Spatial Dynamics and Predictive Analysis of Vegetation Cover in the Ouémé River Delta in Benin (West Africa)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Methods Used to Assess the Dynamics of Vegetation Cover in the Ouémé Delta
2.3. Analysis of the Dynamics of the Vegetation Cover in the Ouémé Delta from 1990 to 2020
2.4. Prediction of Future Changes in Vegetation Cover in the Ouémé Delta by 2035
3. Results
3.1. Mapping of the Dynamics of the Vegetation Cover in the Ouémé Delta from 1990 and 2020
3.2. Analysis of the Transformations of the Vegetation Cover in the Ouémé Delta from 1990 to 2020
3.3. Drivers of the Dynamics of the Vegetation Cover in the Ouémé Delta
3.4. Predictive Mapping of Vegetation Cover in the Ouémé Delta by 2035
4. Discussion
4.1. Spatial Configuration of the Vegetation Cover in the Ouémé Delta from 1990 and 2020
4.2. Analysis of the Causes and Manifestations of the Vegetation Cover Dynamics in the Ouémé Delta
4.3. Predictive Mapping of the Vegetation Cover in the Ouémé Delta
5. Conclusions
- 1.
- The phytosociological study of the various plant formations;
- 2.
- Developing an inventory of the woody species of the various plant formations and the dendrometric characteristics of the main species;
- 3.
- Constructing an inventory of fertility indicator species along the Ouémé Delta;
- 4.
- The investigation of medicinal and food species that are protected in agricultural lands;
- 5.
- Developing a database on the ecosystem services provided by the Ouémé River Delta.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colombani, J.; Sircoulon, J.; Moniod, F.; Rodier, J. Monographie du Delta de l’Ouémé; ORSTOM: Paris, France, 1972; 591p. [Google Scholar]
- Azonnakpo, O.V.; Azonnakpo, J.P.; Agbossou, E.K.; Aminou, T. Inventaire des activités menées dans le Delta de l’Oueme et sources de pollution de l’eau. Int. J. Progress. Sci. Technol. 2020, 20, 376–390. [Google Scholar]
- Xu, T.; Weng, B.; Yan, D.; Wang, K.; Li, X.; Bi, W.; Li, M.; Cheng, X.; Liu, Y. Wetlands of international importance: Status, threats, and future protection. Int. J. Environ. Res. Public Health 2019, 16, 1818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gbénou, P. Evaluation Participative du Système de Riziculture Intensive dans la Basse Vallée de l’Ouémé au Bénin. Ph.D. Thesis, de l’Université d’Abomey-Calavi, Cotonou, Bénin, 2013; 214p. [Google Scholar]
- Alimi, R.M.; Gbedomon, R.C.; Bekpa-Kinhou, A.M.; Biaou, C.; Egboou, P.B. Etude de Base Pour la Formulation de Projet Sur L’élevage Transhumant Dans la Basse et la Moyenne Vallée de l’Ouémé (Corridor Bénin-Nigéria); Rapport D’étude: Bénin, Nigeria, 2015; 112p. [Google Scholar]
- Udoka, U.P.; Opara, A.I.; Nwankwor, G.I.; Ebhuoma, O.O. Mapping Land Use and Land Cover in parts of the Niger Delta for Effective Planning and Administration. Int. J. Sci. Eng. Res. 2015, 6, 274–281. [Google Scholar]
- Adechina, R.A.; Kelome, N.C.; Chouti, W.; Hounkpe, J.B.; Randriana, N.R.F. Fractionnement géochimique des éléments traces métalliques (Etm) dans les sédiments du Delta de l’Ouémé au Bénin. Eur. Sci. J. 2018, 14, 358–371. [Google Scholar] [CrossRef] [Green Version]
- Khloud, A.; Enar, A.A.; El Baroudy, M.S.; Shokr, A.; Menoufia, J. Assessment and mapping land degradation in some areas of north Nile DeltaDelta, using new techniques. Soil Sci. 2021, 6, 265–274. Available online: https://mjss.journals.ekb.eg/ (accessed on 2 November 2022).
- Orimoloye, I.R.; Kalumba, A.M.; Mazinyo, S.P.; Nel, W. Geospatial analysis of wetland dynamics: Wetland depletion and biodiversity conservation of Isimangaliso Wetland, South Africa. J. King Saud Univ. 2020, 32, 90–96. [Google Scholar] [CrossRef]
- Thonfeld, F.; Steinbach, S.; Muro, J.; Hentze, K.; Games, I.; Näschen, K.; Kauzeni, P.F. The impact of anthropogenic land use change on the protected areas of the Kilombero catchment, Tanzania. J. Photogramm. Remote Sens. 2020, 168, 41–55. [Google Scholar] [CrossRef]
- Dossou-Yovo, H.O.; Vodouhè, F.G.; Sinsin, B. Ethnomedicinal survey of mangrove plant species used as medicine from Ouidah to Granp-Popo Districts, Southern Benin. Am. J. Ethnomed. 2017, 4, 1–6. [Google Scholar]
- Dossou-Yovo, H.O.; Kindomihou, V.; Vodouhè, F.G.; Sinsin, B. Assessment of the diversity of medico-magic knowledge on four herbaceous species in Benin. Sci. World J. 2021, 2021, 6650704. [Google Scholar] [CrossRef]
- Dossou-Yovo, H.O.; Vodouhè, F.G.; Kaplan, A.; Sinsin, B. Application of Ethnobotanical Indices in the Utilization of Five Medicinal Herbaceous Plant Species in Benin, West Africa. Diversity 2022, 14, 612. [Google Scholar] [CrossRef]
- Padonou, E.A.; Gbai, N.I.; Kolawole, M.A.; Idohou, R.; Toyi, M. How far are mangrove ecosystems in Benin (West Africa) conserved by the Ramsar Convention? Land Use Policy 2021, 108, 105583. [Google Scholar] [CrossRef]
- Zhu, Z.; Fu, Y.; Woodcock, C.E.; Olofsson, P.; Vogelmann, J.E.; Holden, C.; Wang, M.; Dai, S.; Yu, Y. Including land cover change in analysis of greenness trends using all available Landsat 5, 7, and 8 images: A case study from Guangzhou, China (2000–2014). Remote Sens. Environ. 2016, 185, 243–257. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.M.; Ju, W.; Ciais, P.; Viovy, N.; Liu, R.; Liu, Y.; Lu, X. Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nat. Commun. 2019, 10, 4259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, N.; Szilagyi, L.; Zhang, Y. Calibration-Free complementary relationship estimates terrestrial evapotranspiration globally. Water Resour. Res. 2021, 57, e2021WR029691. [Google Scholar] [CrossRef]
- Mandishona, E.; Knight, J. Inland wetlands in Africa: A review of their typologies and ecosystem services. Prog. Phys. Geogr. 2022, 46, 03091333221075328. [Google Scholar] [CrossRef]
- Marega, O.; Emeterio, J.L.S.; Fall, A.; Andrieu, J. Cartographie par télédétection des variations spatio-temporelles de la couverture végétale spontanée face à la variabilité pluviométrique au Sahel: Approche multiscalaire. Physio-Géo 2021, 16, 1–8. [Google Scholar] [CrossRef]
- Patil, S.D.; Gu, Y.; Dias, F.S.A.; Stieglitz, M.; Turk, G. Predicting the spectral information of future land cover using machine learning. Int. J. Remote Sens. 2017, 38, 5592–5607. [Google Scholar] [CrossRef] [Green Version]
- Murray, A.T. Advances in location modeling: GIS linkages and contributions. J. Geogr. Syst. 2010, 12, 335–354. [Google Scholar] [CrossRef]
- Kwan, C.; Gribben, D.; Ayhan, B.; Bernabe, S.; Plaza, A. An accurate vegetation and non-vegetation differentiation approach based on land cover classification. Remote Sens. 2020, 12, 3880. [Google Scholar] [CrossRef]
- Skidmore, A.K.; Coops, N.C.; Neinavaz, E.; Ali, A.; Schaepman, M.E.; Paganini, M.; Kissling, W.D.; Vihervaara, P.; Darvishzadeh, R.; Feilhauer, H.; et al. Priority list of biodiversity metrics to observe from space. Nat. Ecol. Evol. 2021, 5, 896–906. [Google Scholar] [CrossRef]
- Mohsen, M.; Ezzeldin, K.S.; El-Alfy, H.A.; Abdel-Gawad, M.; Abd-Elmaboud, E. Land Use Changes in the Eastern Nile Delta Region; Egypt Using Multi-temporal Remote Sensing Techniques. Int. J. Sci. Eng. Res. 2016, 7, 78–98. [Google Scholar]
- Wang, J.; Zhang, J.; Xiong, N.; Liang, B.; Wang, Z.; Cressey, E.L. Spatial and Temporal Variation, Simulation and Prediction of Land Use in Ecological Conservation Area of Western Beijing. Remote Sens. 2022, 14, 1452. [Google Scholar] [CrossRef]
- Weng, Q. Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. J. Environ. Manag. 2002, 64, 273–284. [Google Scholar] [CrossRef] [Green Version]
- MCVDD (Ministère du Cadre de Vie et du Développement Durable). Plan D’aménagement et de Gestion de la Réserve de Biosphère de la Basse Vallée de l’Ouémé (RB-BVO); MCVDD: Cotonou, Bénin, 2020; 144p. [Google Scholar]
- Chalifoux, S.; Nastev, M.; Lamontagne, C.; Latirovic, R.; Fernandes, R. Cartographie de l’occupation et de l’utilisation du sol par imagerie satellitaire Landsat en hydrogéologie. Télédétection 2006, 6, 9–17. [Google Scholar]
- Brun, L.E.; Djego, J.G.; Gibigaye, M.; Tente, B. Dynamique de l’occupation du sol dans les zones humides de la commune d’Allada au Sud-Bénin (Sites Ramsar 1017 Et 1018). Eur. Sci. J. 2018, 14, 59–77. [Google Scholar] [CrossRef]
- Jaziri, B. Analyse cartographique et paysagère des transformations spatiales du couvert forestier des Mogods (Tunisie septentrionale). Physio-Géo 2020, 15, 1–27. [Google Scholar] [CrossRef]
- Nababa, I.I.; Symeonakis, E.; Koukoulas, S.; Higginbottom, T.P.; Cavan, G.; Marsden, S. Land cover dynamics and mangrove degradation in the Niger Delta region. Remote Sens. 2020, 12, 3619. [Google Scholar] [CrossRef]
- Venter, Z.S.; Barton, D.N.; Chakraborty, T.; Simensen, T.; Singh, G. Global 10 m Land Use Land Cover Datasets: A Comparison of Dynamic World, World Cover and Esri Land Cover. Remote Sens. 2022, 14, 4101. [Google Scholar] [CrossRef]
- Uchegbulam, O.; Ameloko, A.A.; Omo-Irabor, O.O. Effect of cloud cover on land use land cover dynamics using remotely sensed data of western Niger Delta, Nigeria. J. Appl. Sci. Environ. Manag. 2021, 25, 799–804. [Google Scholar] [CrossRef]
- Adomou, A.C. Vegetation Patterns and Environmental Gradients in Benin. Implications for Biogeography and Conservation. Ph.D. Thesis, University of Wageningen, Wageningen, The Netherlands, 2005; p. 135, ISBN 90-8504-308-5. [Google Scholar]
- INSAE (Institut National de la Statistique et de L’Analyse Economique). Effectifs de la Population des Villages et Quartiers de Ville du Bénin; RGPH 4, Rapport d’étude; INSAE: Cotonou, Bénin, 2016; 88p. [Google Scholar]
- DFRN (Direction des Forêts et Ressources Naturelles). Présentation Des Résultats de L’inventaire Forestier National; MAPS-DFS-CENATEL: Cotonou, Bénin, 2007; 28p. [Google Scholar]
- Justice, C.O.; Townshend, J.R.G.; Holben, B.N.; Tucker, C.J. Analysis of the phenology of global vegetation using meteorological satellite data. Int. J. Remote Sens. 1985, 6, 1271–1318. [Google Scholar] [CrossRef]
- Simonetti, E.; Simonetti, D.; Preatoni, D. Phenology-Based Land Cover Classification Using Landsat 8-Time Series; Technical Reports; Scientific and Technical Research Series; Publications Office of the European Union: Luxembourg, 2014; 57p. [Google Scholar]
- Izadi, S.; Sohrabi, H. Using Bayesian Kriging and satellite images to estimate above-ground biomass of Zagros mountainous forests. In Forest Resources Resilience and Conflicts; Elsevier: Amsterdam, The Netherlands, 2021; pp. 193–201. [Google Scholar]
- Leboeuf, A.; Samson, M.P.; Paquet, A. Guide d’interprétation des mosaïques d’images satellite Landsat. In Ministère des Forêts, de la Faune et des Parcs Secteur des forêts; Rapport d’étude; Partenariat Données Québec: Québec, QC, Canada, 2015; 22p. [Google Scholar]
- Pontius, J.R.G.; Millones, M. Death to Kappa: Birth of Quantity Disagreement and Allocation Disagreement for Accuracy Assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Leta, M.K.; Demissie, T.A.; Tränckner, J. Modeling and prediction of land use land cover change dynamics based on Land Change Modeler (LCM) in Nashe Watershed, upper Blue Nile basin, Ethiopia. Sustainability 2021, 13, 3740. [Google Scholar] [CrossRef]
- Mas, J.F.; Perez-Vega, A.; Clarke, K.C. Assessing simulated land use/cover maps using similarity and fragmentation indices. Ecol. Complex 2012, 11, 38–45. [Google Scholar] [CrossRef]
- Gashaw, T.; Tulu, T.; Argaw, M.; Worqlul, A.W. Evaluation and prediction of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Environ. Syst. Res. 2017, 6, 17. [Google Scholar] [CrossRef] [Green Version]
- Maestripieri, N.; Paegelow, M. Validation spatiale de deux modèles de simulation: L’exemple des plantations industrielles au Chili. Cybergeo Eur. J. Geogr. 2022. [Google Scholar] [CrossRef]
- Mas, J.F.; Kolb, M.; Houet, T.; Paegelow, M.; Olmedo, M.T. Éclairer le choix des outils de simulation des changements des modes d’occupation et d’usages des sols. Une approche comparative. Rev. Int. De Géomatique 2011, 21, 405–430. [Google Scholar] [CrossRef]
- Badin, B.; Achimi, L.; Kodjia, L. Les Sols de la Vallée de l’Ouémé, Secteur Azohourissè et Bodjè; ORSTOM: Paris, France, 1955; 42p. [Google Scholar]
- Hasan, S.; Shi, W.; Zhu, X.; Abbas, S.; Khan, H.U.A. Future simulation of land use changes in rapidly urbanizing South China based on Land Change Modeler and Remote Sensing Data. Sustainability 2020, 12, 4350. [Google Scholar] [CrossRef]
- Mas, J.F.; Kolb, M.; Paegelow, M.; Olmedo, M.T.; Houet, T. Inductive pattern-based land use/cover change models: A comparison of four software packages. Environ. Model. Softw. 2014, 51, 94–111. [Google Scholar] [CrossRef] [Green Version]
- Pontius, R.G. Comparison of Categorical Maps. Photogramm. Eng. Remote Sens. 2000, 66, 1011–1016. [Google Scholar]
- Megahed, Y.; Cabral, P.; Silva, J.; Caetano, M. Land cover mapping analysis and urban growth modelling using remote sensing techniques in greater Cairo region. Int. J. Geo-Inf. 2015, 4, 1750–1769. [Google Scholar] [CrossRef] [Green Version]
- Mishra, V.N.; Rai, P.K. A remote sensing aided multi-layer perceptron-Markov chain analysis for land use and land cover change prediction in Patna district (Bihar). India Arab. J. Geosci. 2016, 9, 249. [Google Scholar] [CrossRef]
- Anand, V.; Oinam, B. Future land use land cover prediction with special emphasis on urbanization and wetlands. Remote Sens. Lett. 2020, 11, 225–234. [Google Scholar] [CrossRef]
- Václavík, T.; Rogan, J. Identifying trends in land use/land cover changes in the context of post-socialist transformation in central Europe: A case study of the greater Olomouc region Czech Republic. GISci. Remote Sens. 2009, 46, 54–76. [Google Scholar] [CrossRef] [Green Version]
- Sitthi, A.; Nagai, M.; Dailey, M.; Ninsawat, S. Exploring land use and land cover of geotagged social-sensing images using Naive Bayes Classifier. Sustainability 2016, 8, 921. [Google Scholar] [CrossRef] [Green Version]
- Barima, Y.S.S.; Assale, A.A.Y.; Vignal, M.; Andreieu, J.; Godron, M. Caractérisation post conflits armés des perturbations dans la forêt classée du Haut-Sassandra en Côte d’Ivoire. Afr. Sci. 2016, 12, 66–82. [Google Scholar]
- Mayaux, P.; Bartholome, E.; Massart, M.; Van Cutsem, C.; Nonguierma, A.C.; Diallo, O.; Pretorius, C.; Thompson, M.; Cherlet, M.; Pekel, J.-F.; et al. Carte de L’occupation du Sol de l’Afrique; Commission Européenne: Luxembourg, 2003; 54p. [Google Scholar]
- Desjardins, R.; Cavayas, F. Possibilités et limites des images satellites TM LANDSAT en matière d’occupation du sol: Le cas de Montréal (Québec). Cah. De Géographie Du Québec 1991, 35, 137–151. [Google Scholar] [CrossRef] [Green Version]
- Houeto, O.F.; Akpassonou, C.P.; Tete, R. Cartographie des Forêts Sacrées des Sites Ramsar 1017 et 1018 du Bénin. Rapport Avant-Projet d’étude pour la Restauration et de Gestion des Forêts Sacrées des Sites Ramsar 1017 et 1018 du Bénin; Rapport d’étude; ITTO: Cotonou, Bénin, 2013; 81p. [Google Scholar]
- Diedhiou, I.; Catherine, M.; Oumar, S.; Tidiane, S. Cartographier par télédétection l’occupation du sol et ses changements. EchoGéo 2020, 54. [Google Scholar] [CrossRef]
- Adade, R.; Nyarko, B.K.; Aheto, D.W.; Osei, K.N. Fragmentation of wetlands in the south eastern coastal savanna of Ghana. Reg. Stud. Mar. Sci. 2017, 12, 40–48. [Google Scholar] [CrossRef]
- Assoma, V.T.; Yao, N.A.; Dio, J.S.; Jourda, J.P. Apport de la télédétection et d’un SIG à la cartographie des changements de l'occupation du sol dans le bassin versant de la Lobo en Côte d'Ivoire. Physio-Géo 2021, 16, 107–126. [Google Scholar] [CrossRef]
- Abdus, S.; Xiangzheng, D.; Siqi, J.; Dongdong, C. Scenario-Based Simulation on Dynamics of Land-Use-Land-Cover Change in Punjab Province, Pakistan. Sustainability 2017, 9, 1285. [Google Scholar]
- Ayanlade, A.; Proske, U. Assessing wetland degradation and loss of ecosystem services in the Niger Delta, Nigeria. Mar. Freshw. Res. 2016, 67, 828–836. [Google Scholar] [CrossRef]
- Mamane, B.; Amdou, G.; Barrage, M.; Comby, J.; Ambouta, J.M.K. Dynamique spatio-temporelle d’occupation du dans la Réserve Totale de Faune de Tamou dans un contexte de la variabilité climatique (Ouest du Niger). Int. J. Biol. Chem. Sci. 2018, 12, 1667–1687. [Google Scholar] [CrossRef]
- Agbanou, T.; Paegelow, M.; Toko, T.; Tente, B. Modélisation des changements d’occupation des terres en Région soudanienne au Nord-Ouest du Benin. Eur. Sci. J. 2018, 4, 248–266. [Google Scholar]
- Chikou, A. Etude de la Démographie et de L’exploitation Halieutique de Six Espèces de Poissons-Chats (Teleostei, Siluriformes) dans le Delta de l’Ouémé au Bénin. Ph.D. Thesis, Université de Liège, Liège, Belgium, 2006; 459p. [Google Scholar]
- Langan, C.; Farmer, J.; Rivington, M.; Smith, J.U. Tropical wetland ecosystem services assessments in East Africa: A review of approaches and challenges. Environ. Model. Softw. 2018, 102, 260–273. [Google Scholar] [CrossRef]
- Dar, S.; Bhat, S.; Rashid, I.; Dar, S.A. Current Status of Wetlands in Srinagar City: Threats, Management Strategies, and Future Perspectives. Front. Environ. Sci. 2020, 7, 199. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Pguo, P.; Jin, M.; Qi, J. Multi-scenario landscape ecological risk assessment based on Markov–FLUS composite model. Geomat. Nat. Hazards Risk 2021, 12, 1448–1465. [Google Scholar] [CrossRef]
- Mo, W.; Wang, Y.; Zhang, Y.; Zhuang, D. Impacts of road network expansion on landscape ecological risk in a megacity, China: A case study of Beijing. Sci. Total Environ. 2017, 574, 1000–1011. [Google Scholar] [CrossRef] [Green Version]
- Farooq, A.; Xie, M.; Stoilova, S.; Ahmad, F.; Guo, M.; Williams, E.J.; Gahlot, V.K.; Yan, D.; Issa, A.M. Transportation planning through GIS and multicriteria analysis: Case study of Beijing and XiongAn. J. Adv. Transp. 2018, 2018, 2696037. [Google Scholar] [CrossRef] [Green Version]
- Abino, A.C.; Kim, S.Y.; Na Jang, M.; Lee, Y.J.; Chung, J.S. Assessing land use and land cover of the Marikina sub-watershed, Philippines. For. Sci. Technol. 2014, 11, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Dixon, A.; Wood, A.; Hailu, A. Wetlands in Ethiopia: Lessons from 20 years of Research, Policy and Practice. Wetlands 2021, 41, 20. [Google Scholar] [CrossRef]
- Munishi, S.; Jewitt, G. Degradation of Kilombero Valley Ramsar wetlands in Tanzania. Phys. Chem. Earth 2019, 112, 216–227. [Google Scholar] [CrossRef]
- Ilboudo, A.; Soulama, S.; Hien, E.; Zombre, P. Perceptions paysannes de la dégradation des ressources naturelles des bas-fonds en zone soudano-sahélienne: Cas du sous bassin versant du Nakanbé-Dem au Burkina Faso. Int. J. Biol. Chem. Sci. 2020, 14, 883–895. [Google Scholar] [CrossRef]
- Vodouhè, F.G.; Dossou-Yovo, H.O.; Chadaré, F.J.; Gélinas, N.; Assogbadjo, A.E.; Coulibaly, O. Valuing the potential of no-timber forest products in financial valuation of savannah formation in soudanian region. Univers. J. Agric. Res. 2016, 4, 183–197. [Google Scholar] [CrossRef]
- Xu, D.; Yang, F.; Yu, L.; Zhou, Y.; Li, H.; Ma, J.; Huang, J.; Wei, J.; Xu, Y.; Zhang, C.; et al. Quantization of the coupling mechanism between eco-environmental quality and urbanization from multisource remote sensing data. J. Clean. Prod. 2021, 321, 128948. [Google Scholar] [CrossRef]
Parameters | 1990 | 2005 | 2020 |
---|---|---|---|
Kappa Index | 0.84 | 0.86 | 0.86 |
Overall accuracy (%) | 88.95 | 89.82 | 90.17 |
Decision | Ideal | Ideal | Ideal |
1990–2020 | AG | FF | W | DF | GF | SF | SS | Total (2020) |
---|---|---|---|---|---|---|---|---|
AG | 0.19 | 0.07 | 0.01 | 0.09 | 0.01 | 0.13 | 0.01 | 0.53 |
FF | 0.02 | 1.61 | 0.10 | 1.19 | 0.02 | 0.89 | 049 | 4.33 |
W | 0.18 | 0.16 | 21.19 | 0.47 | 0.02 | 1.47 | 0.06 | 23.56 |
DF | 0.12 | 7.43 | 0.66 | 12.40 | 0.35 | 9.64 | 2.54 | 33.14 |
GF | 0.01 | 0.36 | 0.22 | 0.22 | 0.09 | 0.16 | 0.04 | 1.09 |
SF | 0.52 | 8.43 | 0.94 | 8.99 | 0.13 | 7.14 | 2.30 | 28.46 |
SS | 0.06 | 2.42 | 016 | 2.93 | 0.03 | 1.70 | 1.60 | 8.90 |
Total (1990) | 1.09 | 20.48 | 23.29 | 26.29 | 0.66 | 21.14 | 7.05 | 100.00 |
1990–2005 | AG | FF | W | DF | GF | SF | SS | Total (2005) |
---|---|---|---|---|---|---|---|---|
AG | 0.47 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.53 |
FF | 0.00 | 3.78 | 0.00 | 0.00 | 0.05 | 0.08 | 0.42 | 4.33 |
W | 0.00 | 0.02 | 23.45 | 0.00 | 0.02 | 0.08 | 0.00 | 23.57 |
DF | 0.00 | 3.69 | 0.10 | 25.34 | 0.08 | 3.90 | 0.04 | 33.15 |
GF | 0.01 | 0.10 | 0.02 | 0.01 | 0.41 | 0.47 | 0.06 | 1.09 |
SF | 0.07 | 4.13 | 0.39 | 3.06 | 0.05 | 19.52 | 1.20 | 28.42 |
SS | 0.14 | 0.14 | 0.00 | 1.09 | 0.07 | 1.32 | 6.15 | 8.91 |
Total (1990) | 0.69 | 11.85 | 23.96 | 29.50 | 0.69 | 25.44 | 7.87 | 100.00 |
2005–2020 | AG | FF | W | DF | GF | SF | SS | Total (2020) |
---|---|---|---|---|---|---|---|---|
AG | 0.22 | 0.10 | 0.01 | 0.10 | 0.02 | 0.22 | 0.02 | 0.69 |
FF | 0.11 | 3.80 | 0.28 | 3.97 | 0.06 | 2.42 | 1.21 | 11.85 |
W | 0.20 | 0.22 | 21.36 | 0.64 | 0.02 | 1.47 | 0.05 | 23.96 |
DF | 0.06 | 6.39 | 0.19 | 11.44 | 0.24 | 9.09 | 2.10 | 29.50 |
GF | 0.01 | 0.14 | 0.13 | 0.15 | 0.08 | 0.14 | 0.03 | 0.69 |
SF | 0.43 | 7.27 | 1.15 | 8.11 | 0.22 | 6.61 | 1.65 | 25.44 |
SS | 0.07 | 2.54 | 0.18 | 1.89 | 0.01 | 1.20 | 1.99 | 7.87 |
Total (2005) | 1.09 | 20.46 | 23.30 | 26.29 | 0.66 | 21.14 | 7.05 | 100.00 |
Types of Land Cover | 1990 | 2005 | 2020 | |||
---|---|---|---|---|---|---|
Number of | Average | Number of | Average | Number of | Average | |
Polygons | Area (ha) | Polygons | Area (ha) | Polygons | Area (ha) | |
AG | 196 | 2.74 | 251 | 2.82 | 134 | 8.53 |
FF | 540 | 8.14 | 1112 | 10.93 | 2338 | 8.95 |
W | 245 | 98.65 | 237 | 103.56 | 137 | 173.57 |
DF | 532 | 63.47 | 113 | 265.68 | 1417 | 18.87 |
GF | 123 | 9.07 | 165 | 4.26 | 140 | 4.88 |
SF | 1661 | 17.63 | 1664 | 15.78 | 2904 | 7.52 |
SS | 496 | 18.17 | 326 | 24.20 | 939 | 7.63 |
Type of Land Cover | Classified Area 2020 | Simulated Area 2020 | Difference (%) | ||
---|---|---|---|---|---|
ha | % | ha | % | ||
AG | 1143.42 | 1.12 | 712.09 | 0.70 | 0.42 |
FF | 20,923.70 | 20.45 | 17,691.90 | 17.30 | 3.16 |
W | 23,777.00 | 23.24 | 24,677.50 | 24.13 | −0.89 |
DF | 26,748.10 | 26.15 | 27,377.40 | 26.77 | −0.62 |
GF | 684.44 | 0.67 | 651.95 | 0.64 | 0.03 |
SF | 21,851.50 | 21.36 | 23,230.60 | 22.71 | −1.35 |
SS | 7172.67 | 7.01 | 7959.39 | 7.78 | −0.77 |
Land Cover | AG | FF | W | DF | GF | SF | SS |
---|---|---|---|---|---|---|---|
AG | 0.31 | 0.12 | 0.02 | 0.13 | 0.02 | 0.32 | 0.05 |
FF | 0.00 | 0.31 | 0.02 | 0.33 | 0.00 | 0.19 | 0.10 |
W | 0.00 | 0.00 | 0.89 | 0.02 | 0.00 | 0.06 | 0.00 |
DF | 0.00 | 0.21 | 0.00 | 0.38 | 0.00 | 0.30 | 0.07 |
GF | 0.00 | 0.20 | 0.19 | 0.23 | 0.12 | 0.19 | 0.04 |
SF | 0.01 | 0.28 | 0.04 | 0.32 | 0.00 | 0.25 | 0.06 |
SS | 0.00 | 0.32 | 0.02 | 0.23 | 0.00 | 0.15 | 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osseni, A.A.; Dossou-Yovo, H.O.; Gbesso, G.H.F.; Lougbegnon, T.O.; Sinsin, B. Spatial Dynamics and Predictive Analysis of Vegetation Cover in the Ouémé River Delta in Benin (West Africa). Remote Sens. 2022, 14, 6165. https://doi.org/10.3390/rs14236165
Osseni AA, Dossou-Yovo HO, Gbesso GHF, Lougbegnon TO, Sinsin B. Spatial Dynamics and Predictive Analysis of Vegetation Cover in the Ouémé River Delta in Benin (West Africa). Remote Sensing. 2022; 14(23):6165. https://doi.org/10.3390/rs14236165
Chicago/Turabian StyleOsseni, Abdel Aziz, Hubert Olivier Dossou-Yovo, Gbodja Houéhanou François Gbesso, Toussaint Olou Lougbegnon, and Brice Sinsin. 2022. "Spatial Dynamics and Predictive Analysis of Vegetation Cover in the Ouémé River Delta in Benin (West Africa)" Remote Sensing 14, no. 23: 6165. https://doi.org/10.3390/rs14236165
APA StyleOsseni, A. A., Dossou-Yovo, H. O., Gbesso, G. H. F., Lougbegnon, T. O., & Sinsin, B. (2022). Spatial Dynamics and Predictive Analysis of Vegetation Cover in the Ouémé River Delta in Benin (West Africa). Remote Sensing, 14(23), 6165. https://doi.org/10.3390/rs14236165