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Abstract: Ground penetration radar (GPR) technology has received in-depth analysis and rapid devel-
opment in the field of civil engineering. GPR data analysis is one of the basic and challenging problems
in this field. This research aims to conduct a comprehensive survey of the progress from 2015 to the
present in GPR scanning tasks. More than 130 major publications are cited in this research covering
different aspects of the research, including advanced data processing methods and a wide variety of
applications. First, it briefly introduces the data collection of the GPR system and discusses the signal
complexity in simulated/real scenes. Then, it reviews the main signal processing techniques used to
interpret the GPR data. Subsequently, the latest GPR surveys are considered and divided according to
four application domains, namely bridges, road pavements, underground utilities, and urban subsurface
risks. Finally, the survey discusses the open challenges and directions for future research.

Keywords: ground-penetrating radar (GPR); civil infrastructures; data processing; GPR applications;
target identification; deep learning (DL)

1. Introduction

Interpreting the useful information gained from the existing infrastructures is the
main task of civil researchers. Labeling, mapping, and diagnosing subsurface-embedded
elements and unpredictable risks are indispensable aspects of this work. As a typical non-
destructive testing (NDT) technique, ground-penetrating radar (GPR) has been widespread
in this domain [1,2] due to its several advantages: first, easy-to-use data collection and
real-time interface display can quickly provide feedback information about the subsurface
conditions; second, the centimeter-level image resolution can be obtained by adjusting its
system bandwidth. GPR sends electromagnetic (EM) pulses into the belowground medium
by a transmitter and collects the reflected signal by a receiver. Based on the analysis of
reflected signal strength and time difference of reception, this instrument can be used to
infer the relevant underground conditions and gather useful information [3,4].

GPR first appeared in the realm of geosciences in mid-1950s. After about 40 years,
the emergence of many powerful GPR data analysis techniques has given rise to a further
increase in civil activities. Subsequently, huge progress in digital computing capabilities led
to the spread of GPR applications in recent years. Milestones in GPR data analysis over the
past decades are listed in Figure 1. Research on GPR data analysis in the late 1990s and the
early 2000s mainly focused on neural network (NN) [5,6], multilayer perceptron (MLP) [7],
and Hough transform [8,9]. After that time, the machine learning (ML) algorithms achieved
advanced results in GPR data interpretation, such as genetic algorithm (GA) [10], Viola-
Jones [11], and support vector machine (SVM) [12]. Recently, some research on integrated
systems [13–15] has been developed to automatically detect and fit the GPR characteristics.
After 2015, the capability of deep learning (DL) technology has been explored even in
cross-disciplines, which promotes GPR analysis from a small-scale manual process to an
automatic interpretation even with large amounts of data. Much research focus has been
on DL methods for GPR feature representation and classification, such as the improved
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CNN [16,17], Faster R-CNN [18], Convolutional SVM (CSVM) [19], Mixed deepCNN [20],
Mask R-CNN [21], Residual CNN, and Bi-LSTM model [22]. But still, interpretation of these
data is still very empirical and largely depends on the judgment of researchers. Much effort
is required to explore effective processing solutions for GPR data to provide operators and
decision-makers with easy-to-interpret images [3]. Indeed, with the advanced and targeted
solutions, the quality of available GPR information can be significantly improved [23].
Moreover, none of the published surveys provides an extensive survey over the recent
6 years. Given recent developments, we believe that there is a need for an updated survey,
motivating this present work.
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Figure 1. The evolution of GPR data analysis methods over the past decades [5–22].

A thorough review and survey of existing work will help make more progress in GPR
data analysis. Our goal is to outline its core tasks and key challenges, to summarize the
performance of GPR signal complexity, to define categories of data processing methods,
and to provide a review of GPR applications. Based on the different forms of GPR data, the
data processing literature is divided into three types: A-scan-based, B-scan-based, and C-
scan-based. The transmitting antenna (T antenna) emits EM waves at a fixed position, and
the receiving antenna (R antenna) receives the echo and forms a 1-D signal, called A-scan.
The T/R antenna moves equidistantly in a certain direction, and a 2-D dataset is formed
by superimposing multiple consecutive A-scans, namely B-scan. The GPR scans target
in the form of multiple parallel lines, and a series of B-scans is gathered and sequenced
consecutively to form C-scan data. Figure 2 can visually show the relationship between the
scan data and the measurement position. Furthermore, according to the different feature
extraction forms, the B-scan-based methods are divided into traditional-based, ML-based,
and DL-based.

Even though the current research in GPR data analysis has made numerous achieve-
ments, the automated interpretation of GPR data still faces some challenges that are difficult
to solve: (1) There exists the matching inconsistency between GPR features and deep mod-
els; (2) The construction of DL model and parametric analysis depends heavily on a large
amount of dataset; (3) Many factors in the on-site environment have unpredictable impacts
on data analysis and increase their complexity; (4) Integrating multiple NDT technologies
for underground target detection will lead to incompatibility among them.
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Figure 2. GPR data display. (a) A-scan; (b) B-scan; (c) C-scan. 
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The remainder of this paper is organized as follows. Section 2 discusses the major
signal processing techniques, wherein the main results achieved by DL techniques are
highlighted. Section 3 provides an overview of the latest achievements in the following
fields: bridges, roads and pavements, surface utilities, and risks. Section 4 discusses the
future prospects and draws conclusions.

2. GPR Data Processing in Civil Infrastructure
2.1. A-Scan Processing

This section discusses the advanced studies on the A-scan data processing in civil
surveys. Indeed, A-scan processing technique is often used to avoid generating additional
noises and enhance the target signals. For instance, the work [24] removed the direct
current (DC) bias from each A-scan signal in order to avoid complex noises, and thus
increase the visibility of buried plastic pipes. Benedetto et al. [25] summarized the main
A-scan signal processing methods used in road surveys, as well as provided the strategies
about how to select and use the proper processing technique based on the data quality and
the survey purposes.

Existing works have been reported in [26,27] to evaluate changes of material properties.
In fact, the essential properties will change or evolve over time due to several factors such
as dry brickwork, or steel corrosion, etc. The collected A-scan data were recorded and
analyzed to learn the internal changes of the material. To provide rich information about
the progress of bridge deck deterioration, the study in [28] interpreted time-series GPR
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data based on a correlation coefficient between A-scans. The generated map could clearly
show deterioration progression between the two consecutive scans.

Facing the challenge of object detection task, some research also focuses on the inter-
pretation of the features extracted from A-scan data or their energy analysis to determine
whether A-scan implies target information, for example, comparing the A-scan energy with
and without a buried object [29], or with and without background removal [30]. When it
is observed that the former signal is not similar to the latter signal, it can be inferred that
there may be buried objects.

2.2. Target Identification from B-Scan Image

Many advanced methods try to interpret the collected B-scan data. B-scan data process-
ing is mainly divided into three parts: (1) data preprocessing and denoising; (2) hyperbolic
features extraction for locating target; and (3) geometric characteristics estimation (e.g.,
depth, size, EM wave velocity). Many studies have focused on the task 2 to conduct the
localization and identification of underground targets in civil infrastructure. Based on
the ways of feature extraction, the task 2 can be further divided into traditional-based,
ML-based, DL-based. The flow diagram of task 2 is given in Figure 3.
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2.2.1. Image-Based Interpretation Methods

Image-based interpretations first extracts features from GPR images, and then analyzes
the geometrical characteristics from these features. The traditional feature extraction
methods mainly include edge detection, image segmentation, LS, and Hough transform.

The echo feature appears as a hyperbolic shape on the GPR image, with alternating
bright (high intensity) and dark (low intensity) edges. Naturally, edge detection methods
can be considered for extracting hyperbolic targets. The authors [31] conducted the Canny
edge detection method with the image matrix and the computed threshold as inputs. To
effectively segment the intersecting hyperbolas, the study [32] mimicked the falling motion
of a raindrop and introduced a new drop-flow algorithm to detect GPR signatures and
decompose them into feature components in B-scans. In addition, Hough Transform is
also a typical hyperbolic recognition method [11,33]. These methods initially locate the
potential position of targets, and then the Hough transform is implemented to accurately
identify hyperbolic signatures and find the apexes of the targets in the restricted region.
To localize the target region, the study [11] utilized the trained cascade of classifiers and
applied it to all input images to obtain the region containing the hyperbolic target. The
work [33] calculated the normalized variance of the amplitude component to locate the
target reflections. However, the Hough transform has a limited ability to reconstruct the
hyperbolic signatures due to its high computation cost when facing large amounts of
data. Moreover, when encountering multiple intersecting hyperbolic features, the Hough
transform is difficult to set the parameter space threshold. Unlike the Hough transform,
the LS method can be used to search and distinguish the quadratic curve in GPR images.
Windsor et al. [34] proposed an overlapping target segmentation method, which used the
traditional LS algorithm to assist in estimating the target (position, depth, radius, or speed).
This method has a fast calculation speed, but the matching template depends on a large
amount of prior knowledge, which limits its wide application.

Image segmentation algorithms are another vital category used to extract GPR tar-
get features. These segmented hyperbolic signatures are then integrated with advanced
computer vision methods to detect targets automatically. This category does not require
prior knowledge and includes two categories: traditional threshold segmentation and
state-of-the-art cluster segmentation:

i. Threshold segmentation is the most common method. It can enhance image features
and shape pattern features, and eliminate most of the background interference in GPR
images, which can be reflected in [35]. Based on this, the amount of calculation for
subsequent processing can be greatly reduced.

ii. Recently, cluster algorithms are operated in GPR image to classify points into different
point clusters. The authors [13] proposed a column connection clustering (C3), which
scanned the binary map in columns to extract coordinate point sets for clustering
and split the GPR images into several parts. Intuitively, the hyperbola in the GPR
image has a downward opening, which is a key feature for identifying hyperbola.
However, the above C3 algorithm does not consider this important feature. The
work [14] developed the open-scan clustering algorithm (OSCA), which makes use of
the downward opening feature to make up for the deficiencies of the C3 algorithm.
OSCA scans pre-processed binary images line by line, not only using pixel connec-
tions, but also clustering through opening information. However, many complex
situations are not considered by the OSCA and certain non-target clustering may not
be eliminated. Then, the DCSE algorithm was proposed in [15] to solve the above
three situations, which collects the downward openings by implementing rule-based
searching strategies. The first-round searches for all openings and sets thresholds to
eliminate irregular areas. Based on this, the openings are re-searched and marked in
the second round. The image-based interpretation method is more flexible and can
adjust the corresponding sequence of steps or add restrictions according to different
application scenarios. It can assist the target area positioning method and can adapt
to various application scenarios.
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2.2.2. Machine Learning-Based Techniques

ML is often integrated with the extracted features to predict classification results. The
common algorithms include SVM, BP neural network, Naïve Bayes classifier, GA, and
so forth.

At present, some scholars have systematically compared the impact of different feature
expression methods on discriminant performance [36], and provided guidance suggestions
on how to effectively extract training and test samples [37]. Maas et al. [11] applied the face
detection framework, namely Viola-Jones, to the location recognition of the hyperbolic sig-
nature. This framework works well for simple hyperbolic patterns. The Haar-like wavelet
features are extracted as the input of the adaboost-based cascaded classifier. This method
eliminates many preprocessing steps, but relies heavily on the reliability and comprehen-
siveness of the sample. Some studies [38,39] have designed genetic algorithm (GA)-based
schemes to identify the linear and hyperbolic features of underground objects in binary
images. Based on these identified features, Harkat et al. [39] further classified candidate
patches into positive/negative samples by a neural network radial basis function (RBF)
classifier. The success of techniques such as [12,40] illustrate the potential for histogram
of oriented gradient (HOG) feature extraction combined with SVM technique to develop
algorithms for effective and efficient object detection. With additional research, other tech-
niques, such as ANN, may also play a vital role to perform the task. Qing Dou et al. [13]
manually select positive/negative samples after clustering GPR target hyperbola, and then
calculate two normalized cross-correlation values of the hyperbola, which are fed into the
three-layer perception NN for further filtering the target. In work [41], the feature vector
extracted from GPR training samples was decomposed into the principal components (PCs)
for training a BP-ANN model. In [42], a multilayer perceptron (MLP) was implemented for
classifying bridge rebars in Region of Interest (RoI).

The ML model can achieve a pretty trade-off between accuracy and speed when facing
a small-scale dataset. However, a large-scale GPR data may limit its efficacy in classification
results. That is because the input features of ML model are manually extracted, which
depends on expertise and is error-prone.

2.2.3. Deep Learning-Based Techniques

Lately, DL theory has demonstrated its wide applications in classification, recognition,
and segmentation [43,44], which lays a foundation for its application in GPR discipline.
Unlike ML, which requires pre-designed features, DL networks can directly learn the
feature representation from radargrams, even in complex scenes.

The CNN model eliminates the need for researchers to spend too much effort on
describing the hyperbolic characteristics. By constructing positive/negative sample sets,
the CNN model is able to distinguish the hyperbolic morphology and clutter characteristics.
At present, some scholars have proposed the CNN-based detection algorithm for analyzing
GPR data [16,17,45], and a large number of experiments have confirmed that CNN can
extract and classify the complicated features. Although CNN can make a suitable distinction
between targets and clutter features, the localization of the RoI before classification step
still depends on other techniques.

The latest strategy for learning and distinguishing features is based on deep object
detection or segmentation models [15,20,21,46]. The authors [15] proposed an automatic
method based on the trained faster region CNN (Faster R-CNN) [47] to first detect target re-
gions, and then used the transfer learning method to improve the stability. Zhang et al. [20]
proposed the mixed deep CNN that consists of both ResNet50 and YOLO v2 networks to
assess deterioration conditions of bridges. Based on the understanding of the advanced in-
stance segmentation model, Hou et al. [21] enhanced the performance of Mask R-CNN [48]
to further segment GPR signatures, wherein a new loss computation, is developed and
incorporated in Mask R-CNN to minimize the discrepancy between the predicted bounding
box (Bbox) and the real Bbox in the training phase. To better present the latest research,
Figure 4 draws diagram to highlight some significant deep models and algorithms.
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2.3. C-Scan Processing

In most cases, the applications of GPR target detection approaches met in the literature
depend on B-scans data, and rarely directly on C-scans. As a result, some information might
be misinterpreted through this process. To address this important issue, it is necessary to
perform this task on C-scans for providing richer information.

Researchers and practitioners have focused on the automated schemes using C-scans.
The authors [49] originally developed a novel concept, 3-D S-transform, for creating 3-D
patterns of sinkholes in geological structures based on C-scans. In 2015, Klęsk et al. [50]
proposed a ML-based approach to efficiently analyze the C-scans. The boosted decision
trees are selected as the detector, where the 3-D Haar-like features are customized as the
input of detector. In 2018, Klęsk et al., [51] extended the previous research and extracted
3-D variant features from integral images. Taking raw 3-D GPR data as input, the work [52]
designed a 3-D model that highlights underground structure and visualizes the location of
buried target.

The DL technique also conducts this task based on 3-D data. The studies respectively
exploited a deep CNN framework in [53] and used an integrated model of CNN and
recurrent neural networks (RNN) in [54] to classify subsurface targets by analyzing both
B-scan and C-scan data. In fact, these approaches are directly executed on the B-scan
data, not on the C-scan volume. These B-scan data are obtained from the processing and
conversion of C-scans. To address this issue, Khudoyarov et al. [55] developed a 3-D CNN
model directly operating on 3-D data. Each small 3-D block including the desired target is
picked and segmented from the full-sized C-scans. These segmented blocks are then fed
into the 3-D deep model for training, and the trained model enables the recognition of the
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new 3-D data. For further study, in 2020, the authors [56] established a CNN model that
uses AlexNet [57] as a baseline and is enhanced by the transfer learning technique. This
model directly uses 3-D data for subsurface cavity detection.

3. GPR Applications in Civil Infrastructure: State of the Art
3.1. Bridge Application

Bridge management mainly concerns condition rating and mapping modeling. First,
the condition evaluation of a bridge deck usually focuses on cracks, rebar corrosion, struc-
tural integrity, component recognition, and poor compaction. Second, the rebar mapping of
a concrete bridge concerns the object detection, position estimation, and shape visualization.

3.1.1. Application in Condition Evaluation

By comparing the related computation values of the rebar reflection amplitudes to
corrosion quantities, the corrosion degree of a bridge deck is estimated in the recent
works [28,58–62]. Table 1 gives some examples of these works. For example, the rele-
vant parameters obtained from [59] included direct coupling amplitude, wave velocity
in concrete cover depth, and reflected signal amplitude. The work in [60] measured two
parameters: relative permittivity of concrete and EM wave attenuation of rebars. How-
ever, the above methods only use the amplitude information of reflected signals, and the
incomplete use of GPR information could lead to a limited visualization of true conditions.
The integration with other techniques, such SVM classifier integrated with image process-
ing [12], synthetic aperture focusing technique (SAFT) [63], can be exploited to visualize
the corrosion regions. Previous studies in [64,65] introduced an integrated framework for
predicting and analyzing deterioration based on visual inspection and GPR evaluation
results. A case study was conducted in [66] to study the use of GPR surveys in conjunction
with unmanned aerial photogrammetry and infrared (IR) thermography analyses to help
assess bridge degradation.

Some research has been contributed to the automated task of crack detection based on
the ML method [67,68]. The work in [67] used ML classification first, followed by a curve
fitting method to further identify crack areas from noisy backgrounds. The study in [68]
applied ML to a constructed Gaussian regression model based on the formation of crack
damage resulting from different influential factors. In addition, the integration of IR and
GPR technologies was also explored in [69,70] to enhance defect detection. IR photography
was used here for measuring the temperature changes of the bridge deck, and GPR was
used to record signal attenuation.

Recent studies also focus on achieving a structural integrity evaluation for bridges.
Both works in [71,72] used an integrated model of GPR and interferometric synthetic
aperture radar (InSAR) to assess displacement level of the bridge structure. InSAR can
initially identify RoI, while GPR can further detect attenuation sources. The research
in [73] concerned the development of a ML algorithm, called gradient boosting, for the
full depth condition assessment. Using the EM properties (permittivity and conductivity)
as characteristic parameters to simulate concrete conditions with different quality level.
Narazaki et al. [74] investigated and recognized the bridge component after earthquakes in
an automatic manner. This work exploited a DL semantic segmentation framework that
consists of 45 convolutional layers.

3.1.2. Application in Mapping Rebar

Mapping the location and dimension of rebars in concrete bridge can be critical
for assessing the structure and state of reinforced concrete (RC). Figure 5 shows some
scene pictures of field applications. The model proposed in [75] demonstrated that the
combination of sparse blind deconvolution (SBD) and full-waveform inversion (FWI) can
estimate rebar diameters and obtain a sparse representation of the subsurface reflectivity
series. In recent works, some techniques, such as the limited and simplified hyperbolic
summation (LSHS) [76], CNN [45], GA [38], MLP [42], and SVM [12], have been developed
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for automated rebar classification, laying the foundation for next target location mapping.
Some works about this topic are listed in Table 1.
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Table 1. Some examples of the latest GPR works in bridge applications.

References Study Scope GPR Types Center
Frequency Field Data Source

Dinh et al. (2015) [28] Deterioration progression GSSI
ground-coupled radar 1.5 GHZ

Two data collected in 2008 and 2013
from a bridge deck in New Jersey, U.S.

(built in 1978)

Rhee et al. (2019) [60] Deteriorated depth GSSI
air-coupled radar 1 GHZ ‘J’ bridge in Korea (built in 1998)

Kaur et al. (2015) [12]
Rebar detection and

localization; deterioration
map generation

GSSI SIR-20 \ \

Dinh et al. (2019) [63]

Produce an amplitude
map to present location

of rebar and
corrosive area

GSSI 1.5 GHZ

Four data sets collected in: (1) July
2013 from the Elkton Bridge in the U.S.

(built in 1973); (2) August 2013 from
Pequea Bridge in the U.S. (built in

1970); (3) 2014 from Bridge X in Canada
(built in 1966); (4) Bridge Y in Canada

Okazaki et al.
(2020) [68]

Crack formation and
propagation \ \ The data collected from 2005 to 2015

from 1688 bridges in Japan

Jazayeri et al.
(2019) [75]

Rebar diameter
estimation; concrete

permittivity and
conductivity estimation

GSSI ground-coupled
GPR system 1, 2.6 GHZ \

Wang et al. (2020) [38] Rebar detection ProEx RAMAC 500, 800, 1000, 1600
MHZ

The data collected from Ci Er mountain
expressway tunnel in Hebei, China

Asadi et al. (2020) [42] Rebar detection GSSI \

The authors published an open-source
GPR dataset collected from bridge

deck (https://github.com/PouriaAI/
GPR-Detection, accessed on

20 December 2021).

https://github.com/PouriaAI/GPR-Detection
https://github.com/PouriaAI/GPR-Detection
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3.2. Road Pavement Assessment

GPR road application involves the distressing diagnosis of existing roads and quality
control surveys in road projects.

3.2.1. Distress Detection

Road pavements are subject to traffic and temperature variations, resulting in dis-
tresses, such as reflection cracks, defects, or potholes, shortening their lifeline. Early
diagnosis of these distresses allows proper maintenance and rehabilitation. Some of the
literature is summarized in Table 2.

Many technologies have been used for pavement distress detection [77–80]. The work
in [79] detected the cracks under different widths and proved that the signal shape of GPR
is not affected by width. The EM wave velocity in underground media was estimated
in [80] to detect the damaged parts, even the thin cracks can be found. Literature [81]
designed a detector based on the analysis of the reflected signals of potholes and estimated
the corresponding position and dimension. Lagüela et al. [82] studied the joint use of GPR,
IR thermography and terrestrial laser scanning (TLS), and tested them in a road next to the
sea for a comprehensive assessment of pathologies.

Some studies exploited the DL method to identify distress on GPR data. Tong et al. [83]
applied two different CNNs framework, multi-stage CNN and cascaded CNN, to automate
the classification of road defects. The results proved the cascaded CNN outperforms the
multi-stage CNN. The network model developed in [84] deepened multilayer perceptrons
in CNN to extract low-level features first, and then these features were grouped into high-
level features. The network directly uses GPR signals as input data to identify and classify
the type of distress, and evaluate the locations and sizes. Gao et al. [85] developed an object
detection model to detect distress. The model was optimized using both the new anchor
scales and DL tricks such as stochastic pooling.

Table 2. Some examples for road distress detection based on GPR.

References Study Scope GPR Types Center
Frequency Field Data Source

Rasol et al. (2020) [78] Cracks detection;
pavement assessment \ 1.6 GHZ \

Fernandes et al.
(2017) [79]

Pavement
cracks detection

Ground-coupled
GPR system 1.6 GHZ \

Yi et al. (2018) [80]
Airport pavement

inspection;
damage detection

YAKUMO array
GPR System [86] 1.5 GHZ

The data sets acquired
at an examined
airport taxiway.

Li et al. (2016) [81] Pothol detection GPR (MALÅ, Sweden) 800 MHz \

Lagüela et al.
(2018) [82]

Damage detection
in paving

MALÅ
RAMAC system

500, 800 MHZ The data sets collected
from an esplanade area.

Tong et al. (2018) [83]
Subgrade defects

classification;
highway assessment

Air-coupled GPR called
OKO GPR 300, 500, 900 MHZ \

Tong et al. (2020) [84] Pavement
distress detection OKO-2 GPR system 300, 600, 900 MHz

The data sets collected
from four highways in
Heilongjiang with an

overall length of
27,820 m.

Gao et al. (2020) [85] Pavement
distress detection

LTD-2000
air-coupled GPR 300, 500, 900 MHz \
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3.2.2. Quality Control

Effective quality assurance and control inspections of road pavements is taking pri-
ority nowadays. The works [87,88] evaluated and analyzed the frequency spectrum of
GPR signals, and thus to provide an accurate judgment of the internal conditions of pave-
ment materials. For most studies, the acquired data from asphalt layer of road pavement
are interpreted into the relevant input, such as thickness [89–94], permittivity [89,95],
moduli [96], interface roughness [97], or stiffness [98], for flexible pavements assessment.
Among them, asphalt layer thickness is the most relevant input. To estimate the thickness,
De Coster et al. [90] exploited the GPR full-wave inversion and straight-ray methods, and
the study [91] applied the Common Mid-Point (CMP) method. A case study in [92] was
investigated to differentiate the asphalt pavement layers and map their variable thickness.
In addition, the multiple signal classification (MUSIC) method was conducted in [93] to
increase the resolution of 3-D GPR signals for improving the evaluation performance of
asphalt overlay thickness, and used in [97] to compute time delay for assessing interface
roughness. In addition, GPR applications also demonstrates its ability to monitor the
density change during the compaction of asphalt pavement. To extract density information
without the effect of surface moisture, some works [99–101] were investigated on pave-
ment to remove the surface moisture and predict the density profile of asphalt concrete
(AC) pavement.

3.3. Underground Utilities Survey

It is vital to clearly survey underground pipelines when the underground space of an
old urban area is rebuilt and expanded. GPR is usually used to locate utilities, determine
their diameters, and assess water leakage.

3.3.1. Utilities Positioning and Mapping

Underground utility mapping is an important technology for extracting underground
information, which can provide an effective man-machine interaction for safe excavation.

Before locating underground utilities, some preprocessing methods are required,
such as background removal algorithm [102] and pipes visibility increase [24]. Existing
studies [53,103–108] have been implemented for positioning and mapping utilities. In [105],
the interpretation and comparison of the raw B-scans associated with the different pipe
zone and three different GPR system frequencies have allowed us to detect the hyperbola
signatures of the buried pipes. The study [107] about the visualization of urban utilities was
conducted based on the integrated model of GPR and robotic terrestrial positioning system
(TPS). In [108], a smooth 3-D curve with location and depth information was obtained to
intuitively visualize the direction of buried cables. After locating underground pipelines,
the interpretation of GPR data is also very vital for city planning. For example, the diameter
prediction of utilities filled with lossy media [109], the depth and radius estimation of
plastic pipe [110], and the size and condition prediction of drainage pipes [111]. Some
examples can be found in Table 3.

S. Li et al. have contributed to this research from 2015 to 2020 [32,112–114]. In 2015 [112],
an integrated system with GPR, a global positioning system (GPS), and geographical informa-
tion system (GIS) were developed for mapping subsurface pipelines. Next year, to estimate
the buried depth and radius of utilities, the authors [113] proposed a novel hyperbola equation
to model GPR raw data based on the incorporation of the relative angles between buried
utilities and GPR scanning trajectories. In 2018, to further effectively segment the intersecting
hyperbolas, the research [32] mimicked the motion of a raindrop falling and introduced a new
drop-flow scheme to identify and segment GPR signatures into feature components in B-scans.
In 2020 [114], the state of pipes (presence/absence) can be inferred by fusing the evidence
from heterogeneous sources based on the Dempster–Shafer evidence theory.
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Table 3. Some examples of the latest GPR works in mapping underground utilities.

References Study Scope GPR Types Center
Frequency Field Data Source

Kim et al. (2019) [53] Classify cavity,
pipe, manhole

Step-frequency
GPR system 500 to 1800 MHz

The data collected from
urban roads in Seoul,

South Korea

Prego et al. (2017) [103] Buried pipes detection \ 500 MHZ, 800 MHZ,
1 GHZ, 2.3 GHZ \

Metwaly et al.
(2015) [104]

Locating and imaging
the subsurface utilities GSSI SIR 3000 400 MHZ

The data collected from
Al-Sulimania bridge in

Holy Mecca

Sagnard et al.
(2016) [105]

Pipe detection;
dielectric measurement GSSI SIR 3000 500,900,1600 MHz \

Jiang et al. (2019) [108] Buried cables mapping GSSI SIR 30 200 MHZ \
Zhou et al. (2019) [110] Plastic pipe detection GSSI SIR 30 200, 400 MHZ \

Yuan et al. (2018) [32] Underground
utilities identification \ 300 MHZ, 1.5 GHZ \

Li et al. (2015) [112] 3-D underground
utility mapping MALA GPR system 800 MHZ \

Li et al. (2016) [113]
Utility localization;

depth and
radius estimation

\ 400, 500, 800, 900 MHZ

Examples 1–4 are taken
from the study by
Ristic et al. (2009);

examples 5–8 are based
on experiments

conducted in West
Lafayette, Indiana

Cai et al. (2020) [114] Mapping
underground utility

MALA ProEx
GPR System 800 MHZ \

3.3.2. Water Leakage Detection

Leakage detection in a buried water pipe is a crucial issue as underground pipes
become aged. Many studies have used GPR as an effective tool because its EM wave is
highly sensitive to the water in the soil. For example, the work [115] reviewed two measure
means: GPR and IR camera, to detect and locate water leakage in pipeline networks. GPR is
first used to locate buried utilities, followed by the IR technique for subtle leakage collection.
In addition to these two techniques, the study [116] also considered an additional technique,
acoustic detectors, for the environment with high soil moisture and to make up for the
inadequate operational capabilities of GPR and IR in the same environment. By detecting
the water leak from the pipes buried in a sand box [117], the work compared the collected
data with different patterns and diagnosed if there is leakage issue. In [118], the authors
measured the changes in EM wave velocity and wave reverberation to sense an integrated
water leakage. The comparative results proved leakages could be identified most clearly in
the 600 MHz GPR.

3.4. Urban’s Subsurface Risks

Urban areas often face road safety problems caused by sudden road cave-ins, which
seriously threatens people’s life and property safety. In order to prevent road collapse
accidents, extensive research has been carried out. Some examples of literature are listed
in Table 4.
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3.4.1. Void Risk

Void disease caused by construction quality and external loads contributes to the
failure of RC structures. The authors [119] proposed a void-detection algorithm using the
target echoes data collected from railways. Based on the typical target echo models of rebar
and void, a horizontal filter was constructed to identify the void diseases and eliminate the
interference of rebar echoes. The study [120] identifies voids based on the SVM classifier,
using features vectors composed of discrete cosine transform (DCT) coefficients as input.
The authors [121] established a database of void patterns of both C-scans and B-scans,
wherein voids were automatically located from C-scans and verified from corresponding
B-scans. A novel framework based on multi-sensors (such as unmanned aerial vehicles
(UAV)) and GPR was proposed. Both works in [122,123] exploited GPR data to detect voids
in disaster areas, with the purpose of providing related information to rescue potential
victims buried/trapped in ruined buildings.

3.4.2. Sinkhole Risk

The sinkhole is located beneath a street and has led to the demolition of buildings.
This section considers the current literature on sinkhole occurrence through the deployment
of GPR. Solutions have been grasped; preventative planning based on early detection is
among the most effective available solutions [49,124]. The literature [49] first developed the
concept of 3-D S-transform, which allowed the study of 3-D GPR data, and was used to look
for sinkholes in geological structures. Sevil et al. [124] conducted a sinkhole investigation
by analyzing and comparing data gathered by several different strategies: trenching,
GPR technique, electrical resistivity tomography (ERT), and high-precision leveling. The
combination of common methods can provide the key information for specific sinkholes.

3.4.3. Cavity Risk

Ground cavity configurations, including depth, roof shape, and length, are the main
factors affecting the risk of ground sinkholes. Much research has focused on urban cavity
detection using 3-D GPR data. A case study was achieved based on the 3-D GPR mapping,
which provided most of the identified cavities [125]. In addition, the tailored CNN-based
cavity detection techniques were studied in [56,126]. The authors [126] established an
underground cavity detection network (UcNet) to decrease underground cavity misclassifi-
cation, and the study [56] developed a CNN framework that was based on the pre-trained
AlexNet and enhanced by the transfer learning technique. Some additional techniques,
such as instantaneous phase analysis [127] and domain reflectometry [128], also were
integrated with the GPR technique to estimate the status of the cavity. The study [127]
visualized and distinguished the hidden cavities from other underground objects such as
buried pipes and manholes. The work [128] developed a novel time domain reflectometry-
based penetrometer system to accurately estimate the relative permittivity of the ground at
different depths.

Table 4. Some examples of the latest GPR works in urban risk applications.

References Study Scope GPR Types Center
Frequency Field Data Source

Yang et al.
(2019) [119]

Void disease
identification RIS-K2 system 2 GHZ, 900 MHZ

The data collected in 2015 from
CRTS-II slab ballastless,

Shijiazhuang
Tiedao University.

Luo et al. (2020) [121] Subsurface voids
identification GSSI SIR-4000 400, 900 MHZ

The data collected from a
seawall platform in Tai O,

Hong Kong.

Qin et al. (2016) [120] Voids identification \ 400 MHZ \
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Table 4. Cont.

References Study Scope GPR Types Center
Frequency Field Data Source

Sevil et al.
(2017) [124] Sinkhole mapping RIS system 40, 100, 200 MHZ

7 common offset GPR profiles
were acquired in the sinkhole

site: one along the street in
April 2013, six in March 2017,

three along the street, and
three across the street and

the trench.

Garcia-Garcia et al.
(2017) [125] Cavity mapping GSSI SIR-3000 400 MHZ

The data collected on road area
(7 m × 42 m) situated in

Torrente, Spanish.

Kang et al. (2020) [56] Underground
cavity detection

GEOSCOPE MK
IV30 system 200–3000 MHZ

The data obtained from a total
of 13 km of urban roads in 17

different regions in Seoul,
South Korea.

Park et al.
(2018) [127]

Underground objects
(cavity, pipe,

manhole) detection
and classification

DXG1820
GPR antenna

1.6 GHZ,
200–3000 MHZ

The data collected on urban
road area (0.7 km) near subway
station in Seoul, South Korea.

Hong et al.
(2018) [128]

Estimate the ground
cavity configurations GSSI SIR-3000 270 MHZ \

4. Discussion and Conclusions

This section includes a comprehensive discussion of GPR data analysis techniques
and future perspectives, as shown in Figure 6.
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4.1. Comprehensive Discussion of GPR Data Analysis Techniques

At present, a large amount of data analysis techniques have been carried out on the
GPR target detection task. However, the existing research work still relies on manual work,
and the challenges brought by the complex instability of subsurface scenes have not been
fully solved. The main challenges of the data analysis techniques in the GPR field are
summarized as follows:
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4.1.1. Lack of Effective Signature Extraction Strategies in Complex Scenarios

Most of the existing work assumes obtaining high-quality GPR simulation data under
ideal scenarios and relies on these data to perform tasks related to subsurface target
detection, localization, and parameter evaluation. The task effectiveness depends on the
quality of the data, which largely determines the simplicity of the subsequent processing
steps and the correctness of the evaluation results. However, in a complex environment,
consistent, high-quality data and high-performance results are not always available, which
may lead to serious misjudgment of the perception of underground targets. In addition,
many underground structures, irregular target distribution, unknown target size, depth
information, and complex underground media conditions greatly limit the automatic real-
time development of large-scale target recognition systems. As the dielectric constant of
underground fillings is highly related to weather conditions, the surrounding environment,
and emergencies, the reflected ground penetrating radar signal is too weak or even invisible,
which may lead to the omission of target objects under the conditions of high surface water
content, diverse fillings, and corrosion of buried objects.

It is of great research value to deeply understand the attributes of the target itself,
especially to distinguish the characteristics between target and non-target. It is necessary to
design an effective feature extraction strategy for GPR target detection in complex situations.
In this way, not only all target features can be completely extracted from the whole GPR
image, but they can also not be interfered with by adjacent or overlapping targets so as to
obtain effective, high-quality data.

4.1.2. Lack of Customized Deep Models for Different Types of Target Signatures

First, the DL technique can be used for most image-related tasks, but radar images
are different from conventional images, and the internal architecture of the deep model
is not closely related to the attributes of the radar map and the target features. Therefore,
directly applying the deep models to GPR data analysis may ignore useful information,
resulting in their redundant processing. In addition, the synthetic aperture length of GPR is
much larger than the target size, so the rising and falling edges of the hyperbolic feature of
the target in GPR imaging are steep; that is to say, the vertical and horizontal proportions
of the rising and falling edges are large, which leads to the area where the hyperbolic
features of the target are located. The proportion of pixels in the whole GPR image is very
small, showing typical small target characteristics. When the conventional depth model is
applied to the detection of these small target features, it is easy to cause the loss and missed
detection of dense small targets.

Therefore, it is necessary to design a specific target detection model to match the
input features of each target type. Since the features extracted by the deep model are non-
intuitive and difficult to interpret, how to design an effective model for specific applications
in specific scenarios and focus on exploring and interpreting the internal structure of the
deep model is a challenging and meaningful research problem.

4.2. Future Perspective

This paper provided an overview of the states of research on employing the GPR tech-
nique in the civil engineering world. As a comprehensive overview of GPR data analysis
and processing, this paper has analyzed the complexity of GPR signals, summarized the
popular A/B/C-scan processing methods, provided some structural categories according
to the feature extraction style, and discussed the advanced applications for the civil infras-
tructure. Although significant progress has been made, the following discussion identifies
some promising directions for exploratory research.
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4.2.1. Matching Consistency between GPR Feature and Deep Model

In practical operation, multiple factors such as the changes in radar parameters, the
complexity of the underground medium, or the non-uniform movement of the T/R antenna
will cause the target characteristics to be distorted in the image domain. It is necessary
to design the corresponding DL model that enables matching each type of input feature
to complete the target recognition process. Since the features extracted by DL models are
non-intuitive and difficult to explain, it is still a challenge to design matching models for
certain application-oriented problems. Future research can focus on the exploration and
interpretation of the internal structure of the DL model so as to expand its application scope.

4.2.2. Reduced Dependence on Large Amounts of Data

DL-based GPR analysis has not kept pace with the rapid progress in other fields,
partially due to the unavailability of a large-scale radar database. Therefore, there is an
important need for a high-quality, large-scale GPR dataset, which will greatly promote
radar data analysis. However, in many applications, only a limited number of annotated
training data are available, or it is too expensive to collect labeled training data. Possible
research could be to develop the learnable multi-dimensional descriptors that require
modest training data or to explore effective transfer learning.

4.2.3. Impact of Multiple Factors on Data Analysis

Several factors, such as material, condition, and environment, must be considered
while performing GPR data analysis. For example, for bridge applications, these factors
include the condition of the asphalt concrete overlay and its material properties and
moisture, deck structure, and extent of deterioration. For road pavement applications,
these factors include reflection cracks, defects distribution, potholes, moisture, and cavity
existence. For underneath utilities survey, these factors include materials, the extent of
deterioration, corrosion, and water leakage. For subsurface risks, these factors concern
cavity depth, roof shape, and length. Further research is needed to study the impacts of
these factors individually and the impacts of the combination of multiple of these factors.

4.2.4. Integrated NDT Technologies

Some studies integrated results from GPR and other high-performance NDTs for
supporting various subsurface conditions. Future research to complete the integration
task needs to concern: (1) Selecting the technologies to integrate for specific conditions;
(2) Evaluating the number of technologies to integrate according to the functions that need
to be implemented; (3) Automatically integrating results of multiple technologies into one
output, instead of separately integrating results collected from multiple technologies.

4.3. Literature Review Comparison

Table 5 discusses several existing literature reviews [1,25,129,130] from the aspects of
reference sources, research fields, research sites, research cycles, various applications, and
signal processing methods and compares them with this paper.

4.4. Paper Selection Strategy

A search strategy for identifying relevant literature must be developed. This review
paper follows the PRISMA method (https://www.prisma-statement.org/Default.aspx,
accessed on 24 March 2020). This includes selecting search terms and appropriate databases
and deciding on inclusion and exclusion criteria. This search work lasted from May 2019
to June 2022, and the publications were retrieved from the most recognized international
scientific citation indexing services. This work used two reviewers to select articles.

https://www.prisma-statement.org/Default.aspx
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Table 5. Comparison between GPR review works.

References Study Field Site Study Period Various Applications Signal Processing

Lai et al. (2018) [1] Civil engineering \ 1986–2016

Building, road pavement,
tunnel liners, geology,

underground utilities, concrete
properties, and corrosion

\

Xiang et al.
(2019) [129]

Constructed
facilities \ \

Building, road pavement,
underground utilities, 3-D
reconstruction, archeology,

mineral exploration, geology

Postprocessing (data trace
editing, noise removal, convert

time domain to depth scale,
migration); interpretation

(neural network, multi-agent
system, data fusion,

drop-flow algorithm)

Benedetto et al.
(2017) [25] Road engineering \ \ Road inspection

Basic processing (data editing,
time-zero correction); A-scan

processing (zero offset removal,
band pass filtering,

time-varying gain, resolution
improvement); B-scan

processing (background
removal, velocity analysis)

Benedetto et al.
(2016) [130]

Engineering,
Geoscience Italy \

Structures and hydraulics,
transport infrastructures (road,
railway, airport, bridge, tunnel),
underground utilities, geology
and environment, archeology,

glaciology, demining, and
public safety

\

Ours Civil engineering \ 2015–2020

Bridge, road pavement,
underground utilities, urban

subsurface risks (void,
sinkhole, cavity)

A-scan processing (noise
removal, resolution

enhancement, object detection,
material property analysis);

B-scan processing (image-, ML-,
DL-target identification); C-scan
processing (3-D reconstruction,

target recognition)

First, three databases are utilized to search references: (1) Web of Science (due date:
06/2022) (https://www.webofscience.com/, accessed on 2 April 2020); (2) Elsevier (due
date: 05/2022) (https://www.sciencedirect.com/, accessed on 17 March 2020); (3) IEEE/IET
Electronic Library (due date: 03/2022) (https://ieeexplore.ieee.org/, accessed on 29 De-
cember 2020). Second, search terms can be words or phrases that are directly related to
the research question of each subsection. Third, a strategy is required to narrow the search
range and point out indeed relevant literature. Criteria that are considered and used are:
(1) the year of publications is limited in recent years from 2015 to 2022, except for some clas-
sical literature; (2) the type of articles focuses on scholarly journals, top-level computation
conference proceedings, and books; (3) the language of articles is limited to English.
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Abbreviations

Abbreviation Description
AC Asphalt Concrete
Bbox Bounding Box
Bi-LSTM Bi-Directional Long Short-Term Memory
BP Back Propagation
C3 Column Connection Clustering
CMP Common Mid-Point
DC Direct Current
DCSE Double Cluster Seeking Estimate
DCT Discrete Cosine Transform
DL Deep Learning
EM Electromagnetic
ERT Electrical Resistivity Tomography
FWI Full-Waveform Inversion
GA Genetic Algorithm
GIS Geographical Information System
GPR Ground Penetrating Radar
GPS Global Positioning System
HOG Histogram of Oriented Gradient
IEEE Institute of Electrical and Electronics Engineers
IET The Institution of Engineering and Technology
InSAR Interferometric Synthetic Aperture Radar
IR Infrared
LS Least Squares
LSHS Limited and Simplified Hyperbolic Summation
ML Machine Learning
MLP Multilayer Perceptron
MUSIC Multiple Signal Classification
NDT Non-Destructive Testing
NN Neural Network
ANN Artificial Neural Network
BP-ANN Back Propagation-Artificial Neural Network
CNN Convolutional Neural Networks
DeepCNN Deep Convolutional Neural Networks
RNN Recurrent Neural Networks
R-CNN Region-CNN
Faster R-CNN Faster Region-CNN
Mask R-CNN Mask Region-CNN
OSCA Open-Scan Clustering Algorithm
PCs Principal Components
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
R antenna Receiving antenna
T antenna Transmitting antenna
RBF Radial Basis Function
RC Reinforced Concrete
ResNet50 Residual Network 50
RoI Region of Interest
SAFT Synthetic Aperture Focusing Technique
SBD Sparse Blind Deconvolution
SVM Support Vector Machine
CSVM Convolutional SVM
TLS Terrestrial Laser Scanning
TPS Terrestrial Positioning System
UAV Unmanned Serial Vehicles
UcNet Underground Cavity Detection Network
YOLO v2 You Only Look Once Version 2
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1-D One-Dimensional
2-D Two-Dimensional
3-D Three-Dimensional
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