Monitoring Asbestos Mine Remediation Using Airborne Hyperspectral Imaging System: A Case Study of Jefferson Lake Mine, US
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Geology
2.1.2. Mine Cleanup Activity of the Study Area
2.2. AVIRIS Data
2.3. Multi-Range Spectral Feature Fitting (MRSFF)
2.4. Band Selection and Model Development
3. Results and Discussion
3.1. Spectral Characteristics of AAM and Remediation Area
3.2. Binary Logistic Regression Models
3.2.1. Classification Models
3.2.2. Spatial Assessments of the Remediation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Band NO. | Wavelength (nm) | β | S.E. | Wald | Df | p-Value |
---|---|---|---|---|---|---|
B5 | 405 | −314.451 | 139.724 | 5.065 | 1 | 0.024 |
B17 | 521 | −257.223 | 61.485 | 17.502 | 1 | 0.000 |
B96 | 1263 | 112.147 | 27.289 | 16.889 | 1 | 0.000 |
Constant | - | 19.694 | 4.823 | 16.671 | 1 | 0.000 |
Dataset | Class | Producer’s Accuracy (%) | User’s Accuracy (%) | Commission Error (%) | Omission Error (%) |
---|---|---|---|---|---|
Validation-set | Other | 100.00 | 100.00 | 0.00 | 0.00 |
Overall accuracy: 100.00% (2604/2604 pixels) | |||||
Test-set | Other | 99.98 | 100.00 | 0.00 | 0.02 |
Overall accuracy: 99.98% (4339/4340 pixels) |
References
- Spurny, K. On the release of asbestos fibers from weathered and corroded asbestos cement products. Environ. Res. 1989, 48, 100–116. [Google Scholar] [CrossRef]
- Swayze, G.A.; Higgins, C.T.; Clinkenbeard, J.P.; Kokaly, R.F.; Clark, R.N.; Meeker, G.P.; Sutley, S.J. Preliminary Report on Using Imaging Spectroscopy to Map Ultramafic Rocks, Serpentinites, and Tremolite-Actinolite-Bearing Rocks in California; U.S. Geological Survey: Denver, CO, USA, 2004. [Google Scholar]
- Suzuki, Y.; Yuen, S.R.; Ashley, R. Short, thin asbestos fibers contribute to the development of human malignant mesothelioma: Pathological evidence. Int. J. Hyg. Environ. Health 2005, 208, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Pascucci, S.; Bassani, C.; Cavalli, R.; Fusilli, L.; Palombo, A.; Pignatti, S.; Santini, F. Hyperspectral remote sensing capability for mapping near-surface asbestos deposits and pollutants dispersion in soils. In Proceedings of the Hyperspectral 2010 Workshop, Frascati, Italy, 7–19 March 2010; pp. 17–19. [Google Scholar]
- Fiumi, L.; Congedo, L.; Meoni, C. Developing expeditious methodology for mapping asbestos-cement roof coverings over the territory of Lazio Region. Appl. Geomat. 2014, 6, 37–48. [Google Scholar] [CrossRef]
- EPA. Abandoned Mine Site Characterization and Cleanup Handbook; U.S. Environmental Protection Agency: Seattle, WA, USA, 2000. [Google Scholar]
- Jeong, Y.; Yu, J.; Wang, L.; Lee, K.-J. Bulk scanning method of a heavy metal concentration in tailings of a gold mine using SWIR hyperspectral imaging system. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102382. [Google Scholar] [CrossRef]
- Lim, J.; Yu, J.; Wang, L.; Jeong, Y.; Shin, J.H. Heavy Metal Contamination Index Using Spectral Variables for White Precipitates Induced by Acid Mine Drainage: A Case Study of Soro Creek, South Korea. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4870–4888. [Google Scholar] [CrossRef]
- Huynh, H.H.; Yu, J.; Wang, L.; Kim, N.H.; Lee, B.H.; Koh, S.-M.; Cho, S.; Pham, T.H. Integrative 3D Geological Modeling Derived from SWIR Hyperspectral Imaging Techniques and UAV-Based 3D Model for Carbonate Rocks. Remote Sens. 2021, 13, 3037. [Google Scholar] [CrossRef]
- Chung, B.; Yu, J.; Wang, L.; Kim, N.H.; Lee, B.H.; Koh, S.; Lee, S. Detection of magnesite and associated gangue minerals using hyperspectral remote sensing—A laboratory approach. Remote Sens. 2020, 12, 1325. [Google Scholar] [CrossRef] [Green Version]
- Bassani, C.; Cavalli, R.M.; Cavalcante, F.; Cuomo, V.; Palombo, A.; Pascucci, S.; Pignatti, S. Deterioration status of asbestos-cement roofing sheets assessed by analyzing hyperspectral data. Remote Sens. Environ. 2007, 109, 361–378. [Google Scholar] [CrossRef]
- Fiumi, L.; Campopiano, A.; Casciardi, S.; Ramires, D. Method validation for the identification of asbestos–cement roofing. Appl. Geomat. 2012, 4, 55–64. [Google Scholar] [CrossRef]
- Frassy, F.; Candiani, G.; Rusmini, M.; Maianti, P.; Marchesi, A.; Nodari, F.R.; Via, G.D.; Albonico, C.; Gianinetto, M. Mapping asbestos-cement roofing with hyperspectral remote sensing over a large mountain region of the Italian Western Alps. Sensors 2014, 14, 15900–15913. [Google Scholar] [CrossRef]
- Krówczyńska, M.; Raczko, E.; Staniszewska, N.; Wilk, E. Asbestos—Cement roofing identification using remote sensing and convolutional neural networks (CNNs). Remote Sens. 2020, 12, 408. [Google Scholar] [CrossRef] [Green Version]
- Raczko, E.; Krówczyńska, M.; Wilk, E. Asbestos roofing recognition by use of convolutional neural networks and high-resolution aerial imagery. Testing different scenarios. Build. Environ. 2022, 217, 109092. [Google Scholar] [CrossRef]
- Swayze, G.A.; Kokaly, R.F.; Higgins, C.T.; Clinkenbeard, J.P.; Clark, R.N.; Lowers, H.A.; Sutley, S. Mapping potentially asbestos-bearing rocks using imaging spectroscopy. Geology 2009, 37, 763–766. [Google Scholar] [CrossRef] [Green Version]
- Livo, K.E.; Clark, R.N. The Tetracorder User Guide: Version 4.4; US Geological Survey Open-File; U.S. Geological Survey: Reston, VA, USA, 2014; p. 52. [Google Scholar]
- Clark, R.N.; Swayze, G.A.; Livo, K.E.; Kokaly, R.F.; Sutley, S.J.; Dalton, J.B.; McDougal, R.R.; Gent, C.A. Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems. J. Geophys. Res. Planets 2003, 108, 5131. [Google Scholar] [CrossRef]
- Van Gosen, B.S.; Clinkenbeard, J.P. Reported Historic Asbestos Mines, Historic Asbestos Prospects, and Other Natural Occurrences of Asbestos in California; US Geological Survey: Reston, VA, USA, 2011. [Google Scholar]
- Van Gosen, B.S. The geology of asbestos in the United States and its practical applications. Environ. Eng. Geosci. 2007, 13, 55–68. [Google Scholar] [CrossRef]
- Stoeser, D.B.; Green, G.N.; Morath, L.C.; Heran, W.D.; Wilson, A.B.; Moore, D.W.; Gosen, B. Preliminary Integrated Geologic Map Databases for the United States; Open-File Report (2005-1351); US Geological Survey: Denver, CO, USA, 2005. [Google Scholar]
- Perez, S.E. Hydrothermal Fluxes in the Mantle Lithosphere: An Experimental Study of the Serpentinization Process; Université Montpellier: Montpellier, France, 2018. [Google Scholar]
- Bailey, R.M. Overview of Naturally Occurring Asbestos in California and Southwestern Nevada. Environ. Eng. Geosci. 2020, 26, 9–14. [Google Scholar] [CrossRef]
- Gao, B.-C.; Heidebrecht, K.B.; Goetz, A.F. Derivation of scaled surface reflectances from AVIRIS data. Remote Sens. Environ. 1993, 44, 165–178. [Google Scholar] [CrossRef]
- Green, R.; Landeen, S.; McCubbin, I.; Thompson, D.; Bue, B. Airborne Visible/Infrared Imaging Spectrometer Next Generation (AVIRIS-NG), 1st ed.; JPL, California Institute of Technology: Pasadena, CA, USA, 2017. [Google Scholar]
- Green, R.O.; Eastwood, M.L.; Sarture, C.M.; Chrien, T.G.; Aronsson, M.; Chippendale, B.J.; Faust, J.A.; Pavri, B.E.; Chovit, C.J.; Solis, M. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens. Environ. 1998, 65, 227–248. [Google Scholar] [CrossRef]
- Mével, C. Serpentinization of abyssal peridotites at mid-ocean ridges. Comptes Rendus Geosci. 2003, 335, 825–852. [Google Scholar] [CrossRef]
- Kokaly, R.; Clark, R.; Swayze, G.; Livo, K.; Hoefen, T.; Pearson, N.; Wise, R.; Benzel, W.; Lowers, H.; Driscoll, R. USGS Spectral Library Version 7: U.S. Geological Survey Data Series 1035; US Geological Survey: Reston, VA, USA, 2017; 61p. [Google Scholar] [CrossRef] [Green Version]
- Pan, Z.; Huang, J.; Wang, F. Multi range spectral feature fitting for hyperspectral imagery in extracting oilseed rape planting area. Int. J. Appl. Earth Obs. Geoinf. 2013, 25, 21–29. [Google Scholar] [CrossRef]
- Jeong, Y.; Yu, J.; Koh, S.-M.; Heo, C.-H.; Lee, J. Spectral characteristics of minerals associated with skarn deposits: A case study of Weondong skarn deposit, South Korea. Geosci. J. 2016, 20, 167–182. [Google Scholar] [CrossRef]
- Clark, R.N. Chapter 1: Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy; Remote Sensing for the Earth Sciences; John Wiley and Sons: New York, NY, USA, 1999; Volume 3, pp. 3–58. [Google Scholar]
- Pontual, S.; Gamson, P.; Merry, N. Spectral Interpretation Field Manual: Spectral Analysis Guides for Mineral Exploration, G-Mex Version 3.0; Ausspec International Propriety Limited: Victoria, Australia, 2012; Volume 1. [Google Scholar]
- Hauff, P. An Overview of VIS-NIR-SWIR Field Spectroscopy as Applied to Precious Metals Exploration; Spectral International Inc.: Arvada, CO, USA, 2008; Volume 80001, pp. 303–403. [Google Scholar]
- Archer, K.J.; Kimes, R.V. Empirical characterization of random forest variable importance measures. Comput. Stat. Data Anal. 2008, 52, 2249–2260. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.; Chica-Olmo, M.; Abarca-Hernandez, F.; Atkinson, P.M.; Jeganathan, C. Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sens. Environ. 2012, 121, 93–107. [Google Scholar] [CrossRef]
- Lawrence, R.L.; Wood, S.D.; Sheley, R.L. Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest). Remote Sens. Environ. 2006, 100, 356–362. [Google Scholar] [CrossRef]
- Mellor, A.; Haywood, A.; Stone, C.; Jones, S. The performance of random forests in an operational setting for large area sclerophyll forest classification. Remote Sens. 2013, 5, 2838–2856. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Zhang, P.; Wei, H.; Liu, A.; You, S.; Sun, D. Improved mapping and understanding of desert vegetation-habitat complexes from intraannual series of spectral endmember space using cross-wavelet transform and logistic regression. Remote Sens. Environ. 2020, 236, 111516. [Google Scholar] [CrossRef]
- Menard, S. Coefficients of determination for multiple logistic regression analysis. Am. Stat. 2000, 54, 17–24. [Google Scholar] [CrossRef]
- Zizi, Y.; Oudgou, M.; El Moudden, A. Determinants and predictors of SMEs’ financial failure: A logistic regression approach. Risks 2020, 8, 107. [Google Scholar] [CrossRef]
- Nagelkerke, N.J. A note on a general definition of the coefficient of determination. Biometrika 1991, 78, 691–692. [Google Scholar] [CrossRef]
- Miceli, R. A Coefficient of Determination for Logistic Regression Models. Test. Psychom. Methodol. Appl. Psychol. 2007, 14, 83–98. [Google Scholar]
- Mokhtari, A.R. Hydrothermal alteration mapping through multivariate logistic regression analysis of lithogeochemical data. J. Geochem. Explor. 2014, 145, 207–212. [Google Scholar] [CrossRef]
- Pohl, D.; Guillemette, R.; Shigley, J.; Dunning, G. Ferroaxinite from new Melones Lake, Calaveras County, California, a remarkable new locality. Mineral. Rec. 1982, 13, 293–302. [Google Scholar]
Product ID (Acquisition Date) | Spectral Resolution | Number of Bands | Wavelength (nm) | GSD (m) | Scanning Type | Nominal Altitude (km) | Swath (km) |
---|---|---|---|---|---|---|---|
f140602t01p00r07 (2 June 2014) | ~10 nm | 224 | 366 to 2495 | 14.5 | Whisk broom | 20 | 11 |
f180621t01p00r05 (21 June 2018) | 14.4 |
Band NO. | Wavelength (nm) | β | S.E. | Wald | Df | p-Value |
---|---|---|---|---|---|---|
B5 | 405 | 373.559 | 58.167 | 41.244 | 1 | 0.000 |
B10 | 453 | −716.856 | 187.971 | 14.544 | 1 | 0.000 |
B12 | 473 | −1230.725 | 235.065 | 27.412 | 1 | 0.000 |
B16 | 511 | 1691.958 | 171.184 | 97.691 | 1 | 0.000 |
B19 | 541 | −184.665 | 61.111 | 9.131 | 1 | 0.003 |
B134 | 1622 | 561.510 | 152.744 | 13.514 | 1 | 0.000 |
B138 | 1662 | −668.925 | 150.974 | 19.631 | 1 | 0.000 |
B139 | 1671 | −572.095 | 170.551 | 11.252 | 1 | 0.001 |
B143 | 1711 | 665.147 | 99.788 | 44.430 | 1 | 0.000 |
Constant | - | 4.547 | 1.036 | 19.247 | 1 | 0.000 |
Band NO. | Wavelength (nm) | β | S.E. | Wald | Df | p-Value |
---|---|---|---|---|---|---|
B5 | 405 | −134.266 | 29.586 | 20.595 | 1 | 0.000 |
B19 | 541 | 100.338 | 23.719 | 17.896 | 1 | 0.000 |
B81 | 1120 | 316.375 | 60.251 | 27.573 | 1 | 0.000 |
B96 | 1262 | −525.518 | 63.409 | 68.686 | 1 | 0.000 |
B138 | 1661 | −647.859 | 76.692 | 71.362 | 1 | 0.000 |
B145 | 1731 | 437.208 | 130.221 | 11.272 | 1 | 0.001 |
B147 | 1751 | 409.582 | 138.745 | 8.715 | 1 | 0.003 |
Constant | - | −3.432 | 0.571 | 36.156 | 1 | 0.000 |
Band NO. | Wavelength (nm) | β | S.E. | Wald | Df | p-Value |
---|---|---|---|---|---|---|
B6 | 414 | −899.369 | 204.914 | 19.263 | 1 | 0.000 |
B8 | 434 | 1284.501 | 267.707 | 23.022 | 1 | 0.000 |
B13 | 482 | 855.106 | 200.755 | 18.143 | 1 | 0.000 |
B19 | 541 | −1088.831 | 132.396 | 67.635 | 1 | 0.000 |
Constant | - | −17.949 | 1.468 | 149.396 | 1 | 0.000 |
Class | Pseudo-R2 | Hosmer and Lemeshow Test | |||
---|---|---|---|---|---|
Cox and Snell (CS) | Nagelkerke (N) | χ2 | Df | p-Value | |
NOAI | 0.235 | 0.819 | 1.709 | 8 | 0.989 |
HRI | 0.124 | 0.656 | 3.690 | 8 | 0.884 |
CAP | 0.370 | 0.947 | 0.742 | 8 | 0.999 |
Dataset | Class | Producer’s Accuracy (%) | User’s Accuracy (%) | Commission Error (%) | Omission Error (%) |
---|---|---|---|---|---|
Validation-set | NOAI | 89.26 | 78.26 | 21.74 | 10.74 |
HRI | 31.82 | 84.00 | 16.00 | 68.18 | |
CAP | 98.03 | 94.76 | 5.24 | 1.97 | |
Overall accuracy: 84.10% (328/390 pixels) Kappa coefficient: 0.74 | |||||
Test-set | NOAI | 85.57 | 80.00 | 20.00 | 14.43 |
HRI | 43.12 | 78.33 | 21.67 | 56.88 | |
CAP | 97.04 | 96.19 | 3.81 | 2.96 | |
Overall accuracy: 84.41% (547/648 pixels) Kappa coefficient: 0.74 |
Dataset | Class | Producer’s Accuracy (%) | User’s Accuracy (%) | Commission Error (%) | Omission Error (%) |
---|---|---|---|---|---|
Validation-set | NOAI | 91.74 | 96.52 | 3.48 | 8.26 |
CAP | 98.03 | 100.00 | 0.00 | 1.97 | |
Overall accuracy: 95.68% (310/324) Kappa coefficient: 0.91 | |||||
Test-set | NOAI | 90.55 | 95.79 | 4.21 | 9.45 |
CAP | 97.04 | 100.00 | 0.00 | 2.96 | |
Overall accuracy: 94.62% (510/539 pixels) Kappa coefficient: 0.89 |
Class | 2018 | 2014 | ||||||
---|---|---|---|---|---|---|---|---|
Model Classification | Mining Area Only | Model Classification | Mining Area Only | |||||
Number of Pixels | Extent (km2) | Number of Pixels | Extent (km2) | Number of Pixels | Extent (km2) | Number of Pixels | Extent (km2) | |
NOAI | 4603 | 0.96 | 4198 | 0.87 | 6395 | 1.33 | 6131 | 1.27 |
HRI | 700 | 0.15 | 511 | 0.11 | 367 | 0.08 | 174 | 0.04 |
CAP | 2301 | 0.48 | 2273 | 0.47 | 1 | 0.00 | 1 | 0.00 |
Total | 7604 | 1.59 | 6982 | 1.45 | 6763 | 1.41 | 6306 | 1.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, Y.; Yu, J.; Wang, L.; Huynh, H.H.; Kim, H.-C. Monitoring Asbestos Mine Remediation Using Airborne Hyperspectral Imaging System: A Case Study of Jefferson Lake Mine, US. Remote Sens. 2022, 14, 5572. https://doi.org/10.3390/rs14215572
Jeong Y, Yu J, Wang L, Huynh HH, Kim H-C. Monitoring Asbestos Mine Remediation Using Airborne Hyperspectral Imaging System: A Case Study of Jefferson Lake Mine, US. Remote Sensing. 2022; 14(21):5572. https://doi.org/10.3390/rs14215572
Chicago/Turabian StyleJeong, Yongsik, Jaehyung Yu, Lei Wang, Huy Hoa Huynh, and Hyun-Cheol Kim. 2022. "Monitoring Asbestos Mine Remediation Using Airborne Hyperspectral Imaging System: A Case Study of Jefferson Lake Mine, US" Remote Sensing 14, no. 21: 5572. https://doi.org/10.3390/rs14215572
APA StyleJeong, Y., Yu, J., Wang, L., Huynh, H. H., & Kim, H. -C. (2022). Monitoring Asbestos Mine Remediation Using Airborne Hyperspectral Imaging System: A Case Study of Jefferson Lake Mine, US. Remote Sensing, 14(21), 5572. https://doi.org/10.3390/rs14215572