Study on High-Resolution Suspended Sediment Distribution under the Influence of Coastal Zone Engineering in the Yangtze River Mouth, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Current, Topography and Wind Field Data
2.3. Satellite Data
2.4. In Situ Data
2.5. Data Processing
2.5.1. Data Preprocessing
2.5.2. Inversion Model of the SSC in the Yangtze Estuary
3. Results
3.1. Current in the Yangtze River Mouth
3.2. SSC in the Yangtze River Mouth
3.3. SSC Distribution near Coastal Zone Engineering
3.3.1. Yangtze River Mouth Deepwater Channel Project
3.3.2. Qingcaosha Reservoir and Dongfeng Xisha Reservoir
3.3.3. Shanghai Yangtze River Bridge and Chongqi Bridge
4. Discussion
4.1. The Influence of Nature Factors on SSC Distribution
4.1.1. Tide and Upstream Runoff
4.1.2. Wind and Offshore Current
4.1.3. Topography
4.2. The Influence of Nature Factors on SSC Distribution
4.2.1. Dam Construction
4.2.2. Reservoirs, Sand Blocking Engineering and Bridges
4.3. Suggestions for the Protection and Development of Yangtze River Mouth
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Milliman, J.D.; Meade, R.H. World-Wide Delivery of River Sediment to the Oceans. J. Geol. 1983, 91, 1–21. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.; Sun, Z.; Fan, Y. Suspended sediment load in the turbidity maximum zone at the Yangtze River Estuary: The trends and causes. J. Geogr. Sci. 2014, 24, 129–142. [Google Scholar] [CrossRef]
- Liu, D.; Sun, J.; Zou, J.; Zhang, J. Phytoplankton succession during a red tide of Skeletonema costatum in Jiaozhou Bay of China. Mar. Pollut. Bull. 2005, 50, 91–94. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, S.; Yu, Z. Temporal and spatial changes of suspended sediment concentration and resuspension in the Yangtze River Estuary and its adjacent waters. Acta Geogr. Sin. 2004, 59, 260–266. [Google Scholar]
- Xiang, Y.; Fu, Z.; Meng, Y.; Zhang, K.; Cheng, Z. Analysis of wave clipping effects of plain reservoir artificial islands based on MIKE21 SW model. Water Sci. Eng. 2019, 12, 179–187. [Google Scholar] [CrossRef]
- Zhao, D.Z.; Liu, J.; Cheng, H.F.; Wang, Z.Z. Current situation and future prospect of dredged material disposal in the Yangtze estuary deepwater navigation channel. Hydro-Sci. Eng. 2013, 38, 26–32. [Google Scholar]
- Xie, J.; Yan, Y. Promoting Siltation Effects and Impacts of Hengsha East Shoal on the Yangtze River Estuary. J. Hydrodyn. 2011, 23, 649–659. [Google Scholar] [CrossRef]
- Meng-Guo, L.I. The effect of reclamation in areas between islands in a complex tidal estuary on the hydrodynamic sediment environment. J. Hydrodyn. 2010, 22, 338–350. [Google Scholar]
- Hassan, A.M.; Church, M.; Yan, Y.; Slaymaker, O. Spatial and temporal variation of in-reach suspended sediment dynamics along the mainstem of Changjiang (Yangtze River), China. Water Resour. Res. 2010, 46, W11551. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.F.; Yang, S.L.; Xu, K.H. River-sea transitions of sediment dynamics: A case study of the tide-impacted Yangtze River estuary. Estuar. Coast. Shelf Sci. 2017, 196, 207–216. [Google Scholar] [CrossRef]
- Chen, K.; Kuang, C.; Wang, Y.; Wang, T.; Bian, C. Cross-shelf sediment transport in the Yangtze Delta frontal zone: Insights from field observations. J. Mar. Syst. 2021, 219, 103559. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, Y.; Shen, F. Suspended sediment diffusion mechanisms in the Yangtze Estuary influenced by wind fields. Estuar. Coast. Shelf Sci. 2018, 200, 428–436. [Google Scholar] [CrossRef]
- Zhang, E. A Study about Impacts of Human Activities in the Mid-Lower Yangtze on Fluvial Sediment Supply from River Basin and Sediment Discharge from the Yangtze into the Sea. Doctoral Thesis, East China Normal University, Shanghai, China, 2004. [Google Scholar]
- Zhang, J.; Zhang, Z.F.; Liu, S.M.; Wu, Y.; Xiong, H.; Chen, H.T. Human impacts on the large world rivers: Would the Changjiang (Yangtze River) be an illustration? Glob. Biogeochem. Cycles 1999, 13, 1099–1105. [Google Scholar] [CrossRef]
- Li, P.; Yang, S.L.; Milliman, J.D.; Xu, K.H.; Qin, W.H.; Wu, C.S.; Chen, Y.P.; Shi, B.W. Spatial, Temporal, and Human-Induced Variations in Suspended Sediment Concentration in the Surface Waters of the Yangtze Estuary and Adjacent Coastal Areas. Estuaries Coasts 2012, 35, 1316–1327. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.L.; Zhang, J.; Zhu, J.; Smith, J.P.; Dai, S.B.; Gao, A.; Li, P. Impact of dams on Yangtze River sediment supply to the sea and delta intertidal wetland response. J. Geophys. Res. 2005, 110, F03006. [Google Scholar] [CrossRef]
- Reed, D.J. The response of coastal marshes to sea-level rise: Survival or submergence? Earth Surf. Processes Landf. 2010, 20, 39–48. [Google Scholar] [CrossRef]
- Correll, D.L.; Jordan, T.E.; Weller, D.E. Precipitation Effects on Sediment and Associated Nutrient Discharges from Rhode River Watersheds. J. Environ. Qual. 1999, 28, 1897–1907. [Google Scholar] [CrossRef] [Green Version]
- Rijn, L. Unified View of Sediment Transport by Currents and Waves. II: Suspended Transport. J. Hydraul. Eng. 2007, 133, 668–689. [Google Scholar] [CrossRef]
- Ho, C.-I.; Ren, Y.-W. Some problems concerning hydrographic investigations in shallow sea. Oceanol. Et Limnol. Sin. 1959, 2, 1–10. [Google Scholar]
- Wang, J.J.; Lu, X.X. Estimation of suspended sediment concentrations using Terra MODIS: An example from the Lower Yangtze River, China. Sci. Total Environ. 2010, 408, 1131–1138. [Google Scholar] [CrossRef]
- Devi, G.K.; Ganasri, B.P.; Dwarakish, G.S. Applications of Remote Sensing in Satellite Oceanography: A Review. Aquat. Procedia 2015, 4, 579–584. [Google Scholar] [CrossRef]
- Lei, S.; Wu, D.; Li, Y.; Wang, Q.; Huang, C.; Liu, G.; Zheng, Z.; Du, C.; Mu, M.; Xu, J.; et al. Remote sensing monitoring of the suspended particle size in Hongze Lake based on GF-1 data. Int. J. Remote Sens. 2019, 40, 3179–3203. [Google Scholar] [CrossRef]
- Tao, C.; Li, P.; Zhang, L.; Shi, L. Estimating suspended sediment concentration in Yangtze River from Landsat-TM image. In Proceedings of the SPIE the International Society for Optical Engineering, Wuhan, China, 31 October–2 November 2005; Volume 6043. [Google Scholar]
- Li, S.; Yun, C. A Study on the Quantitative Model of the Suspended Sediment Concentration from the Meteorological Satellite Imagery. J. Remote Sens. 2001, 5, 154–160. [Google Scholar]
- Fang, S.; Verhoef, W.; Zhou, Y.; Salama, M.S.; Liu, X. Satellite Estimates of Wide-Range Suspended Sediment Concentrations in Changjiang (Yangtze) Estuary Using MERIS Data. Estuaries Coasts 2010, 33, 1420–1429. [Google Scholar]
- Yao, R.; Cai, L.; Liu, J.; Zhou, M. GF-1 Satellite Observations of Suspended Sediment Injection of Yellow River Estuary, China. Remote Sens. 2020, 12, 3126. [Google Scholar] [CrossRef]
- Cai, X. Retrieve of Spatial and Temporal Distribution of Suspended Sediment in Bohai Bay Based on GF-1 Remote Sensing Satellite. J. Atmos. Environ. Opt. 2020, 15, 58–66. [Google Scholar]
- Cheng, Q.; Liu, B.; Ting, L.I.; Zhu, L. Research on remote sensing retrieval of suspended sediment concentration in Hangzhou Bay by GF-1 satellite. Mar. Environ. Sci. 2015, 34, 558–563. [Google Scholar]
- Li, J.; Chen, X.; Tian, L.; Huang, J.; Feng, L. Improved capabilities of the Chinese high-resolution remote sensing satellite GF-1 for monitoring suspended particulate matter (SPM) in inland waters: Radiometric and spatial considerations. ISPRS J. Photogramm. Remote Sens. 2015, 106, 145–156. [Google Scholar] [CrossRef]
- Shang, P.; Shen, F. Atmospheric Correction of Satellite GF-1/WFV Imagery and Quantitative Estimation of Suspended Particulate Matter in the Yangtze Estuary. Sensors 2016, 16, 1997. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Fang, C.; Zhang, X. Spatial expansion and potential of construction land use in the Yangtze River Delta. J. Geogr. Sci. 2015, 25, 851–864. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Dou, X. The process and prospect of comprehensive control of Yangtze estuary. Ocean. Eng. 2020, 4, 11–18. [Google Scholar]
- Cheng, H.Q.; Li, M.T.; Zhou, T.Y.; Xue, Y.Z. High-resolution micro-topography movement in the Changjiang Estuary. Ocean. Eng. 2002, 20, 91–95. [Google Scholar]
- Wu, J.; Wang, Y.; Cheng, H. Bedforms and bed material transport pathways in the Changjiang (Yangtze) Estuary—Science Direct. Geomorphology 2009, 104, 175–184. [Google Scholar] [CrossRef]
- Li, B.; Yan, X.X.; He, Z.; Chen, Y.; Zhang, J.H. Impacts of the Three Gorges Dam on the bathymetric evolution of the Yangtze River Estuary. Chin. Sci. Bull. 2015, 60, 1735–1744. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.W.; Wang, J.T.; Ning, L.I.; Yan, X.J. Dissolved organic carbon and nitrogen in Changjiang Estuary and adjacent sea areas in spring. Mar. Environ. Sci. 2013, 32, 33–37. [Google Scholar]
- Zhang, S. Temporal and Spatial Variation of Tidal Range in the Changjiang Estuary and Its Environmental Significance. Master’s Thesis, East China Normal University, Shanghai, China, 2019. [Google Scholar]
- Yu, H.; Xian, W. The environment effect on fish assemblage structure in waters adjacent to the Changjiang (Yangtze) River estuary (1998–2001). J. Oceanol. Limnol. 2009, 27, 443–456. [Google Scholar] [CrossRef]
- Song, D.; Wang, X.H. Suspended sediment transport in the Deepwater Navigation Channel, Yangtze River Estuary, China, in the dry season 2009: 2. Numerical simulations. J. Geophys. Res. Ocean. 2013, 118, 5568–5590. [Google Scholar] [CrossRef]
- Cao, J.; Li, R.; Zhu, Y. Study on Saltwater Intrusion in the Yangtze River Estuary by 3D Numerical Model. In Proceedings of the 2008 International Workshop on Education Technology and Training & 2008 International Workshop on Geoscience and Remote Sensing, Washington, DC, USA, 21–22 December 2008; pp. 81–84. [Google Scholar]
- Chen, C.; Beardsley, R.C.; Cowles, G. An unstructured-grid finite-volume coastal ocean model (FVCOM) system. Oceanography 2006, 19, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Liu, H.; Beardsley, R.C. An unstructured, finite-volume, three-dimensional, primitive equation ocean model: Application to coastal ocean and estuaries. J. Atmos. Ocean. Technol. 2003, 20, 159–186. [Google Scholar] [CrossRef]
- Yang, Z.; Shao, W.; Ding, Y.; Shi, J.; Ji, Q. Wave Simulation by the SWAN Model and FVCOM Considering the Sea-Water Level around the Zhoushan Islands. J. Mar. Sci. Eng. 2020, 8, 783. [Google Scholar] [CrossRef]
- Xue, P.; Chen, C.; Ding, P.; Beardsley, R.C.; Lin, H.; Ge, J.; Kong, Y. Saltwater intrusion into the Changjiang River: A model-guided mechanism study. J. Geophys. Res. Ocean. 2009, 114, C02006. [Google Scholar] [CrossRef]
- Chen, C.; Qi, J.; Li, C.; Beardsley, R.C.; Lin, H.; Walker, R.; Gates, K. Complexity of the flooding/drying process in an estuarine tidal-creek salt-marsh system: An application of FVCOM. J. Geophys. Res. Ocean. 2008, 8, 783. [Google Scholar] [CrossRef] [Green Version]
- Josey, S.A.; Kent, E.C.; Taylor, P.K. Wind stress forcing of the ocean in the SOC climatology: Comparisons with the NCEP-NCAR, ECMWF, UWM/COADS, and Hellerman and Rosenstein datasets. J. Phys. Oceanogr. 2002, 32, 1993–2019. [Google Scholar] [CrossRef]
- Deng, Z.; Lu, Z.; Wang, G.; Wang, D.; Zhao, X. Extraction of fractional vegetation cover in arid desert area based on Chinese GF-6 satellite. Open Geosci. 2021, 13, 416–430. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Z.; Xia, C.; Chen, J.; Peng, D. Tree Species Classification based on the New Bands of GF-6 Remote Sensing Satellite. J. Geo-Inf. Sci. 2019, 21, 1619–1628. [Google Scholar]
- Li, X.; Tan, X.; Liu, Q.; Liu, S. Application of Gaofen-6 wide-field data in forest fire identification: A case study of Hanma Nature Reserve in Greater Hinggan Mountains, Inner Mongolia. Satell. Appl. 2019, 9, 41–44. [Google Scholar]
- Cai, L.; Zhou, M.; Liu, J.; Tang, D.; Zuo, J. HY-1C Observations of the Impacts of Islands on Suspended Sediment Distribution in Zhoushan Coastal Waters, China. Remote Sens. 2020, 12, 1766. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, B. Retrieval of Suspended Sediment Concentration in Zhoushan Coastal Area Satellite Based on GF-1. Ocean. Dev. Manag. 2011, 35, 126–131. [Google Scholar]
- Yang, A.; Zhong, B.; Hu, L.; Wu, S.; Xu, Z.; Wu, H.; Wu, J.; Gong, X.; Wang, H.; Liu, Q. Radiometric Cross-Calibration of the Wide Field View Camera Onboard GaoFen-6 in Multispectral Bands. Remote Sens. 2020, 12, 1037. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.G.; Niu, Z.; Wang, X.P. Atmospheric Correction of Hyperion Hyperspectral Image Based on FLAASH. Spectrosc. Spectr. Anal. 2009, 29, 1181–1185. [Google Scholar]
- Qu, J.; Wang, C.; Wang, Z. Data Fusion Based Technology for Remote Sensing Image Processing. J. Image Graph. 2002, 7, 985–993. [Google Scholar]
- Sun, W.; Chen, B.; Messinger, D.W. Nearest-neighbor diffusion-based pan-sharpening algorithm for spectral images. Opt. Eng. 2013, 53, 013107. [Google Scholar] [CrossRef] [Green Version]
- Cai, L.; Tang, D.; Levy, G.; Liu, D. Remote sensing of the impacts of construction in coastal waters on suspended particulate matter concentration—The case of the Yangtze River delta, China. Int. J. Remote Sens. 2016, 37, 2132–2147. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, Y.; Zhang, P.; Dong, W.; Ying, Z. Remote sensing parameter model of suspended sediment and its application in the Yangtze River estuary. In Proceedings of the Geoinformatics 2007: Remotely Sensed Data and Information, Nanjing, China, 25–27 May 2007; International Society for Optics and Photonics: Bellingham, WA, USA, 2007; Volume 6752. [Google Scholar]
- Li, L.; Zhu, J.; Wu, H.; Wang, B. A numerical study on water diversion ratio of the Changjiang (Yangtze) estuary in dry season. Chin. J. Oceanol. Limnol. 2010, 28, 700–712. [Google Scholar] [CrossRef]
- Xiang, Z.; Yu, X. Characteristic Analyses of Sediment Yielding, Transportation and sedimentation in Y angtze River. J. Yangtze River Sci. Res. Inst. 1990, 7, 9–19. [Google Scholar]
- Yang, Y.P.; Li, Y.T.; Sun, Z.H.; Fan, Y.Y.; Deng, J.-Y. Relation between sediment carrying capacity and runoff/tidal dynamic in Yangtze Estuary. Shuidonglixue Yanjiu Yu Jinzhan/Chin. J. Hydrodyn. Ser. A 2013, 28, 274–282. [Google Scholar]
- Hong, L.; He, Q.; Wang, Z.; Weltje, G.J.; Zhang, J. Dynamics and spatial variability of near-bottom sediment exchange in the Yangtze Estuary, China. Estuar. Coast. Shelf Sci. 2010, 86, 322–330. [Google Scholar]
- Zuo, S.; Li, J.; Wan, X.; Shen, H.; Fu, G. Characteristics of temporal and spatial variation of suspended sediment concentration in the Changjiang Estuary. J. Sediment Res. 2006, 3, 68–75. [Google Scholar]
- Tamura, T.; Horaguchi, K.; Saito, Y.; Nguyen, V.L.; Tateishi, M.; Ta, T.K.O.; Nanayama, F.; Watanabe, K. Monsoon-influenced variations in morphology and sediment of a mesotidal beach on the Mekong River delta coast. Geomorphology 2010, 116, 11–23. [Google Scholar] [CrossRef]
- Geng, H.; Zhang, H.; Hong, Y.; Hu, G. Calculation and characteristic analyses of wind wave fields in the Yangtze Estuary. Hydro-Sci. Eng. 2020, 5, 48–56. [Google Scholar]
- Wei, S.; Wang, M. Satellite observations of the seasonal sediment plume in central East China Sea. J. Mar. Syst. 2010, 82, 280–285. [Google Scholar]
- Liu, J.P.; Xu, K.H.; Li, A.C.; Milliman, J.D.; Velozzi, D.M.; Xiao, S.B.; Yang, Z.S. Flux and fate of Yangtze River sediment delivered to the East China Sea. Geomorphology 2007, 85, 208–224. [Google Scholar] [CrossRef]
- Shen, H.; He, S.; Pan, D.; Li, J. A study of turbidity maximum in the Changjiang estuary. Acta Geogr. Sin. 1992, 47, 472–479. [Google Scholar]
- Zhou, X. Climate Characteristics of Sea Surface Temperature (SST) Variation in the Changjiang Estuary. Master’s Thesis, Ocean University of China, Qingdao, China, 2005. [Google Scholar]
- Liu, X. Seasonal Variation Research Of Suspended Sediments in the East China Sea Based on Remote Sensing. Master’s Thesis, Ocean University of China, Qingdao, China, 2014. [Google Scholar]
- Liu, Z. Retrieval and Analysis of Surface Suspended Sediment Concentration by Remote Sensing in Yangtze River Estuary. Doctoral Thesis, East China Normal University, Shanghai, China, 2007. [Google Scholar]
- Chen, S.L.; Zhang, G.A.; Yang, S.L.; Shi, J.Z. Temporal variations of fine suspended sediment concentration in the Changjiang River estuary and adjacent coastal waters, China. J. Hydrol. 2006, 331, 137–145. [Google Scholar] [CrossRef]
- Ju, L.Y.; Chang, Q.R.; Yang, X.M.; Liu, J. Remote sensing detection of suspended sediment in the Yangtse River Estuary by MODIS images. J. Northwest Sci-Tech Univ. Agric. For. 2005, 33, 117–121. [Google Scholar]
- Shi, Z. Behaviour of fine suspended sediment at the North passage of the Changjiang Estuary, China. J. Hydrol. 2004, 293, 180–190. [Google Scholar] [CrossRef]
- Yun, C. Recent Evolution of the Yangtze River Estuary; China Ocean Press: Beijing, China, 2004. [Google Scholar]
- Jie, W.; He, X.; Bao, Y. Anthropogenic impacts on suspended sediment load in the Upper Yangtze river. Reg. Environ. Change 2011, 11, 857–868. [Google Scholar]
- Yang, S.L.; Shi, Z.; Zhao, H.Y.; Li, P.; Dai, S.B.; Gao, A. Effects of human activities on the Yangtze River suspended sediment flux into the estuary in the last century. Hydrol. Earth Syst. Sci. 2004, 8, 1210–1216. [Google Scholar] [CrossRef]
- Milliman, J.D. Blessed dams or damned dams? Nature 1997, 386, 325–327. [Google Scholar] [CrossRef]
- Syvitski, J.; Voeroesmarty, C.J.; Kettner, A.J.; Green, P. Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean. Science 2005, 308, 376–380. [Google Scholar] [CrossRef]
- Walling, D.E. Human impact on land–ocean sediment transfer by the world’s rivers. Geomorphology 2006, 79, 192–216. [Google Scholar] [CrossRef]
- Shen, F.; Zhou, Y.; Li, J.; He, Q.; Verhoef, W. Remotely sensed variability of the suspended sediment concentration and its response to decreased river discharge in the Yangtze estuary and adjacent coast. Cont. Shelf Res. 2013, 69, 52–61. [Google Scholar] [CrossRef]
- Dai, Z.; Fagherazzi, S.; Mei, X.; Gao, J. Decline in suspended sediment concentration delivered by the Changjiang (Yangtze) River into the East China Sea between 1956 and 2013. Geomorphology 2016, 268, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Chen, S. Estuarine and coastal challenges in China. Chin. J. Oceanol. Limnol. 2002, 20, 174–181. [Google Scholar]
- Vörösmarty, C.J.; Meybeck, M.; Fekete, B.; Sharma, K.; Green, P.; Syvitski, J.P.M. Anthropogenic sediment retention: Major global impact from registered river impoundments. Glob. Planet. Change 2003, 39, 169–190. [Google Scholar] [CrossRef]
- Li, P.; Yang, S.; Dai, s.B.; Zhang, W. Accretion/erosion of the subaqueous delta at the Yangtze Estuary in recent 10 years. Acta Geogr. Sin. 2007, 62, 707–716. [Google Scholar]
- Huanting, S.; Haigen, X.; Xiangqi, M. Study on the improvement of sea-entering waterway in the Changjiang Estuary. China Ocean. Eng. 1992, 6, 361–368. [Google Scholar]
- Lu, Z.; Lu, Y.; Song, S.; Guan, X.; Huang, G. Study on the Relationship between the Construction of Qingcaosha Reservoir and the Comprehensive Regulation of Changjiang Estuary. Water Wastewater Eng. 2009, 1, 55–58. [Google Scholar]
- Chen, W.; Wei, W. Influence of Qingcaosha Reservoir Project on riverbed erosion and deposition. Adv. Sci. Technol. Water Resour. 2018, 38, 44–50. [Google Scholar]
- Yi, C.; Meng, Z. Predicting the function of spur-dike group restricting rivers based on SVM. Hydro-Sci. Eng. 2019, 3, 25–31. [Google Scholar]
- Xu, H.; Huang, Z.; Bai, Y.; Bai, Y. Effects of Flow Circulations on the Sediment Dynamics in the Deep-water Navigation Channel of the Yangtze River Estuary. J. Coast. Res. 2020, 95, 723a–727a. [Google Scholar] [CrossRef]
- Pan, L.; Ding, P.; Ge, J.; Hu, K. Analysis of influence of Deep Waterway Project on morphological change in North Passage of Changjiang Estuary. J. Sediment Res. 2011, 5, 9. [Google Scholar]
- Liu, J. Study on Morphological Evolution and Siltation in Deep Waterway Due to Channel Reconstruction in the North Passage, Yangtze Estuary. Doctoral Thesis, East China Normal University, Shanghai, China, 2008. [Google Scholar]
- Xu, H.; Huang, Z.; Bai, Y.; Su, L.; Hong, Y.; Lu, T.; Wang, X. Numerical analysis of sediment deposition in Yangtze river estuary: Insight from conceptual estuary models. Appl. Ocean. Res. 2020, 104, 102372. [Google Scholar] [CrossRef]
- Yang, W. Research of Factors Leading to Variation of Ebb-Tide Sediment Diversion Ratios in the South and North Passage in the Changjiang Estuary. Master’s Thesis, East China Normal University, Shanghai, China, 2017. [Google Scholar]
- Kuang, C.; Chen, W.; Gu, J.; He, L. Comprehensive analysis on the sediment siltation in the upper reach of the deepwater navigation channel in the Yangtze Estuary. J. Hydrodyn. 2014, 26, 299–308. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, M.; Li, Y.; Zhang, W. The variations of suspended sediment concentration in Yangtze River Estuary. J. Hydrodyn. 2015, 27, 845–856. [Google Scholar] [CrossRef]
- Pasiok, R.; Stilger-Szydło, E. Sediment particles and turbulent flow simulation around bridge piers. Arch. Civ. Mech. Eng. 2010, 10, 67–79. [Google Scholar] [CrossRef]
- Liu, H. Hydrodynamic problems associated with construction of sea-crossing bridges. J. Hydrodyn. Ser. B 2006, 18 (Suppl. 3), 13–18. [Google Scholar] [CrossRef]
- Olsen, N.R.B.; Kjellesvig, H.M. Three-dimensional numerical flow modeling for estimation of maximum local scour depth. J. Hydraul. Res. 1998, 36, 579–590. [Google Scholar] [CrossRef]
- Zhou, C.; Gao, N.-Y.; Zhao, S.; Chu, W. Evaluation of water quality in Qingcaosha reservoir of Shanghai. Tongji Daxue Xuebao/J. Tongji Univ. 2012, 40, 894–899. [Google Scholar]
Sensor | Band No. | Spectral Range/μm | Resolution/m | Repetition Cycle/d | Swath Width/km |
---|---|---|---|---|---|
GF-1 WFV | Band 1 (Blue) | 0.45–0.52 | 16 | 4 | 800 |
Band 2 (Green) | 0.52–0.59 | ||||
Band 3 (Red) | 0.63–0.69 | ||||
Band 4 (NIR) | 0.77–0.89 | ||||
GF-1 PMS | Band 1 (Blue) | 0.45–0.52 | 8 | 41 | 60 |
Band 2 (Green) | 0.52–0.59 | ||||
Band 3 (Red) | 0.63–0.69 | ||||
Band 4 (NIR) | 0.77–0.89 | ||||
Band 5 (PAN) | 0.45–0.90 | 2 |
Sensor | Band No. | Spectral Range/μm | Resolution/m | Repetition Cycle/d | Swath Width/km |
---|---|---|---|---|---|
GF-6 WFV | Band 1 | 0.45–0.52 | ≤16 | 4 | ≥800 |
Band 2 | 0.52–0.59 | ||||
Band 3 | 0.63–0.69 | ||||
Band 4 | 0.77–0.89 | ||||
Band 5 | 0.69–0.73 | ||||
Band 6 | 0.73–0.77 | ||||
Band 7 | 0.40–0.45 | ||||
Band 8 | 0.59–0.63 | ||||
GF-6 PMS | Band 1 (Blue) | 0.45–0.52 | 8 | 41 | ≥90 |
Band 2 (Green) | 0.52–0.60 | ||||
Band 3 (Red) | 0.63–0.69 | ||||
Band 4 (NIR) | 0.76–0.90 | ||||
Band 5 (PAN) | 0.45–0.90 | 2 |
Sensor | Band No. | Spectral Range/μm | Resolution/m | Repetition Cycle/d | Swath Width/km |
---|---|---|---|---|---|
HY-1C CZI | Band 1 (Blue) | 0.421–0.500 | ≤50 | 3 | ≥950 |
Band 2 (Green) | 0.517–0.598 | ||||
Band 3 (Red) | 0.608–0.690 | ||||
Band 4 (NIR) | 0.761–0.891 |
Sensors | Pan_G | Pan_B | B1_G | B1_B | B2_G | B2_B | B3_G | B3_B | B4_G | B4_B |
---|---|---|---|---|---|---|---|---|---|---|
GF1_WFV1 | - | - | 0.19319 | 0 | 0.16041 | 0 | 0.12796 | 0 | 0.13405 | 0 |
GF_1WFV2 | - | - | 0.2057 | 0 | 0.1648 | 0 | 0.1260 | 0 | 0.1187 | 0 |
GF1_WFV3 | - | - | 0.2106 | 0 | 0.1825 | 0 | 0.1346 | 0 | 0.1187 | 0 |
GF_WFV4 | - | - | 0.2522 | 0 | 0.2029 | 0 | 0.1528 | 0 | 0.1031 | 0 |
GF-1B_PMS | 0.0687 | 0 | 0.0757 | 0 | 0.0618 | 0 | 0.0545 | 0 | 0.0572 | 0 |
GF-1C_PMS | 0.0709 | 0 | 0.0758 | 0 | 0.0657 | 0 | 0.0543 | 0 | 0.0564 | 0 |
GF-1D_PMS | 0.0715 | 0 | 0.0738 | 0 | 0.0656 | 0 | 0.0590 | 0 | 0.0585 | 0 |
GF6_PMS | 0.0537 | 0 | 0.082 | 0 | 0.0645 | 0 | 0.0489 | 0 | 0.0286 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, L.; Chen, S.; Yan, X.; Bai, Y.; Bu, J. Study on High-Resolution Suspended Sediment Distribution under the Influence of Coastal Zone Engineering in the Yangtze River Mouth, China. Remote Sens. 2022, 14, 486. https://doi.org/10.3390/rs14030486
Cai L, Chen S, Yan X, Bai Y, Bu J. Study on High-Resolution Suspended Sediment Distribution under the Influence of Coastal Zone Engineering in the Yangtze River Mouth, China. Remote Sensing. 2022; 14(3):486. https://doi.org/10.3390/rs14030486
Chicago/Turabian StyleCai, Lina, Songyu Chen, Xiaojun Yan, Yan Bai, and Juan Bu. 2022. "Study on High-Resolution Suspended Sediment Distribution under the Influence of Coastal Zone Engineering in the Yangtze River Mouth, China" Remote Sensing 14, no. 3: 486. https://doi.org/10.3390/rs14030486
APA StyleCai, L., Chen, S., Yan, X., Bai, Y., & Bu, J. (2022). Study on High-Resolution Suspended Sediment Distribution under the Influence of Coastal Zone Engineering in the Yangtze River Mouth, China. Remote Sensing, 14(3), 486. https://doi.org/10.3390/rs14030486