Nondestructive Evaluation of Localized Rebar Corrosion in Concrete Using Vibro-Radar Based on Pulse Doppler Imaging
Abstract
:1. Introduction
2. Principle of Waveform-Based Vibration Displacement Measurement
3. Principle of Imaging-Based Vibration Displacement Measurement
4. Performance Evaluation of the Developed Vibro-Radar System
4.1. Pulse Doppler Radar System
4.2. Overview of Experiment
4.3. Doppler Characteristics in Developed VDR System
4.4. Imaging Characteritics in Developed VDR System
4.5. Comparison between Developed and Conventional VDR System
5. Monitoring Experiment of Spatially Distributed Vibration Displacement of Rebar during Electrolytic Corrosion
5.1. Overview of Electrolytic Corrosion Test
5.2. Corrosion Status of Rebars
5.3. Monitoring Results for Spatial Distribution of Rebar Vibration Displacement
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grantham, M. Diagnosis, inspection, testing and repair of reinforced concrete structures. Adv. Concr. Technol. 2003, 2, 1–54. [Google Scholar] [CrossRef]
- Popovics, J.S.; Rose, J.L. A survey of developments in ultrasonic NDE of concrete. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1994, 41, 140–143. [Google Scholar] [CrossRef]
- Ndagi, A.; Umar, A.A.; Hejazi, F.; Jaafar, M.S. Non-destructive assessment of concrete deterioration by ultrasonic pulse velocity: A review. IOP Conf. Ser. Earth Environ. Sci. 2019, 357, 012015. [Google Scholar] [CrossRef]
- Shaaban, I.G.; Rizzuto, J.P.; El-Nemr, A.; Bohan, L.; Ahmed, H.; Tindyebwa, H. Mechanical properties and air permeability of concrete containing waste tyres extracts. J. Mater. Civ. Eng. 2001, 3, 04020472. [Google Scholar]
- Brencea, J.R.; Brown, D.E. Data mining corrosion from eddy current non-destructive tests. Comput. Ind. Eng. 2002, 43, 821–840. [Google Scholar] [CrossRef]
- Novikov, V.F.; Sokolov, R.A.; Neradovskiy, D.F.; Muratov, K.R. A technique for predicting steel corrosion resistance. IOP Conf. Ser. Mater. Sci. Eng. 2018, 289, 012013. [Google Scholar] [CrossRef]
- Frankowski, P.K.; Chady, T.; Zieliński, A. Magnetic force induced vibration evaluation (M5) method for frequency analysis of rebar-debonding in reinforced concrete. Measurement 2021, 182, 109655. [Google Scholar] [CrossRef]
- ASTM C876-15; Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete. ASTM International: West Conshohocken, PA, USA, 2015. Available online: https://www.astm.org/Standards/C876.htm (accessed on 2 August 2022).
- Elsener, B.; Andrade, C.; Gulikers, J.; Polder, R.; Raupach, M. Half-cell potential measurements—Potential mapping on rein-forced concrete structures. Mater. Struct. 2003, 36, 461–471. [Google Scholar] [CrossRef]
- Sadowski, L. Methodology for assessing the probability of corrosion in concrete structures on the basis of half-cell potential and concrete resistivity measurements. Sci. World J. 2013, 2013, 714501. [Google Scholar] [CrossRef]
- Medeiros, M.H.F.; Rocha, F.C.; Medeiros, R.A., Jr.; Helene, P. Corrosion potential: Influence of moisture, water-cement ratio, chloride content and concrete cover. Rev. IBRACON Estrut. Mater. 2017, 10, 864–885. [Google Scholar] [CrossRef]
- Stern, M.; Geary, A.L. Electrochemical polarization I. A theoretical analysis of shape of polarization curves. J. Electrochem. Soc. 1957, 104, 56–63. [Google Scholar] [CrossRef]
- Song, H.W.; Saraswathy, V. Corrosion monitoring of reinforced concrete structures—A review. Int. J. Electrochem. Sci. 2007, 2, 1–28. [Google Scholar]
- Figueira, R.B. Electrochemical sensors for monitoring the corrosion conditions of reinforced concrete structures: A review. Appl. Sci. 2017, 7, 1157. [Google Scholar] [CrossRef]
- MacDonald, D.D.; El-Tantawy, Y.A.; Rocha-Filho, R.C.; Urquidi-Macdonald, M. Evaluation of electrochemical impedance techniques for detecting corrosion on rebar in reinforced concrete. In Research Report on Strategic Highway Research Program; 1994; Available online: http://onlinepubs.trb.org/onlinepubs/shrp/SHRP-91-524.pdf (accessed on 20 August 2022).
- Ribeiro, D.; Abrantes, J. Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: A new approach. Constr. Build. Mater. 2016, 111, 98–104. [Google Scholar] [CrossRef]
- Sohail, M.G.; Kahraman, R.; Alnuaimi, N.A.; Gencturk, B.; Alnahhal, W.; Dawood, M.; Belarbi, A. Electrochemical behavior of mild and corrosion resistant concrete reinforcing steels. Constr. Build. Mater. 2020, 232, 117205. [Google Scholar] [CrossRef]
- Sansalone, M.; Streett, W.B. Impact-Echo: Nondestructive Testing of Concrete and Masonry; Bullbrier Press: Jersey Shore, PA, USA, 1997. [Google Scholar]
- Ahmad, N.; Rahim, R.A.; Rahim, H.A.; Rahiman, M. A review of ultrasonic application on non-destructive testing method for concrete structure. J. Teknol. 2014, 70, 112–119. [Google Scholar] [CrossRef]
- Frankowski, P.K.; Chady, T. Impact of magnetization on the evaluation of reinforced concrete structures using DC magnetic methods. Materials 2022, 15, 857. [Google Scholar] [CrossRef]
- Shull, P.J. Nondestructive Evaluation: Theory, Techniques and Applications; CRC Press: New York, NY, USA, 2002. [Google Scholar]
- Rubinacci, G.; Tamburrino, A.; Ventre, S. Concrete rebars inspection by eddy current testing. Int. J. Appl. Electromagn. Mech. 2007, 25, 333–339. [Google Scholar] [CrossRef]
- De Alcantara, J.N.P.; Da Silva, F.M.; Guimarães, M.T.; Pereira, M.D. Corrosion assessment of steel bars used in reinforced concrete structures by means of eddy current testing. Sensors 2015, 16, 15. [Google Scholar] [CrossRef]
- Kobayashi, K.; Banthia, N. Corrosion detection in reinforced concrete using induction heating and infrared thermography. J. Civ. Struct. Health Monit. 2011, 1, 25–35. [Google Scholar] [CrossRef]
- Baek, S.; Xue, W.; Feng, M.Q.; Kwon, S. Nondestructive corrosion detection in RC through integrated heat induction and IR thermography. J. Nondestruct. Eval. 2012, 31, 181–190. [Google Scholar] [CrossRef]
- Sirca, G.F.; Adeli, H. Infrared thermography for detecting defects in concrete structures. J. Civ. Eng. Manag. 2018, 24, 508–515. [Google Scholar] [CrossRef]
- Annan, A.P. Electromagnetic Principles of Ground Penetrating Radar. In Ground Penetrating Radar: Theory and Applications; Elsevier: Amsterdam, The Netherlands, 2009; pp. 3–40. [Google Scholar]
- Hasan, I.; Yazdani, N. An experimental study for quantitative estimation of rebar corrosion in concrete using ground penetrating radar. J. Eng. 2016, 2016, 8536850. [Google Scholar] [CrossRef]
- Zaki, A.; Johari, M.A.M.; Hussin, W.M.A.W.; Jusman, Y. Experimental assessment of rebar corrosion in concrete slab using ground penetrating radar (GPR). Int. J. Corros. 2018, 2018, 5389829. [Google Scholar] [CrossRef]
- Tešić, K.; Baričević, A.; Serdar, M. Non-destructive corrosion inspection of reinforced concrete using ground-penetrating radar: A review. Materials 2021, 14, 975. [Google Scholar] [CrossRef]
- Hugenschmidt, J.; Loser, R. Detection of chlorides and moisture in concrete structures with ground penetrating radar. Mater. Struct. 2007, 41, 785–792. [Google Scholar] [CrossRef]
- Senin, S.; Hamid, R. Ground penetrating radar wave attenuation models for estimation of moisture and chloride content in concrete slab. Constr. Build. Mater. 2016, 106, 659–669. [Google Scholar] [CrossRef]
- Wakayama, T.; Sato, T.; Kimura, I. Radar image-reconstruction in layered inhomogeneous media by discrete model-fitting method. IEEE Antennas Propag. Soc. Int. Symp. 1994, I–III, 1664–1667. [Google Scholar] [CrossRef]
- Tanaka, S.; Yamada, M. Non-destructive inspection of concrete structures using an electromagnetic wave (radar) based on a signal propagation model. Trans. Soc. Instrum. Control Eng. 2003, 39, 432–440. [Google Scholar] [CrossRef]
- Shen, R.; Zhao, Y.; Hu, S.; Li, B.; Bi, W. Reverse-time migration imaging of ground-penetrating radar in NDT of reinforced concrete structures. Remote Sens. 2021, 13, 2020. [Google Scholar] [CrossRef]
- Takayama, J.; Ohara, Y.; Sun, W. Nondestructive evaluation of air voids in concrete structures using microwave radar technique. SICE J. Control Meas. Syst. Integr. 2021, 15, 26–47. [Google Scholar] [CrossRef]
- Miwa, T. Non-destructive and quantitative evaluation of rebar corrosion by a vibro-Doppler radar method. Sensors 2021, 21, 2546. [Google Scholar] [CrossRef] [PubMed]
- Munakata, K.; Kamada, T.; Uchida, S.; Mae, H.; Minezawa, H. Nondestructive evaluation of deterioration around rebar based on elastic waves generated by electromagnetic force. In Proceedings of the 7th International Symposium on Nondestructive Testing in Civil Engineering, Nantes, France, 30 June–3 July 2009; Available online: https://www.ndt.net/article/ndtce2009/papers/183.pdf (accessed on 3 September 2022).
- Li, C.; Lubecke, V.M.; Boric-Lubecke, O.; Lin, J. A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring. IEEE Trans. Microw. Theory Tech. 2013, 61, 2046–2060. [Google Scholar] [CrossRef]
- Van, N.T.P.; Tang, L.; Demir, V.; Hasan, S.F.; Minh, N.D.; Mukhopadhyay, S. Review-microwave radar sensing systems for search and rescue purposes. Sensors 2019, 19, 2879. [Google Scholar] [CrossRef]
- Charvat, G.L.; Kempel, L.C.; Rothwell, E.J.; Coleman, C.; Mokole, E.L. A through-dielectric radar imaging system. IEEE Trans. Antennas Propag. 2010, 58, 2594–2603. [Google Scholar] [CrossRef]
W/C [%] | [kg/m3] | Air [%] | Compressiv Strength [MPa] | Tensile Strength [MPa] | Modulus of Elasticity [GPa] | ||||
---|---|---|---|---|---|---|---|---|---|
Water W | Cement C | Fine Aggregate S | Course Aggregate G | Admixture Ad | |||||
63 | 180 | 285 | 752 | 1155 | 2.85 | 4.5 | 28.2 | 4.45 | 31.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miwa, T.; Nakazawa, Y. Nondestructive Evaluation of Localized Rebar Corrosion in Concrete Using Vibro-Radar Based on Pulse Doppler Imaging. Remote Sens. 2022, 14, 4645. https://doi.org/10.3390/rs14184645
Miwa T, Nakazawa Y. Nondestructive Evaluation of Localized Rebar Corrosion in Concrete Using Vibro-Radar Based on Pulse Doppler Imaging. Remote Sensing. 2022; 14(18):4645. https://doi.org/10.3390/rs14184645
Chicago/Turabian StyleMiwa, Takashi, and Yuri Nakazawa. 2022. "Nondestructive Evaluation of Localized Rebar Corrosion in Concrete Using Vibro-Radar Based on Pulse Doppler Imaging" Remote Sensing 14, no. 18: 4645. https://doi.org/10.3390/rs14184645
APA StyleMiwa, T., & Nakazawa, Y. (2022). Nondestructive Evaluation of Localized Rebar Corrosion in Concrete Using Vibro-Radar Based on Pulse Doppler Imaging. Remote Sensing, 14(18), 4645. https://doi.org/10.3390/rs14184645