Review of GPR Activities in Civil Infrastructures: Data Analysis and Applications
Abstract
:1. Introduction
2. GPR Data Processing in Civil Infrastructure
2.1. A-Scan Processing
2.2. Target Identification from B-Scan Image
2.2.1. Image-Based Interpretation Methods
- Threshold segmentation is the most common method. It can enhance image features and shape pattern features, and eliminate most of the background interference in GPR images, which can be reflected in [35]. Based on this, the amount of calculation for subsequent processing can be greatly reduced.
- Recently, cluster algorithms are operated in GPR image to classify points into different point clusters. The authors [13] proposed a column connection clustering (C3), which scanned the binary map in columns to extract coordinate point sets for clustering and split the GPR images into several parts. Intuitively, the hyperbola in the GPR image has a downward opening, which is a key feature for identifying hyperbola. However, the above C3 algorithm does not consider this important feature. The work [14] developed the open-scan clustering algorithm (OSCA), which makes use of the downward opening feature to make up for the deficiencies of the C3 algorithm. OSCA scans pre-processed binary images line by line, not only using pixel connections, but also clustering through opening information. However, many complex situations are not considered by the OSCA and certain non-target clustering may not be eliminated. Then, the DCSE algorithm was proposed in [15] to solve the above three situations, which collects the downward openings by implementing rule-based searching strategies. The first-round searches for all openings and sets thresholds to eliminate irregular areas. Based on this, the openings are re-searched and marked in the second round. The image-based interpretation method is more flexible and can adjust the corresponding sequence of steps or add restrictions according to different application scenarios. It can assist the target area positioning method and can adapt to various application scenarios.
2.2.2. Machine Learning-Based Techniques
2.2.3. Deep Learning-Based Techniques
2.3. C-Scan Processing
3. GPR Applications in Civil Infrastructure: State of the Art
3.1. Bridge Application
3.1.1. Application in Condition Evaluation
3.1.2. Application in Mapping Rebar
References | Study Scope | GPR Types | Center Frequency | Field Data Source |
---|---|---|---|---|
Dinh et al. (2015) [28] | Deterioration progression | GSSI ground-coupled radar | 1.5 GHZ | Two data collected in 2008 and 2013 from a bridge deck in New Jersey, U.S. (built in 1978) |
Rhee et al. (2019) [60] | Deteriorated depth | GSSI air-coupled radar | 1 GHZ | ‘J’ bridge in Korea (built in 1998) |
Kaur et al. (2015) [12] | Rebar detection and localization; deterioration map generation | GSSI SIR-20 | \ | \ |
Dinh et al. (2019) [63] | Produce an amplitude map to present location of rebar and corrosive area | GSSI | 1.5 GHZ | Four data sets collected in: (1) July 2013 from the Elkton Bridge in the U.S. (built in 1973); (2) August 2013 from Pequea Bridge in the U.S. (built in 1970); (3) 2014 from Bridge X in Canada (built in 1966); (4) Bridge Y in Canada |
Okazaki et al. (2020) [68] | Crack formation and propagation | \ | \ | The data collected from 2005 to 2015 from 1688 bridges in Japan |
Jazayeri et al. (2019) [75] | Rebar diameter estimation; concrete permittivity and conductivity estimation | GSSI ground-coupled GPR system | 1, 2.6 GHZ | \ |
Wang et al. (2020) [38] | Rebar detection | ProEx RAMAC | 500, 800, 1000, 1600 MHZ | The data collected from Ci Er mountain expressway tunnel in Hebei, China |
Asadi et al. (2020) [42] | Rebar detection | GSSI | \ | The authors published an open-source GPR dataset collected from bridge deck (https://github.com/PouriaAI/GPR-Detection, accessed on 20 December 2021). |
3.2. Road Pavement Assessment
3.2.1. Distress Detection
References | Study Scope | GPR Types | Center Frequency | Field Data Source |
---|---|---|---|---|
Rasol et al. (2020) [78] | Cracks detection; pavement assessment | \ | 1.6 GHZ | \ |
Fernandes et al. (2017) [79] | Pavement cracks detection | Ground-coupled GPR system | 1.6 GHZ | \ |
Yi et al. (2018) [80] | Airport pavement inspection; damage detection | YAKUMO array GPR System [86] | 1.5 GHZ | The data sets acquired at an examined airport taxiway. |
Li et al. (2016) [81] | Pothol detection | GPR (MALÅ, Sweden) | 800 MHz | \ |
Lagüela et al. (2018) [82] | Damage detection in paving | MALÅ RAMAC system | 500, 800 MHZ | The data sets collected from an esplanade area. |
Tong et al. (2018) [83] | Subgrade defects classification; highway assessment | Air-coupled GPR called OKO GPR | 300, 500, 900 MHZ | \ |
Tong et al. (2020) [84] | Pavement distress detection | OKO-2 GPR system | 300, 600, 900 MHz | The data sets collected from four highways in Heilongjiang with an overall length of 27,820 m. |
Gao et al. (2020) [85] | Pavement distress detection | LTD-2000 air-coupled GPR | 300, 500, 900 MHz | \ |
3.2.2. Quality Control
3.3. Underground Utilities Survey
3.3.1. Utilities Positioning and Mapping
3.3.2. Water Leakage Detection
3.4. Urban’s Subsurface Risks
3.4.1. Void Risk
3.4.2. Sinkhole Risk
3.4.3. Cavity Risk
References | Study Scope | GPR Types | Center Frequency | Field Data Source |
---|---|---|---|---|
Yang et al. (2019) [119] | Void disease identification | RIS-K2 system | 2 GHZ, 900 MHZ | The data collected in 2015 from CRTS-II slab ballastless, Shijiazhuang Tiedao University. |
Luo et al. (2020) [121] | Subsurface voids identification | GSSI SIR-4000 | 400, 900 MHZ | The data collected from a seawall platform in Tai O, Hong Kong. |
Qin et al. (2016) [120] | Voids identification | \ | 400 MHZ | \ |
Sevil et al. (2017) [124] | Sinkhole mapping | RIS system | 40, 100, 200 MHZ | 7 common offset GPR profiles were acquired in the sinkhole site: one along the street in April 2013, six in March 2017, three along the street, and three across the street and the trench. |
Garcia-Garcia et al. (2017) [125] | Cavity mapping | GSSI SIR-3000 | 400 MHZ | The data collected on road area (7 m × 42 m) situated in Torrente, Spanish. |
Kang et al. (2020) [56] | Underground cavity detection | GEOSCOPE MK IV30 system | 200–3000 MHZ | The data obtained from a total of 13 km of urban roads in 17 different regions in Seoul, South Korea. |
Park et al. (2018) [127] | Underground objects (cavity, pipe, manhole) detection and classification | DXG1820 GPR antenna | 1.6 GHZ, 200–3000 MHZ | The data collected on urban road area (0.7 km) near subway station in Seoul, South Korea. |
Hong et al. (2018) [128] | Estimate the ground cavity configurations | GSSI SIR-3000 | 270 MHZ | \ |
4. Discussion and Conclusions
4.1. Comprehensive Discussion of GPR Data Analysis Techniques
4.1.1. Lack of Effective Signature Extraction Strategies in Complex Scenarios
4.1.2. Lack of Customized Deep Models for Different Types of Target Signatures
4.2. Future Perspective
4.2.1. Matching Consistency between GPR Feature and Deep Model
4.2.2. Reduced Dependence on Large Amounts of Data
4.2.3. Impact of Multiple Factors on Data Analysis
4.2.4. Integrated NDT Technologies
4.3. Literature Review Comparison
4.4. Paper Selection Strategy
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Description |
AC | Asphalt Concrete |
Bbox | Bounding Box |
Bi-LSTM | Bi-Directional Long Short-Term Memory |
BP | Back Propagation |
C3 | Column Connection Clustering |
CMP | Common Mid-Point |
DC | Direct Current |
DCSE | Double Cluster Seeking Estimate |
DCT | Discrete Cosine Transform |
DL | Deep Learning |
EM | Electromagnetic |
ERT | Electrical Resistivity Tomography |
FWI | Full-Waveform Inversion |
GA | Genetic Algorithm |
GIS | Geographical Information System |
GPR | Ground Penetrating Radar |
GPS | Global Positioning System |
HOG | Histogram of Oriented Gradient |
IEEE | Institute of Electrical and Electronics Engineers |
IET | The Institution of Engineering and Technology |
InSAR | Interferometric Synthetic Aperture Radar |
IR | Infrared |
LS | Least Squares |
LSHS | Limited and Simplified Hyperbolic Summation |
ML | Machine Learning |
MLP | Multilayer Perceptron |
MUSIC | Multiple Signal Classification |
NDT | Non-Destructive Testing |
NN | Neural Network |
ANN | Artificial Neural Network |
BP-ANN | Back Propagation-Artificial Neural Network |
CNN | Convolutional Neural Networks |
DeepCNN | Deep Convolutional Neural Networks |
RNN | Recurrent Neural Networks |
R-CNN | Region-CNN |
Faster R-CNN | Faster Region-CNN |
Mask R-CNN | Mask Region-CNN |
OSCA | Open-Scan Clustering Algorithm |
PCs | Principal Components |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
R antenna | Receiving antenna |
T antenna | Transmitting antenna |
RBF | Radial Basis Function |
RC | Reinforced Concrete |
ResNet50 | Residual Network 50 |
RoI | Region of Interest |
SAFT | Synthetic Aperture Focusing Technique |
SBD | Sparse Blind Deconvolution |
SVM | Support Vector Machine |
CSVM | Convolutional SVM |
TLS | Terrestrial Laser Scanning |
TPS | Terrestrial Positioning System |
UAV | Unmanned Serial Vehicles |
UcNet | Underground Cavity Detection Network |
YOLO v2 | You Only Look Once Version 2 |
1-D | One-Dimensional |
2-D | Two-Dimensional |
3-D | Three-Dimensional |
References
- Lai, W.W.-L.; Derobert, X.; Annan, P. A review of Ground Penetrating Radar application in civil engineering: A 30-year journey from Locating and Testing to Imaging and Diagnosis. Ndt E Int. 2018, 96, 58–78. [Google Scholar]
- Gizzi, F.T.; Leucci, G. Global research patterns on ground penetrating radar (GPR). Surv. Geophys. 2018, 39, 1039–1068. [Google Scholar] [CrossRef]
- Daniels, D. Ground Penetrating Radar; The Institution of Electrical Engineers: London, UK, 2004. [Google Scholar]
- Slob, E.; Sato, M.; Olhoeft, G. Surface and borehole ground-penetrating-radar developments. Geophys. 2010, 75, 75A103–75A120. [Google Scholar] [CrossRef] [Green Version]
- Molyneaux, T.; Millard, S.; Bungey, J.; Zhou, J. Radar assessment of structural concrete using neural networks. NDT E Int. 1995, 28, 281–288. [Google Scholar] [CrossRef]
- Gamba, P.; Lossani, S. Neural detection of pipe signatures in ground penetrating radar images. IEEE Trans. Geosci. Remote Sens. 2000, 38, 790–797. [Google Scholar] [CrossRef]
- Shaw, M.R.; Millard, S.G.; Molyneaux, T.C.K.; Taylor, M.J.; Bungey, J.H. Location of steel reinforcement in concrete using ground penetrating radar and neural networks. NDT E Int. 2005, 38, 203–212. [Google Scholar] [CrossRef]
- Capineri, L.; Grande, P.; Temple, J.A.G. Advanced image-processing technique for real-time interpretation of ground-penetrating radar images. Int. J. Imaging Syst. Technol. 1998, 9, 51–59. [Google Scholar] [CrossRef]
- Borgioli, G.; Capineri, L.; Falorni, P.; Matucci, S.; Windsor, C.G. The Detection of Buried Pipes from Time-of-Flight Radar Data. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2254–2266. [Google Scholar] [CrossRef]
- Pasolli, E.; Melgani, F.; Donelli, M. Automatic Analysis of GPR Images: A Pattern-Recognition Approach. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2206–2217. [Google Scholar] [CrossRef]
- Maas, C.; Schmalzl, J. Using pattern recognition to automatically localize reflection hyperbolas in data from ground penetrating radar. Comput. Geosci. 2013, 58, 116–125. [Google Scholar] [CrossRef]
- Kaur, P.; Dana, K.J.; Romero, F.A.; Gucunski, N. Automated GPR rebar analysis for robotic bridge deck evaluation. IEEE Trans. Cybern. 2015, 46, 2265–2276. [Google Scholar] [CrossRef] [PubMed]
- Dou, Q.; Wei, L.; Magee, D.R.; Cohn, A.G. Real-time hyperbola recognition and fitting in GPR data. IEEE Trans. Geosci. Remote Sens. 2016, 55, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Chen, H.; Li, J. An automatic GPR B-scan image interpreting model. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3398–3412. [Google Scholar] [CrossRef]
- Lei, W.; Hou, F.; Xi, J.; Tan, Q.; Xu, M.; Jiang, X.; Liu, G.; Gu, Q. Automatic hyperbola detection and fitting in GPR B-scan image. Autom. Constr. 2019, 106, 102839. [Google Scholar] [CrossRef]
- Besaw, L.E.; Stimac, P.J. Deep convolutional neural networks for classifying GPR B-scans. In Proceedings of the Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XX. International Society for Optics and Photonics, Baltimore, MD, USA, 20–24 April 2015. [Google Scholar]
- Bralich, J.; Reichman, D.; Collins, L.M.; Malof, J.M. Improving convolutional neural networks for buried target detection in ground penetrating radar using transfer learning via pretraining. In Proceedings of the Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXII. International Society for Optics and Photonics, Anaheim, CA, USA, 9–13 April 2017. [Google Scholar]
- Pham, M.-T.; Lefèvre, S. Buried Object Detection from B-Scan Ground Penetrating Radar Data Using Faster-RCNN. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018. [Google Scholar]
- Ozkaya, U.; Melgani, F.; Bejiga, M.B.; Seyfi, L.; Donelli, M. GPR B Scan Image Analysis with Deep Learning Methods. Measurement 2020, 165, 107770. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, X.; Li, W.; Zhang, S.; Jia, Y. Automatic detection of moisture damages in asphalt pavements from GPR data with deep CNN and IRS method. Autom. Constr. 2020, 113, 103119. [Google Scholar] [CrossRef]
- Hou, F.; Lei, W.; Li, S.; Xi, J.; Xu, M.; Luo, J. Improved Mask R-CNN with distance guided intersection over union for GPR signature detection and segmentation. Autom. Construction. 2021, 121, 103414. [Google Scholar] [CrossRef]
- Özkaya, U.; Öztürk, Ş.; Melgani, F.; Seyfi, L. Residual CNN+Bi-LSTM model to analyze GPR B scan images. Autom. Constr. 2021, 123, 103525. [Google Scholar] [CrossRef]
- Jol, H.M. Ground Penetrating Radar Theory and Applications; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Zhang, W.; Hao, T.; Chang, Y.; Zhao, Y. Time-frequency analysis of enhanced GPR detection of RF tagged buried plastic pipes. Ndt E Int. 2017, 92, 88–96. [Google Scholar] [CrossRef]
- Benedetto, A.; Tosti, F.; Ciampoli, L.B.; D’Amico, F. An overview of ground-penetrating radar signal processing techniques for road inspections. Signal Process. 2017, 132, 201–209. [Google Scholar] [CrossRef]
- Lai, W.; Kind, T.; Wiggenhauser, H. Using ground penetrating radar and time–frequency analysis to characterize construction materials. NDT E Int. 2011, 44, 111–120. [Google Scholar] [CrossRef]
- Lai, W.-L.; Kind, T.; Wiggenhauser, H. Frequency-dependent dispersion of high-frequency ground penetrating radar wave in concrete. NDT E Int. 2011, 44, 267–273. [Google Scholar] [CrossRef]
- Dinh, K.; Zayed, T.; Romero, F.; Tarussov, A. Method for analyzing time-series GPR data of concrete bridge decks. J. Bridge Eng. 2015, 20, 04014086. [Google Scholar] [CrossRef]
- Yoldemir, A.B.; Sezgin, M. A least squares approach to buried object detection using ground penetrating radar. IEEE Sens. J. 2010, 11, 1337–1341. [Google Scholar] [CrossRef]
- Gurbuz, A.C. Determination of background distribution for ground-penetrating radar data. IEEE Geosci. Remote Sens. Lett. 2011, 9, 544–548. [Google Scholar] [CrossRef]
- Mertens, L.; Persico, R.; Matera, L.; Lambot, S. Automated detection of reflection hyperbolas in complex GPR images with no a priori knowledge on the medium. IEEE Trans. Geosci. Remote Sens. 2015, 54, 580–596. [Google Scholar] [CrossRef]
- Yuan, C.; Li, S.; Cai, H.; Kamat, V.R. GPR signature detection and decomposition for mapping buried utilities with complex spatial configuration. J. Comput. Civ. Eng. 2018, 32, 04018026. [Google Scholar] [CrossRef]
- Qiao, L.; Qin, Y.; Ren, X.; Wang, Q. Identification of buried objects in GPR using amplitude modulated signals extracted from multiresolution monogenic signal analysis. Sens. 2015, 15, 30340–30350. [Google Scholar] [CrossRef] [PubMed]
- Windsor, C.G.; Capineri, L.; Falorni, P. A data pair-labeled generalized Hough transform for radar location of buried objects. IEEE Geosci. Remote Sens. Lett. 2013, 11, 124–127. [Google Scholar] [CrossRef]
- Jiao, L.; Ye, Q.; Cao, X.; Huston, D.; Xia, T. Identifying concrete structure defects in GPR image. Measurement 2020, 160, 107839. [Google Scholar] [CrossRef]
- Sakaguchi, R.; Morton, K.D.; Collins, L.M.; Torrione, P.A. A comparison of feature representations for explosive threat detection in ground penetrating radar data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6736–6745. [Google Scholar] [CrossRef]
- Reichman, D.; Collins, L.M.; Malof, J.M. On choosing training and testing data for supervised algorithms in ground-penetrating radar data for buried threat detection. IEEE Trans. Geosci. Remote Sens. 2017, 56, 497–507. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, G.; Xu, J. Semi-automatic detection of buried rebar in GPR data using a genetic algorithm. Autom. Constr. 2020, 114, 103186. [Google Scholar] [CrossRef]
- Harkat, H.; Ruano, A.; Ruano, M.; Bennani, S. GPR target detection using a neural network classifier designed by a multi-objective genetic algorithm. Appl. Soft Comput. 2019, 79, 310–325. [Google Scholar] [CrossRef]
- Bordón, P.; Bonomo, N.; Martinelli, P. Automatic detection of pipe-flange reflections in GPR data sections using supervised learning. J. Appl. Geophys. 2019, 170, 103856. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.; Lu, Y.; Zheng, T.; Dong, Z.; Tian, Y.; Jia, Y. In-situ recognition of moisture damage in bridge deck asphalt pavement with time-frequency features of GPR signal. Constr. Build. Mater. 2020, 244, 118295. [Google Scholar] [CrossRef]
- Asadi, P.; Gindy, M.; Alvarez, M.; Asadi, A. A computer vision based rebar detection chain for automatic processing of concrete bridge deck GPR data. Autom. Constr. 2020, 112, 103106. [Google Scholar] [CrossRef]
- Chen, J.; Lu, W.; Yuan, L.; Wu, Y.; Xue, F. Estimating construction waste truck payload volume using monocular vision. Resour. Conserv. Recycl. 2022, 177, 106013. [Google Scholar] [CrossRef]
- Chen, J.; Li, S.; Liu, D.; Lu, W. Indoor camera pose estimation via style-transfer 3D models. Comput.-Aided Civ. Infrastruct. Eng. 2021, 37, 335–353. [Google Scholar] [CrossRef]
- Dinh, K.; Gucunski, N.; Duong, T.H. An algorithm for automatic localization and detection of rebars from GPR data of concrete bridge decks. Autom. Constr. 2018, 89, 292–298. [Google Scholar] [CrossRef]
- Kim, N.; Kim, K.; An, Y.-K.; Lee, H.-J.; Lee, J.-J. Deep learning-based underground object detection for urban road pavement. Int. J. Pavement Eng. 2018, 21, 1638–1650. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017. [Google Scholar]
- Szymczyk, P.; Szymczyk, M. Non-destructive building investigation through analysis of GPR signal by S-transform. Autom. Constr. 2015, 55, 35–46. [Google Scholar] [CrossRef]
- Klesk, P.; Godziuk, A.; Kapruziak, M.; Olech, B. Fast analysis of C-scans from ground penetrating radar via 3-D Haar-like features with application to landmine detection. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3996–4009. [Google Scholar] [CrossRef]
- Klęsk, P.; Kapruziak, M.; Olech, B. Statistical moments calculated via integral images in application to landmine detection from Ground Penetrating Radar 3D scans. Pattern Anal. Appl. 2018, 21, 671–684. [Google Scholar] [CrossRef] [Green Version]
- Pereira, M.; Burns, D.; Orfeo, D.; Zhang, Y.; Jiao, L.; Huston, D.; Xia, T. 3-D Multistatic Ground Penetrating Radar Imaging for Augmented Reality Visualization. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5666–5675. [Google Scholar] [CrossRef]
- Kim, N.; Kim, S.; An, Y.-K.; Lee, J.-J. A novel 3D GPR image arrangement for deep learning-based underground object classification. Int. J. Pavement Eng. 2019, 22, 740–751. [Google Scholar] [CrossRef]
- Moalla, M.; Frigui, H.; Karem, A.; Bouzid, A. Application of Convolutional and Recurrent Neural Networks for Buried Threat Detection Using Ground Penetrating Radar Data. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7022–7034. [Google Scholar] [CrossRef]
- Khudoyarov, S.; Kim, N.; Lee, J.-J. Three-dimensional convolutional neural network–based underground object classification using three-dimensional ground penetrating radar data. Struct. Health Monit. 2020, 19, 1884–1893. [Google Scholar] [CrossRef]
- Kang, M.-S.; Kim, N.; Lee, J.J.; An, Y.-K. Deep learning-based automated underground cavity detection using three-dimensional ground penetrating radar. Struct. Health Monit. 2020, 19, 173–185. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the The Twenty-sixth Annual Conference on Neural Information Processing Systems (NIPS), Stateline, NV, USA, 3–8 December 2012. [Google Scholar]
- Martino, N.; Maser, K.; Birken, R.; Wang, M. Quantifying bridge deck corrosion using ground penetrating radar. Res. Nondestruct. Eval. 2016, 27, 112–124. [Google Scholar] [CrossRef]
- Pashoutani, S.; Zhu, J. Ground Penetrating Radar Data Processing for Concrete Bridge Deck Evaluation. J. Bridge Eng. 2020, 25, 04020030. [Google Scholar] [CrossRef]
- Rhee, J.-Y.; Choi, J.-J.; Kee, S.-H. Evaluation of the depth of deteriorations in concrete bridge decks with asphalt overlays using air-coupled GPR: A case study from a pilot bridge on Korean expressway. Int. J. Concr. Struct. Mater. 2019, 13, 23. [Google Scholar] [CrossRef] [Green Version]
- Dinh, K.; Gucunski, N.; Kim, J.; Duong, T.H. Understanding depth-amplitude effects in assessment of GPR data from concrete bridge decks. NDT E Int. 2016, 83, 48–58. [Google Scholar] [CrossRef]
- Dinh, K.; Gucunski, N.; Kim, J.; Duong, T.H. Method for attenuation assessment of GPR data from concrete bridge decks. NDT E Int. 2017, 92, 50–58. [Google Scholar] [CrossRef]
- Dinh, K.; Gucunski, N.; Zayed, T. Automated visualization of concrete bridge deck condition from GPR data. NDT E Int. 2019, 102, 120–128. [Google Scholar] [CrossRef]
- Alsharqawi, M.; Zayed, T.; Dabous, S.A. Integrated condition rating and forecasting method for bridge decks using Visual Inspection and Ground Penetrating Radar. Autom. Constr. 2018, 89, 135–145. [Google Scholar] [CrossRef]
- Ghodoosi, F.; Bagchi, A.; Zayed, T.; Hosseini, M.R. Method for developing and updating deterioration models for concrete bridge decks using GPR data. Autom. Constr. 2018, 91, 133–141. [Google Scholar] [CrossRef]
- Biscarini, C.; Catapano, I.; Cavalagli, N.; Ludeno, G.; Pepe, F.A.; Ubertini, F. UAV Photogrammetry, Infrared Thermography and GPR for Enhancing Structural and Material Degradation Evaluation of the Roman Masonry Bridge of Ponte Lucano in Italy. NDT E Int. 2020, 115, 102287. [Google Scholar] [CrossRef]
- Prasanna, P.; Dana, K.J.; Gucunski, N.; Basily, B.B.; La, H.M.; Lim, R.S.; Parvardeh, H. Automated crack detection on concrete bridges. IEEE Trans. Autom. Sci. Eng. 2014, 13, 591–599. [Google Scholar] [CrossRef]
- Okazaki, Y.; Okazaki, S.; Asamoto, S.; Chun, P. Applicability of machine learning to a crack model in concrete bridges. Comput.-Aided Civ. Infrastruct. Eng. 2020, 35, 775–792. [Google Scholar] [CrossRef]
- Dabous, S.A.; Yaghi, S.; Alkass, S.; Moselhi, O. Concrete bridge deck condition assessment using IR Thermography and Ground Penetrating Radar technologies. Autom. Constr. 2017, 81, 340–354. [Google Scholar] [CrossRef]
- Dabous, S.A.; Feroz, S. Condition monitoring of bridges with non-contact testing technologies. Autom. Constr. 2020, 116, 103224. [Google Scholar] [CrossRef]
- Alani, A.M.; Tosti, F.; Bianchini Ciampoli, L.; Gagliardi, V.; Benedetto, A. An integrated investigative approach in health monitoring of masonry arch bridges using GPR and InSAR technologies. NDT E Int. 2020, 115, 102288. [Google Scholar] [CrossRef]
- D’Amico, F.; Gagliardi, V.; Bianchini Ciampoli, L.; Tosti, F. Integration of InSAR and GPR techniques for monitoring transition areas in railway bridges. NDT E Int. 2020, 115, 102291. [Google Scholar] [CrossRef]
- Imani, F.S. Comprehensive Full-Depth Condition Assessment of Reinforced Concrete Bridge Decks Using Ground Penetrating Radar. Ph.D. Thesis, Rutgers The State University of New Jersey, School of Graduate Studies, New Brunswick, NJ, USA, 2019. [Google Scholar]
- Narazaki, Y.; Hoskere, V.; Hoang, T.A.; Fujino, Y.; Sakurai, A.; Spencer, B.F., Jr. Vision-based automated bridge component recognition with high-level scene consistency. Comput.-Aided Civ. Infrastruct. Eng. 2020, 35, 465–482. [Google Scholar] [CrossRef]
- Jazayeri, S.; Kruse, S.; Hasan, I.; Yazdani, N. Reinforced concrete mapping using full-waveform inversion of GPR data. Constr. Build. Mater. 2019, 229, 117102. [Google Scholar] [CrossRef]
- Dinh, K.; Gucunski, N.; Duong, T.H. Migration-based automated rebar picking for condition assessment of concrete bridge decks with ground penetrating radar. NDT E Int. 2018, 98, 45–54. [Google Scholar] [CrossRef]
- Rasol, M.; Pérez-Gracia, V.; Solla, M.; Pais, J.C.; Fernandes, F.M.; Santos, C. An experimental and numerical approach to combine Ground Penetrating Radar and computational modelling for the identification of early cracking in cement concrete pavements. NDT E Int. 2020, 115, 102293. [Google Scholar] [CrossRef]
- Rasol, M.; Pérez-Gracia, V.; Fernandes, F.M.; Pais, J.C.; Santos-Assunçao, S.; Santos, C.R.; Sossa, V. GPR laboratory tests and numerical models to characterize cracks in cement concrete specimens, exemplifying damage in rigid pavement. Measurement 2020, 158, 107662. [Google Scholar] [CrossRef]
- Fernandes, F.M.; Pais, J.C. Laboratory observation of cracks in road pavements with GPR. Constr. Build. Mater. 2017, 154, 1130–1138. [Google Scholar] [CrossRef]
- Yi, L.; Zou, L.; Takahashi, K.; Sato, M. High-resolution velocity analysis method using the ℓ-1 norm regularized least-squares method for pavement inspection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1005–1015. [Google Scholar] [CrossRef]
- Li, S.; Yuan, C.; Liu, D.; Cai, H. Integrated processing of image and GPR data for automated pothole detection. J. Comput. Civ. Eng. 2016, 30, 04016015. [Google Scholar] [CrossRef]
- Lagüela, S.; Solla, M.; Puente, I.; Prego, F.J. Joint use of GPR, IRT and TLS techniques for the integral damage detection in paving. Constr. Build. Mater. 2018, 174, 749–760. [Google Scholar] [CrossRef]
- Tong, Z.; Gao, J.; Zhang, H. Innovative method for recognizing subgrade defects based on a convolutional neural network. Constr. Build. Mater. 2018, 169, 69–82. [Google Scholar] [CrossRef]
- Tong, Z.; Yuan, D.; Gao, J.; Wei, Y.; Dou, H. Pavement-distress detection using ground-penetrating radar and network in networks. Constr. Build. Mater. 2020, 233, 117352. [Google Scholar] [CrossRef]
- Gao, J.; Yuan, D.; Tong, Z.; Yang, J.; Yu, D. Autonomous pavement distress detection using ground penetrating radar and region-based deep learning. Measurement 2020, 164, 108077. [Google Scholar] [CrossRef]
- Sato, M. Array GPR “Yakumo” and its application to archaeological survey and environmental studies. In Proceedings of the XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), Beijing, China, 16–23 August 2014. [Google Scholar]
- Rodés, J.P.; Pérez-Gracia, V.; Martínez-Reguero, A. Evaluation of the GPR frequency spectra in asphalt pavement assessment. Constr. Build. Mater. 2015, 96, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Pedret Rodes, J.; Reguero, A.M.; Perez-Gracia, V. GPR Spectra for Monitoring Asphalt Pavements. Remote Sens. 2020, 12, 1749. [Google Scholar] [CrossRef]
- Guo, C.; Zhao, L.; Chen, Y.; Li, W.; Liu, R.C. Extraction of the pavement permittivity and thickness from measured ground-coupled GPR data using a ground-wave technique. IEEE Geosci. Remote Sens. Lett. 2017, 14, 399–403. [Google Scholar] [CrossRef]
- De Coster, A.; Van der Wielen, A.; Grégoire, C.; Lambot, S. Evaluation of pavement layer thicknesses using GPR: A comparison between full-wave inversion and the straight-ray method. Constr. Build. Mater. 2018, 168, 91–104. [Google Scholar] [CrossRef]
- Marecos, V.; Fontul, S.; Solla, M.; de Lurdes Antunes, M. Evaluation of the feasibility of Common Mid-Point approach for air-coupled GPR applied to road pavement assessment. Measurement 2018, 128, 295–305. [Google Scholar] [CrossRef]
- Khamzin, A.K.; Varnavina, A.V.; Torgashov, E.V.; Anderson, N.L.; Sneed, L.H. Utilization of air-launched ground penetrating radar (GPR) for pavement condition assessment. Constr. Build. Mater. 2017, 141, 130–139. [Google Scholar] [CrossRef]
- Zhao, S.; Al-Qadi, I.L. Super-resolution of 3-D GPR signals to estimate thin asphalt overlay thickness using the XCMP method. IEEE Trans. Geosci. Remote Sens. 2018, 57, 893–901. [Google Scholar] [CrossRef]
- Plati, C.; Loizos, A.; Gkyrtis, K. Integration of non-destructive testing methods to assess asphalt pavement thickness. NDT E Int. 2020, 115, 102292. [Google Scholar] [CrossRef]
- Eskelinen, P.; Pellinen, T. Comparison of different radar technologies and frequencies for road pavement evaluation. Constr. Build. Mater. 2018, 164, 888–898. [Google Scholar] [CrossRef]
- Plati, C.; Georgouli, K.; Cliatt, B.; Loizos, A. Incorporation of GPR data into genetic algorithms for assessing recycled pavements. Constr. Build. Mater. 2017, 154, 1263–1271. [Google Scholar] [CrossRef]
- Sun, M.; Le Bastard, C.; Pinel, N.; Wang, Y.; Li, J.; Pan, J.; Yu, Z. Estimation of time delay and interface roughness by GPR using modified MUSIC. Signal Process. 2017, 132, 272–283. [Google Scholar] [CrossRef]
- Tosti, F.; Ciampoli, L.B.; D’Amico, F.; Alani, A.M.; Benedetto, A. An experimental-based model for the assessment of the mechanical properties of road pavements using ground-penetrating radar. Constr. Build. Mater. 2018, 165, 966–974. [Google Scholar] [CrossRef]
- Wang, S.; Al-Qadi, I.L.; Cao, Q. Factors Impacting Monitoring Asphalt Pavement Density by Ground Penetrating Radar. NDT E Int. 2020, 115, 102296. [Google Scholar] [CrossRef]
- Shangguan, P.; Al-Qadi, I.; Coenen, A.; Zhao, S. Algorithm development for the application of ground-penetrating radar on asphalt pavement compaction monitoring. Int. J. Pavement Eng. 2016, 17, 189–200. [Google Scholar] [CrossRef]
- Fernandes, F.M.; Fernandes, A.; Pais, J. Assessment of the density and moisture content of asphalt mixtures of road pavements. Constr. Build. Mater. 2017, 154, 1216–1225. [Google Scholar] [CrossRef]
- Atef, A.; Harbi, H.; Rashed, M. Adaptive boxcar background filtering for real-time GPR utility detection. Arab. J. Geosci. 2018, 11, 10. [Google Scholar] [CrossRef]
- Prego, F.; Solla, M.; Puente, I.; Arias, P. Efficient GPR data acquisition to detect underground pipes. NDT E Int. 2017, 91, 22–31. [Google Scholar] [CrossRef]
- Metwaly, M. Application of GPR technique for subsurface utility mapping: A case study from urban area of Holy Mecca, Saudi Arabia. Measurement 2015, 60, 139–145. [Google Scholar] [CrossRef]
- Sagnard, F.; Norgeot, C.; Derobert, X.; Baltazart, V.; Merliot, E.; Derkx, F.; Lebental, B. Utility detection and positioning on the urban site Sense-City using Ground-Penetrating Radar systems. Measurement 2016, 88, 318–330. [Google Scholar] [CrossRef] [Green Version]
- Hoarau, Q.; Ginolhac, G.; Atto, A.; Nicolas, J. Robust adaptive detection of buried pipes using GPR. Signal Process. 2017, 132, 293–305. [Google Scholar] [CrossRef] [Green Version]
- Šarlah, N.; Podobnikar, T.; Ambrožič, T.; Mušič, B. Application of Kinematic GPR-TPS Model with High 3D Georeference Accuracy for Underground Utility Infrastructure Mapping: A Case Study from Urban Sites in Celje, Slovenia. Remote Sens. 2020, 12, 1228. [Google Scholar] [CrossRef] [Green Version]
- Jiang, G.; Zhou, X.; Li, J.; Chen, H. A Cable-Mapping Algorithm Based on Ground-Penetrating Radar. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1630–1634. [Google Scholar] [CrossRef]
- Zhang, P.; Guo, X.; Muhammat, N.; Wang, X. Research on probing and predicting the diameter of an underground pipeline by GPR during an operation period. Tunn. Undergr. Space Technol. 2016, 58, 99–108. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, H.; Hao, T. Efficient detection of buried plastic pipes by combining GPR and electric field methods. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3967–3979. [Google Scholar] [CrossRef]
- Zhao, S.; Al-Qadi, I. Pavement drainage pipe condition assessment by GPR image reconstruction using FDTD modeling. Constr. Build. Mater. 2017, 154, 1283–1293. [Google Scholar] [CrossRef]
- Li, S.; Cai, H.; Kamat, V.R. Uncertainty-aware geospatial system for mapping and visualizing underground utilities. Autom. Constr. 2015, 53, 105–119. [Google Scholar] [CrossRef]
- Li, S.; Cai, H.; Abraham, D.M.; Mao, P. Estimating features of underground utilities: Hybrid GPR/GPS approach. J. Comput. Civ. Eng. 2016, 30, 04014108. [Google Scholar] [CrossRef]
- Cai, J.; Jeon, J.; Cai, H.; Li, S. Fusing Heterogeneous Information for Underground Utility Map Generation Based on Dempster-Shafer Theory. J. Comput. Civ. Eng. 2020, 34, 04020013. [Google Scholar] [CrossRef]
- Atef, A.; Zayed, T.; Hawari, A.; Khader, M.; Moselhi, O. Multi-tier method using infrared photography and GPR to detect and locate water leaks. Autom. Constr. 2016, 61, 162–170. [Google Scholar] [CrossRef]
- Awwad, A.; Yahyia, M.; Albasha, L.; Mortula, M.; Ali, T. Communication Network for Ultrasonic Acoustic Water Leakage Detectors. IEEE Access 2020, 8, 29954–29964. [Google Scholar] [CrossRef]
- Lai, W.W.; Chang, R.K.; Sham, J.F.; Pang, K. Perturbation mapping of water leak in buried water pipes via laboratory validation experiments with high-frequency ground penetrating radar (GPR). Tunn. Undergr. Space Technol. 2016, 52, 157–167. [Google Scholar] [CrossRef]
- Cheung, B.W.Y.; Lai, W.W.L. Field validation of water-pipe leakage detection through spatial and time-lapse analysis of GPR wave velocity. Near Surf. Geophys. 2019, 17, 231–246. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, W. Curvelet transform-based identification of void diseases in ballastless track by ground-penetrating radar. Struct. Control. Health Monit. 2019, 26, e2322. [Google Scholar] [CrossRef]
- Qin, Y.; Huang, C. Identifying underground voids using a GPR circular-end bow-tie antenna system based on a support vector machine. Int. J. Remote Sens. 2016, 37, 876–888. [Google Scholar] [CrossRef]
- Luo, T.X.; Lai, W.W. GPR pattern recognition of shallow subsurface air voids. Tunn. Undergr. Space Technol. 2020, 99, 103355. [Google Scholar] [CrossRef]
- Chen, J.; Li, S.; Liu, D.; Li, X. AiRobSim: Simulating a Multisensor Aerial Robot for Urban Search and Rescue Operation and Training. Sensors 2020, 20, 5223. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Li, S.; Chen, J.; Kamat, V.R. Detecting, locating, and characterizing voids in disaster rubble for search and rescue. Adv. Eng. Inform. 2019, 42, 100974. [Google Scholar] [CrossRef]
- Sevil, J.; Gutiérrez, F.; Zarroca, M.; Desir, G.; Carbonel, D.; Guerrero, J.; Linares, R.; Roqué, C.; Fabregat, I. Sinkhole investigation in an urban area by trenching in combination with GPR, ERT and high-precision leveling. Mantled evaporite karst of Zaragoza city, NE Spain. Eng. Geol. 2017, 231, 9–20. [Google Scholar] [CrossRef]
- Garcia-Garcia, F.; Valls-Ayuso, A.; Benlloch-Marco, J.; Valcuende-Paya, M. An optimization of the work disruption by 3D cavity mapping using GPR: A new sewerage project in Torrente (Valencia, Spain). Constr. Build. Mater. 2017, 154, 1226–1233. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.-S.; Kim, N.; Im, S.B.; Lee, J.-J.; An, Y.-K. 3D GPR Image-based UcNet for Enhancing Underground Cavity Detectability. Remote Sens. 2019, 11, 2545. [Google Scholar] [CrossRef] [Green Version]
- Park, B.; Kim, J.; Lee, J.; Kang, M.-S.; An, Y.-K. Underground object classification for urban roads using instantaneous phase analysis of Ground-Penetrating Radar (GPR) Data. Remote Sens. 2018, 10, 1417. [Google Scholar] [CrossRef] [Green Version]
- Hong, W.-T.; Lee, J.-S. Estimation of ground cavity configurations using ground penetrating radar and time domain reflectometry. Nat. Hazards 2018, 92, 1789–1807. [Google Scholar] [CrossRef]
- Xiang, Z.; Rashidi, A.; Ou, G.G. States of practice and research on applying GPR technology for labeling and scanning constructed facilities. J. Perform. Constr. Facil. 2019, 33, 03119001. [Google Scholar] [CrossRef]
- Benedetto, A.; Tosti, F.; Ciampoli, L.B.; D’Amico, F. GPR applications across engineering and geosciences disciplines in Italy: A review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2952–2965. [Google Scholar] [CrossRef]
References | Study Scope | GPR Types | Center Frequency | Field Data Source |
---|---|---|---|---|
Kim et al. (2019) [53] | Classify cavity, pipe, manhole | Step-frequency GPR system | 500 to 1800 MHz | The data collected from urban roads in Seoul, South Korea |
Prego et al. (2017) [103] | Buried pipes detection | \ | 500 MHZ, 800 MHZ, 1 GHZ, 2.3 GHZ | \ |
Metwaly et al. (2015) [104] | Locating and imaging the subsurface utilities | GSSI SIR 3000 | 400 MHZ | The data collected from Al-Sulimania bridge in Holy Mecca |
Sagnard et al. (2016) [105] | Pipe detection; dielectric measurement | GSSI SIR 3000 | 500,900,1600 MHz | \ |
Jiang et al. (2019) [108] | Buried cables mapping | GSSI SIR 30 | 200 MHZ | \ |
Zhou et al. (2019) [110] | Plastic pipe detection | GSSI SIR 30 | 200, 400 MHZ | \ |
Yuan et al. (2018) [32] | Underground utilities identification | \ | 300 MHZ, 1.5 GHZ | \ |
Li et al. (2015) [112] | 3-D underground utility mapping | MALA GPR system | 800 MHZ | \ |
Li et al. (2016) [113] | Utility localization; depth and radius estimation | \ | 400, 500, 800, 900 MHZ | Examples 1–4 are taken from the study by Ristic et al. (2009); examples 5–8 are based on experiments conducted in West Lafayette, Indiana |
Cai et al. (2020) [114] | Mapping underground utility | MALA ProEx GPR System | 800 MHZ | \ |
References | Study Field | Site | Study Period | Various Applications | Signal Processing |
---|---|---|---|---|---|
Lai et al. (2018) [1] | Civil engineering | \ | 1986–2016 | Building, road pavement, tunnel liners, geology, underground utilities, concrete properties, and corrosion | \ |
Xiang et al. (2019) [129] | Constructed facilities | \ | \ | Building, road pavement, underground utilities, 3-D reconstruction, archeology, mineral exploration, geology | Postprocessing (data trace editing, noise removal, convert time domain to depth scale, migration); interpretation (neural network, multi-agent system, data fusion, drop-flow algorithm) |
Benedetto et al. (2017) [25] | Road engineering | \ | \ | Road inspection | Basic processing (data editing, time-zero correction); A-scan processing (zero offset removal, band pass filtering, time-varying gain, resolution improvement); B-scan processing (background removal, velocity analysis) |
Benedetto et al. (2016) [130] | Engineering, Geoscience | Italy | \ | Structures and hydraulics, transport infrastructures (road, railway, airport, bridge, tunnel), underground utilities, geology and environment, archeology, glaciology, demining, and public safety | \ |
Ours | Civil engineering | \ | 2015–2020 | Bridge, road pavement, underground utilities, urban subsurface risks (void, sinkhole, cavity) | A-scan processing (noise removal, resolution enhancement, object detection, material property analysis); B-scan processing (image-, ML-, DL-target identification); C-scan processing (3-D reconstruction, target recognition) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, F.; Rui, X.; Fan, X.; Zhang, H. Review of GPR Activities in Civil Infrastructures: Data Analysis and Applications. Remote Sens. 2022, 14, 5972. https://doi.org/10.3390/rs14235972
Hou F, Rui X, Fan X, Zhang H. Review of GPR Activities in Civil Infrastructures: Data Analysis and Applications. Remote Sensing. 2022; 14(23):5972. https://doi.org/10.3390/rs14235972
Chicago/Turabian StyleHou, Feifei, Xiyue Rui, Xinyu Fan, and Hang Zhang. 2022. "Review of GPR Activities in Civil Infrastructures: Data Analysis and Applications" Remote Sensing 14, no. 23: 5972. https://doi.org/10.3390/rs14235972
APA StyleHou, F., Rui, X., Fan, X., & Zhang, H. (2022). Review of GPR Activities in Civil Infrastructures: Data Analysis and Applications. Remote Sensing, 14(23), 5972. https://doi.org/10.3390/rs14235972