegetation Dynamics 2.0
- For both-negative trends, VD 2.0 rarely indicates a stronger decline (red in Figure 6c); Figure 7a shows a pixel where a fire occurred. The disagreement between methods is due to several reasons: (1) in the year where the change happened, no cloud-free image was available in VD 1.0, thus the fresh disturbance scar is not included in the regression; (2) before the change, the statically selected images coincide more closely with minimal cover, whereas they coincide more closely with peak cover thereafter—presumably due to a change in vegetation composition after the disturbance.
- More commonly, however, VD 1.0 shows stronger negative trends (blue in Figure 6c, cf. Figure 7b). The trajectory shows large inter-annual variability with a low annual minimum of PV fractions, thus pointing to herbaceous-dominated vegetation composition. For such pixels, the static VD 1.0 image selection results in a volatile timing of the observation relative to the phenological cycle—sometimes close to peak cover, sometimes close to minimal cover. Thus, the resulting trend needs to be considered error-prone and potentially spurious. However, it is also apparent that, although the peak vegetation cover is rather stable over the long period (VD 2.0), there still is change related to a decreasing annual minimum of the cover, which is largely balanced by an increase in seasonal amplitude. This could be caused by an increase in herbaceous cover at the expense of a woody cover.
- Orange colors in Figure 6c represent pixels where both trends are positive with a stronger increase in VD 1.0; pink colors in Figure 6c represent pixels with a positive trend in VD 1.0 and a negative trend in VD 2.0. In both time series, a change is included that transiently (Figure 7c) or progressively (Figure 7d) modifies the vegetation composition such that static image selection does not guarantee a stable location of the observation relative to the phenological cycle.
- Green colors in Figure 6c represent pixels where both trends are positive with a stronger increase in VD 2.0; teal colors in Figure 6c represent pixels with a negative trend in VD 1.0 and a positive trend in VD 2.0. The corresponding time series (cf. Figure 7e,f) reveal that there is indeed an increase in peak cover (VD 2.0). The VD 1.0 analysis, however, indicates a slight increase only (Figure 7e) or a strong decline (Figure 7f), which is caused by a systematic shift in the timing of the statically selected images relative to the phenological cycle as a consequence of changes in vegetation composition towards a higher share of herbaceous cover, i.e., earlier peak cover that quickly turns into NPV at the beginning of the dry Mediterranean summer.
- corroborates the finding that static image selection is volatile in areas where inter-annual or spatial variability in phenology is high, and
- confirms the robustness of a data-driven approach using phenological metrics.
4.2. Information-Enriched Long-Term Vegetation Change
5. Conclusions
- a disturbance in the woody vegetation happened,
- a transition from/to woody/herbaceous vegetation took place, or
- inter-annual variability in seasonal herbaceous vegetation cover was high.
- linear regression is too simplistic a tool to assess long-term vegetation cover change when stand-replacing disturbances in the woody vegetation cannot be ruled out, and that
- peak vegetation cover is not the optimal parameter to analyze.
- a more reliable interpretation of vegetation changes with respect to their trend direction and ecological meaning,
- to disentangle certain land-use change processes with opposite trajectories in the vegetation components that were unobservable when analyzing total vegetation cover,
- generating a long-term budget of net cover change, which revealed that vegetation cover of both components has increased at large, mainly due to gradual processes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Townshend, J.R.G.; Justice, C.O. Selecting the Spatial Resolution of Satellite Sensors Required for Global Monitoring of Land Transformations. Int. J. Remote Sens. 1988, 9, 187–236. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loveland, T.R.; Belward, A.S. The IGBP-DIS global 1km land cover data set, DISCover: First results. Int. J. Remote Sens. 1997, 18, 3289–3295. [Google Scholar] [CrossRef]
- Defries, R.S.; Belward, A.S. Global and regional land cover characterization from satellite data: An introduction to the Special Issue. Int. J. Remote Sens. 2000, 21, 1083–1092. [Google Scholar] [CrossRef]
- Belward, A.S.; Skøien, J.O. Who Launched What, When and Why; Trends in Global Land-Cover Observation Capacity from Civilian Earth Observation Satellites. ISPRS J. Photogramm. Remote Sens. 2015, 103, 115–128. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and Product Vision for Terrestrial Global Change Research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef] [Green Version]
- Cohen, W.B.; Goward, S.N. Landsat’s Role in Ecological Applications of Remote Sensing. BioScience 2004, 54, 535–545. [Google Scholar] [CrossRef]
- Markham, B.L.; Helder, D.L. Forty-Year Calibrated Record of Earth-Reflected Radiance from Landsat: A Review. Remote Sens. Environ. 2012, 122, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Wulder, M.A.; White, J.C.; Loveland, T.R.; Woodcock, C.E.; Belward, A.S.; Cohen, W.B.; Fosnight, E.A.; Shaw, J.; Masek, J.G.; Roy, D.P. The global Landsat archive: Status, consolidation, and direction. Remote Sens. Environ. 2016, 185, 271–283. [Google Scholar] [CrossRef] [Green Version]
- Masek, J.G.; Wulder, M.A.; Markham, B.; McCorkel, J.; Crawford, C.J.; Storey, J.; Jenstrom, D.T. Landsat 9: Empowering open science and applications through continuity. Remote Sens. Environ. 2020, 248, 111968. [Google Scholar] [CrossRef]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Zhu, Z.; Wulder, M.A.; Roy, D.P.; Woodcock, C.E.; Hansen, M.C.; Radeloff, V.C.; Healey, S.P.; Schaaf, C.; Hostert, P.; Strobl, P.; et al. Benefits of the free and open Landsat data policy. Remote Sens. Environ. 2019, 224, 382–385. [Google Scholar] [CrossRef]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the Archive: How Free Data has Enabled the Science and Monitoring Promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- USGS. Landsat Thematic Mapper No-Payload Correction Data. Available online: https://www.usgs.gov/land-resources/nli/landsat/landsat-thematic-mapper-no-payload-correction-data (accessed on 31 October 2019).
- Griffiths, P.; van der Linden, S.; Kuemmerle, T.; Hostert, P. A Pixel-Based Landsat Compositing Algorithm for Large Area Land Cover Mapping. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2013, 6, 2088–2101. [Google Scholar] [CrossRef]
- Suess, S.; van der Linden, S.; Okujeni, A.; Griffiths, P.; Leitão, P.J.; Schwieder, M.; Hostert, P. Characterizing 32 years of shrub cover dynamics in southern Portugal using annual Landsat composites and machine learning regression modeling. Remote Sens. Environ. 2018, 219, 353–364. [Google Scholar] [CrossRef]
- Lebek, K.; Senf, C.; Frantz, D.; Monteiro, J.A.F.; Krueger, T. Interdependent effects of climate variability and forest cover change on streamflow dynamics: A case study in the Upper Umvoti River Basin, South Africa. Reg. Environ. Change 2019, 19, 1963–1971. [Google Scholar] [CrossRef]
- Senf, C.; Laštovička, J.; Okujeni, A.; Heurich, M.; van der Linden, S. A generalized regression-based unmixing model for mapping forest cover fractions throughout three decades of Landsat data. Remote Sens. Environ. 2020, 240, 111691. [Google Scholar] [CrossRef]
- Schneibel, A.; Stellmes, M.; Röder, A.; Frantz, D.; Kowalski, B.; Haß, E.; Hill, J. Assessment of spatio-temporal changes of smallholder cultivation patterns in the Angolan Miombo belt using segmentation of Landsat time series. Remote Sens. Environ. 2017, 195, 118–129. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, P.; Müller, D.; Kuemmerle, T.; Hostert, P. Agricultural Land Change in the Carpathian Ecoregion after the Breakdown of Socialism and Expansion of the European Union. Environ. Res. Lett. 2013, 8, 45024. [Google Scholar] [CrossRef]
- DeFries, R.; Achard, F.; Brown, S.; Herold, M.; Murdiyarso, D.; Schlamadinger, B.; de Souza, C., Jr. Earth Observations for Estimating Greenhouse Gas Emissions from Deforestation in Developing Countries. Environ. Sci. Policy 2007, 10, 385–394. [Google Scholar] [CrossRef]
- Frantz, D.; Röder, A.; Stellmes, M.; Hill, J. Phenology-adaptive pixel-based compositing using optical earth observation imagery. Remote Sens. Environ. 2017, 190, 331–347. [Google Scholar] [CrossRef] [Green Version]
- Schneibel, A.; Frantz, D.; Röder, A.; Stellmes, M.; Fischer, K.; Hill, J. Using Annual Landsat Time Series for the Detection of Dry Forest Degradation Processes in South-Central Angola. Remote Sens. 2017, 9, 905. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Woodcock, C.E.; Holden, C.; Yang, Z. Generating synthetic Landsat images based on all available Landsat data: Predicting Landsat surface reflectance at any given time. Remote Sens. Environ. 2015, 162, 67–83. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous Change Detection and Classification of Land Cover using all Available Landsat Data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef] [Green Version]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Zeileis, A.; Culvenor, D. Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sens. Environ. 2010, 114, 2970–2980. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Shang, R.; Rittenhouse, C.; Witharana, C.; Zhu, Z. Evaluating the impacts of models, data density and irregularity on reconstructing and forecasting dense Landsat time series. Sci. Remote Sens. 2021, 4, 100023. [Google Scholar] [CrossRef]
- Jönsson, P.; Cai, Z.; Melaas, E.; Friedl, M.A.; Eklundh, L. A Method for Robust Estimation of Vegetation Seasonality from Landsat and Sentinel-2 Time Series Data. Remote Sens. 2018, 10, 635. [Google Scholar] [CrossRef] [Green Version]
- Jonsson, P.; Eklundh, L. Seasonality Extraction by Function Fitting to Time-Series of Satellite Sensor Data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1824–1832. [Google Scholar] [CrossRef]
- Jönsson, P.; Eklundh, L. TIMESAT—A Program for Analyzing Time-Series of Satellite Sensor Data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar] [CrossRef] [Green Version]
- Bolton, D.K.; Gray, J.M.; Melaas, E.K.; Moon, M.; Eklundh, L.; Friedl, M.A. Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery. Remote Sens. Environ. 2020, 240, 111685. [Google Scholar] [CrossRef]
- Brooks, B.-G.J.; Lee, D.C.; Pomara, L.Y.; Hargrove, W.W. Monitoring Broadscale Vegetational Diversity and Change across North American Landscapes Using Land Surface Phenology. Forests 2020, 11, 606. [Google Scholar] [CrossRef]
- Hill, J.; Stellmes, M.; Udelhoven, T.; Röder, A.; Sommer, S. Mediterranean desertification and land degradation: Mapping related land use change syndromes based on satellite observations. Glob. Planet. Change 2008, 64, 146–157. [Google Scholar] [CrossRef]
- Stellmes, M.; Röder, A.; Udelhoven, T.; Hill, J. Mapping Syndromes of Land Change in Spain with Remote Sensing Time Series, Demographic and Climatic Data. Land Use Policy 2013, 30, 685–702. [Google Scholar] [CrossRef]
- Tong, X.; Tian, F.; Brandt, M.; Liu, Y.; Zhang, W.; Fensholt, R. Trends of land surface phenology derived from passive microwave and optical remote sensing systems and associated drivers across the dry tropics 1992–2012. Remote Sens. Environ. 2019, 232, 111307. [Google Scholar] [CrossRef]
- Hird, J.N.; Castilla, G.; McDermid, G.J.; Bueno, I.T. A Simple Transformation for Visualizing Non-seasonal Landscape Change from Dense Time Series of Satellite Data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2016, 9, 3372–3383. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting Trends in Forest Disturbance and Recovery using Yearly Landsat Time Series: 1. LandTrendr—Temporal Segmentation Algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Cohen, W.B.; Healey, S.P.; Yang, Z.; Stehman, S.V.; Brewer, C.K.; Brooks, E.B.; Gorelick, N.; Huang, C.; Hughes, M.J.; Kennedy, R.E.; et al. How Similar Are Forest Disturbance Maps Derived from Different Landsat Time Series Algorithms? Forests 2017, 8, 98. [Google Scholar] [CrossRef]
- Healey, S.P.; Cohen, W.B.; Yang, Z.; Kenneth Brewer, C.; Brooks, E.B.; Gorelick, N.; Hernandez, A.J.; Huang, C.; Joseph Hughes, M.; Kennedy, R.E.; et al. Mapping forest change using stacked generalization: An ensemble approach. Remote Sens. Environ. 2018, 204, 717–728. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Reproducibility and Replicability in Science; The National Academies Press: Washington, DC, USA, 2019. [Google Scholar] [CrossRef]
- Hostert, P.; Röder, A.; Hill, J. Coupling Spectral Unmixing and Trend Analysis for Monitoring of Long-Term Vegetation Dynamics in Mediterranean Rangelands. Remote Sens. Environ. 2003, 87, 183–197. [Google Scholar] [CrossRef]
- Hostert, P.; Röder, A.; Hill, J.; Udelhoven, T.; Tsiourlis, G. Retrospective studies of grazing-induced land degradation: A case study in central Crete, Greece. Int. J. Remote Sens. 2003, 24, 4019–4034. [Google Scholar] [CrossRef]
- Papanastasis, V. Traditional vs contemporary management of Mediterranean vegetation: The case of the island of Crete. J. Biol. Res. 2004, 1, 39–46. [Google Scholar]
- Blondel, J. The ‘Design’ of Mediterranean Landscapes: A Millennial Story of Humans and Ecological Systems during the Historic Period. Hum. Ecol. 2006, 34, 713–729. [Google Scholar] [CrossRef]
- Perevolotsky, A.; Seligman, N.a.G. Role of Grazing in Mediterranean Rangeland Ecosystems: Inversion of a paradigm. BioScience 1998, 48, 1007–1017. [Google Scholar] [CrossRef] [Green Version]
- Lorent, H.; Sonnenschein, R.; Tsiourlis, G.M.; Hostert, P.; Lambin, E. Livestock Subsidies and Rangeland Degradation in Central Crete. Ecol. Soc. 2009, 14, 41. [Google Scholar] [CrossRef] [Green Version]
- Kosmas, C.; Karamesouti, M.; Kounalaki, K.; Detsis, V.; Vassiliou, P.; Salvati, L. Land degradation and long-term changes in agro-pastoral systems: An empirical analysis of ecological resilience in Asteroussia—Crete (Greece). Catena 2016, 147, 196–204. [Google Scholar] [CrossRef]
- Sonnenschein, R.; Kuemmerle, T.; Udelhoven, T.; Stellmes, M.; Hostert, P. Differences in Landsat-Based Trend Analyses in Drylands due to the Choice of Vegetation Estimate. Remote Sens. Environ. 2011, 115, 1408–1420. [Google Scholar] [CrossRef]
- Hill, J.; Mehl, W. Geo- und radiometrische Aufbereitung multi- und hyperspektraler Daten zur Erzeugung langjähriger kalibrierter Zeitreihen. Photogramm. Fernerkund. Geoinf. 2003, 1, 7–14. [Google Scholar]
- Hill, J.; Sturm, B. Radiometric Correction of Multitemporal Thematic Mapper Data for Use in Agricultural Land-Cover Classification and Vegetation Monitoring. Int. J. Remote Sens. 1991, 12, 1471–1491. [Google Scholar] [CrossRef]
- Hill, J.; Mehl, W.; Radeloff, V. Improved forest mapping by combining corrections of atmospheric and topographic effects in landsat tm imagery. In Sensors and Environmental Applications of Remote Sensing; Askne, J., Ed.; Balkema: Rotterdam, The Netherlands, 1995; pp. 143–151. [Google Scholar]
- Loveland, T.R.; Dwyer, J.L. Landsat: Building a Strong Future. Remote Sens. Environ. 2012, 122, 22–29. [Google Scholar] [CrossRef]
- Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Goward, S.N.; Helder, D.; Helmer, E. Free Access to Landsat Imagery. Science 2008, 320, 1011. [Google Scholar] [CrossRef] [PubMed]
- Potapov, P.; Turubanova, S.; Hansen, M.C. Regional-scale boreal forest cover and change mapping using Landsat data composites for European Russia. Remote Sens. Environ. 2011, 115, 548–561. [Google Scholar] [CrossRef]
- Roy, D.P.; Ju, J.; Kline, K.; Scaramuzza, P.L.; Kovalskyy, V.; Hansen, M.; Loveland, T.R.; Vermote, E.; Zhang, C. Web-Enabled Landsat Data (WELD): Landsat ETM+ Composited Mosaics of the Conterminous United States. Remote Sens. Environ. 2010, 114, 35–49. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-Based Cloud and Cloud Shadow Detection in Landsat Imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Yan, L.; Roy, D.P. Improving Landsat Multispectral Scanner (MSS) geolocation by least-squares-adjustment based time-series co-registration. Remote Sens. Environ. 2021, 252, 112181. [Google Scholar] [CrossRef]
- Frantz, D. FORCE—Landsat + Sentinel-2 Analysis Ready Data and Beyond. Remote Sens. 2019, 11, 1124. [Google Scholar] [CrossRef] [Green Version]
- Ernst, S.; Lymburner, L.; Sixsmith, J. Implications of Pixel Quality Flags on the Observation Density of a Continental Landsat Archive. Remote Sens. 2018, 10, 1570. [Google Scholar] [CrossRef] [Green Version]
- Agou, V.D.; Varouchakis, E.A.; Hristopulos, D.T. Geostatistical analysis of precipitation in the island of Crete (Greece) based on a sparse monitoring network. Environ. Monit Assess. 2019, 191, 353. [Google Scholar] [CrossRef]
- Frantz, D.; Stellmes, M. Water vapor database for atmospheric correction of Landsat imagery. IEEE Trans. Geosci. Remote Sens. 2018, 54, 3928–3943. [Google Scholar] [CrossRef]
- Frantz, D.; Stellmes, M.; Hostert, P. A Global MODIS Water Vapor Database for the Operational Atmospheric Correction of Historic and Recent Landsat Imagery. Remote Sens. 2019, 11, 257. [Google Scholar] [CrossRef] [Green Version]
- Wulder, M.A.; Coops, N.C.; Roy, D.P.; White, J.C.; Hermosilla, T. Land cover 2.0. Int. J. Remote Sens. 2018, 39, 4254–4284. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016; Available online: https://www.R-project.org/ (accessed on 18 September 2021).
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and Expansion of the Fmask Algorithm: Cloud, Cloud Shadow, and Snow Detection for Landsats 4–7, 8, and Sentinel 2 Images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Frantz, D.; Röder, A.; Udelhoven, T.; Schmidt, M. Enhancing the Detectability of Clouds and Their Shadows in Multitemporal Dryland Landsat Imagery: Extending Fmask. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1242–1246. [Google Scholar] [CrossRef]
- Frantz, D.; Röder, A.; Stellmes, M.; Hill, J. An Operational Radiometric Landsat Preprocessing Framework for Large-Area Time Series Applications. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3928–3943. [Google Scholar] [CrossRef]
- Zekoll, V.; Main-Knorn, M.; Louis, J.; Frantz, D.; Richter, R.; Pflug, B. Comparison of Masking Algorithms for Sentinel-2 Imagery. Remote Sens. 2021, 13, 137. [Google Scholar] [CrossRef]
- Frantz, D. Generation of Higher Level Earth Observation Satellite Products for Regional Environmental Monitoring. Ph.D. Dissertation, Trier University, Trier, Germany, 2017. [Google Scholar]
- Tanré, D.; Herman, M.; Deschamps, P.Y.; de Leffe, A. Atmospheric Modeling for Space Measurements of Ground Reflectances, Including Bidirectional Properties. Appl. Opt. 1979, 18, 3587–3594. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Sendra, C. Algorithm for Automatic Atmospheric Corrections to Visible and Near-IR Satellite Imagery. Int. J. Remote Sens. 1988, 9, 1357–1381. [Google Scholar] [CrossRef]
- Royer, A.; Charbonneau, L.; Teillet, P.M. Interannual Landsat-MSS Reflectance Variation in an Urbanized Temperate Zone. Remote Sens. Environ. 1988, 24, 423–446. [Google Scholar] [CrossRef]
- Gao, B.-C.; Kaufman, Y.J. Water Vapor Retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) Near-Infrared Channels. J. Geophys. Res. Atmospheres 2003, 108, 3023. [Google Scholar] [CrossRef]
- Doxani, G.; Vermote, E.; Roger, J.-C.; Gascon, F.; Adriaensen, S.; Frantz, D.; Hagolle, O.; Hollstein, A.; Kirches, G.; Li, F.; et al. Atmospheric Correction Inter-Comparison Exercise. Remote Sens. 2018, 10, 352. [Google Scholar] [CrossRef] [Green Version]
- Buchner, J.; Yin, H.; Frantz, D.; Kuemmerle, T.; Askerov, E.; Bakuradze, T.; Bleyhl, B.; Elizbarashvili, N.; Komarova, A.; Lewińska, K.E.; et al. Land-cover change in the Caucasus Mountains since 1987 based on the topographic correction of multi-temporal Landsat composites. Remote Sens. Environ. 2020, 248, 111967. [Google Scholar] [CrossRef]
- Bach, H. Die Bestimmung Hydrologischer und Landwirtschaftlicher Oberflächenparameter aus Hyperspektralen Fernerkundungsdaten; Geobuch-Verlag: Munich, Germany, 1995; Volume B 21. [Google Scholar]
- Roy, D.P.; Zhang, H.K.; Ju, J.; Gomez-Dans, J.L.; Lewis, P.E.; Schaaf, C.B.; Sun, Q.; Li, J.; Huang, H.; Kovalskyy, V. A General Method to Normalize Landsat Reflectance Data to Nadir BRDF Adjusted Reflectance. Remote Sens. Environ. 2016, 176, 255–271. [Google Scholar] [CrossRef] [Green Version]
- Lewis, A.; Lymburner, L.; Purss, M.B.J.; Brooke, B.; Evans, B.; Ip, A.; Dekker, A.G.; Irons, J.R.; Minchin, S.; Mueller, N.; et al. Rapid, high-resolution detection of environmental change over continental scales from satellite data—The Earth Observation Data Cube. Int. J. Digit. Earth 2016, 9, 106–111. [Google Scholar] [CrossRef]
- Stellmes, M.; Udelhoven, T.; Röder, A.; Sonnenschein, R.; Hill, J. Dryland Observation at Local and Regional Scale—Comparison of Landsat TM/ETM+ and NOAA AVHRR Time Series. Remote Sens. Environ. 2010, 114, 2111–2125. [Google Scholar] [CrossRef]
- Somers, B.; Asner, G.P.; Tits, L.; Coppin, P. Endmember variability in Spectral Mixture Analysis: A review. Remote Sens. Environ. 2011, 115, 1603–1616. [Google Scholar] [CrossRef]
- Elmore, A.J.; Mustard, J.F.; Manning, S.J.; Lobell, D.B. Quantifying Vegetation Change in Semiarid Environments: Precision and Accuracy of Spectral Mixture Analysis and the Normalized Difference Vegetation Index. Remote Sens. Environ. 2000, 73, 87–102. [Google Scholar] [CrossRef]
- Smith, M.O.; Ustin, S.L.; Adams, J.B.; Gillespie, A.R. Vegetation in deserts: I. A regional measure of abundance from multispectral images. Remote Sens. Environ. 1990, 31, 1–26. [Google Scholar] [CrossRef]
- Bro, R.; De Jong, S. A fast non-negativity-constrained least squares algorithm. J. Chemom. 1997, 11, 393–401. [Google Scholar] [CrossRef]
- Frantz, D.; Stellmes, M.; Röder, A.; Udelhoven, T.; Mader, S.; Hill, J. Improving the Spatial Resolution of Land Surface Phenology by Fusing Medium- and Coarse-Resolution Inputs. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4153–4164. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.O.; Breon, F.M. Towards a Generalized Approach for Correction of the BRDF Effect in MODIS Directional Reflectances. Geosci. Remote Sens. IEEE Trans. 2009, 47, 898–908. [Google Scholar] [CrossRef]
- Schwieder, M.; Leitão, P.J.; da Cunha Bustamante, M.M.; Ferreira, L.G.; Rabe, A.; Hostert, P. Mapping Brazilian savanna vegetation gradients with Landsat time series. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 361–370. [Google Scholar] [CrossRef]
- Rufin, P.; Frantz, D.; Ernst, S.; Rabe, A.; Griffiths, P.; Özdoğan, M.; Hostert, P. Mapping Cropping Practices on a National Scale Using Intra-Annual Landsat Time Series Binning. Remote Sens. 2019, 11, 232. [Google Scholar] [CrossRef] [Green Version]
- Tulleken, H. Poisson Disk Sampling. Dev. Mag. 2008, 21, 21–25. [Google Scholar]
- Muir, J.; Schmidt, M.; Tindall, D.; Trevithick, R.; Scarth, P.; Stewart, J. Field Measurement of Fractional Ground Cover: A Technical Handbook Supporting Ground Cover Monitoring for Australia; ACT ABARES: Canberra, Australia, 2011. [Google Scholar]
- Danaher, T.; Scarth, P.; Armston, J.; Collett, L.; Kitchen, J.; Gillingham, S. Remote sensing of tree-grass systems: The eastern australian woodlands. In Ecosystem Function in Savannas: Measurement and Modeling at Landscape to Global Scales; Hill, M.J., Hanan, N.P., Eds.; CRC Press: Boca Raton, FL, USA, 2010; pp. 175–194. [Google Scholar] [CrossRef]
- Bunker, B.E.; Tullis, J.A.; Cothren, J.D.; Casana, J.; Aly, M.H. Object-based Dimensionality Reduction in Land Surface Phenology Classification. AIMS Geosci. 2016, 2, 302–328. [Google Scholar] [CrossRef]
- Ives, A.R.; Zhu, L.; Wang, F.; Zhu, J.; Morrow, C.J.; Radeloff, V.C. Statistical inference for trends in spatiotemporal data. Remote Sens. Environ. 2021, 266, 112678. [Google Scholar] [CrossRef]
- Röder, A.; Udelhoven, T.; Hill, J.; del Barrio, G.; Tsiourlis, G. Trend Analysis of Landsat-TM and -ETM+ Imagery to Monitor Grazing Impact in a Rangeland Ecosystem in Northern Greece. Remote Sens. Environ. 2008, 112, 2863–2875. [Google Scholar] [CrossRef]
- Pulina, G.; Cappio-Borlino, A.; D’Angelo, M.; Francesconi, A. Grazing in Mediterranean ecosystems: A complex approach as addressed in the EU Medalus project. In Proceedings of the International Workshop Ecological Basis of Livestock Grazing in Mediterranean Ecosystems, Thessaloniki, Greece, 23–25 October 1997; pp. 173–188. [Google Scholar]
- Moustakas, A.; Sakkos, K.; Wiegand, K.; Ward, D.; Meyer, K.M.; Eisinger, D. Are savannas patch-dynamic systems? A landscape model. Ecol. Model. 2009, 220, 3576–3588. [Google Scholar] [CrossRef]
- Pausas, J.G.; Millán, M.M. Greening and Browning in a Climate Change Hotspot: The Mediterranean Basin. BioScience 2019, 69, 143–151. [Google Scholar] [CrossRef] [Green Version]
Symbol | Description | Symbol | Description |
---|---|---|---|
ΔD | Difference between selected observation and target date | [x,y] | Cartesian coordinates |
ρ | Reflectance | [,] | Long-term average vector |
Δρ | Residual between observed and interpolated reflectance | [,] | Long-term average of Cartesian coordinates |
b | Spectral band | Typical (long-term) start of the phenological year | |
F | Fractional cover | s, ns | Season, number of seasons |
f | Shade-normalized fractional cover of photosynthetically active vegetation | [, ] | Seasonal average vector |
E | Model error | [, ] | Seasonal average of Cartesian coordinates |
t | Time | Start of the phenological year in season | |
Δt | Time difference | y, ny | Calendar year, number of years |
n | Length of the time series | fVPS,y | Annual peak of season fractional cover |
ε | Noise of the time series | fVBL,y | Annual fractional cover seasonal base level |
w | Weight | fVSA,y | Annual fractional cover seasonal amplitude |
σ | Sigma of Gaussian bell | a, b | Regression intercept and slope |
DOY | Day of the Year | CC | Relative cover change |
[r,f] | Polar coordinates (Day of the Year in radians, fraction) | CCnet | Absolute net cover change |
Target Date | ΔD = 0 | ΔD = −9 | ΔD = −1 | ΔD = +7 | ΔD = Other |
---|---|---|---|---|---|
Unit | (%) | (%) | (%) | (%) | (%) |
1984-06-03 | 66.60 | 5.37 | 0.00 | 28.02 | 0.02 |
1986-05-24 | 69.45 | 0.00 | 0.00 | 30.54 | 0.01 |
1987-06-12 | 65.56 | 0.01 | 0.00 | 34.39 | 0.04 |
1988-05-29 | 67.08 | 0.03 | 32.86 | 0.01 | 0.02 |
1989-06-17 | 67.88 | 0.00 | 0.00 | 32.11 | 0.01 |
1991-05-22 | 67.60 | 0.00 | 0.00 | 32.36 | 0.03 |
1993-05-27 | 67.66 | 10.85 | 0.00 | 21.48 | 0.00 |
1994-05-30 | 68.71 | 0.01 | 0.00 | 31.25 | 0.03 |
1996-06-04 | 64.96 | 0.01 | 0.00 | 35.03 | 0.00 |
1997-05-22 | 64.03 | 0.02 | 0.00 | 35.95 | 0.00 |
2000-05-30 | 67.21 | 0.02 | 32.76 | 0.01 | 0.00 |
2002-05-28 | 67.35 | 30.31 | 0.00 | 0.00 | 2.34 |
2004-06-10 | 66.00 | 0.02 | 0.00 | 33.96 | 0.01 |
2005-06-13 | 67.19 | 9.19 | 0.00 | 23.57 | 0.04 |
Spectral Band | Photosynthetic Active Vegetation | Soil | Rock | Shade |
---|---|---|---|---|
Blue | 3.2 | 7.3 | 26.2 | 0.0 |
Green | 5.6 | 14.5 | 31.0 | 0.0 |
Red | 4.5 | 22.4 | 33.4 | 0.0 |
NIR | 36.7 | 27.5 | 47.0 | 0.0 |
SWIR1 | 17.0 | 40.2 | 72.4 | 0.0 |
SWIR2 | 7.1 | 32.2 | 54.9 | 0.0 |
Category | Cover Change Class (%) | Proportion Vegetation Dynamics 1.0 | Proportion Vegetation Dynamics 2.0 | ||
---|---|---|---|---|---|
(%) | (km2) | (%) | (km2) | ||
Severe decrease | <−15 | 27.92 | 1212 | 5.63 | 245 |
Decrease | −15 to −5 | 21.88 | 950 | 12.43 | 541 |
Unchanged | −5 to +5 | 23.82 | 1034 | 31.55 | 1373 |
Increase | +5 to +15 | 15.18 | 659 | 29.34 | 1277 |
Strong increase | >+15 | 11.21 | 487 | 21.05 | 916 |
Herbaceous Cover Change | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Steady Decrease | Stable | Steady Increase | Total | Acc. Change | Acc. Trend | ||||||
(%) | (km2) | (%) | (km2) | (%) | (km2) | (%) | (km2) | (%) (N) | (%) (N) | ||
Woody cover change | Steady decrease | 0.52 | 22 | 3.18 | 139 | 4.75 | 207 | 8.45 | 368 | 94.55 (753) | 100.00 (72) |
Stable | 4.81 | 209 | 33.04 | 1438 | 14.03 | 610 | 51.9 | 2258 | 99.79 (485) | ||
Steady increase | 6.19 | 269 | 10.62 | 462 | 2.25 | 98 | 19.10 | 829 | 100.00 (153) | ||
Mildly disturbed, then decrease | 0.05 | 2 | 0.14 | 6 | 0.26 | 12 | 0.45 | 20 | 61.94 (134) | 100.00 (3) | |
Mildly disturbed, then stable | 0.52 | 23 | 1.97 | 86 | 1.87 | 81 | 4.37 | 190 | 84.21 (19) | ||
Mildly disturbed, then increase | 1.95 | 85 | 4.98 | 217 | 3.31 | 144 | 10.20 | 445 | 100.00 (59) | ||
Severely disturbed, then decrease | 0.01 | 0.4 | 0.02 | 0.8 | 0.03 | 1.5 | 0.06 | 2.7 | 87.04 (54) | −(0) | |
Severely disturbed, then stable | 0.08 | 3.6 | 0.26 | 12 | 0.24 | 10 | 0.59 | 25.6 | 80.00 (5) | ||
Severely disturbed, then increase | 1.40 | 61 | 2.29 | 100 | 1.21 | 53 | 4.90 | 213 | 100.00 (38) | ||
Total | 15.5 | 676 | 56.5 | 2459 | 28.0 | 1217 | 100.00 | 4351 | 89.48 (941) | 99.40 (834) | |
Acc. Trend [%] (N) | 96.40 (139) | 100.00 (558) | 98.37 (245) | 99.04 (942) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frantz, D.; Hostert, P.; Rufin, P.; Ernst, S.; Röder, A.; van der Linden, S. Revisiting the Past: Replicability of a Historic Long-Term Vegetation Dynamics Assessment in the Era of Big Data Analytics. Remote Sens. 2022, 14, 597. https://doi.org/10.3390/rs14030597
Frantz D, Hostert P, Rufin P, Ernst S, Röder A, van der Linden S. Revisiting the Past: Replicability of a Historic Long-Term Vegetation Dynamics Assessment in the Era of Big Data Analytics. Remote Sensing. 2022; 14(3):597. https://doi.org/10.3390/rs14030597
Chicago/Turabian StyleFrantz, David, Patrick Hostert, Philippe Rufin, Stefan Ernst, Achim Röder, and Sebastian van der Linden. 2022. "Revisiting the Past: Replicability of a Historic Long-Term Vegetation Dynamics Assessment in the Era of Big Data Analytics" Remote Sensing 14, no. 3: 597. https://doi.org/10.3390/rs14030597
APA StyleFrantz, D., Hostert, P., Rufin, P., Ernst, S., Röder, A., & van der Linden, S. (2022). Revisiting the Past: Replicability of a Historic Long-Term Vegetation Dynamics Assessment in the Era of Big Data Analytics. Remote Sensing, 14(3), 597. https://doi.org/10.3390/rs14030597