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Abstract: Ground-penetrating radar (GPR) has been widely used to detect subsurface objects, such as
hidden cavities, buried pipes, and manholes, owing to its noncontact sensing, rapid scanning,
and deeply penetrating remote-sensing capabilities. Currently, GPR data interpretation depends
heavily on the experience of well-trained experts because different types of underground objects often
generate similar GPR reflection features. Moreover, reflection visualizations that were obtained from
field GPR data for urban roads are often weak and noisy. This study proposes a novel instantaneous
phase analysis technique to address these issues. The proposed technique aims to enhance the
visibility of underground objects and provide objective criteria for GPR data interpretation so that the
objects can be automatically classified without expert intervention. The feasibility of the proposed
technique is validated both numerically and experimentally. The field test utilizes rarely available
GPR data for urban roads in Seoul, South Korea and demonstrates that the technique allows for
successful visualization and classification of three different types of underground objects.

Keywords: ground-penetrating radar; underground object classification; urban road; sinkhole; signal
processing; basis pursuit filter; phase analysis

1. Introduction

Sinkholes are one of the most severe threats to urban roads. Sudden ground collapse can lead
to road closure, economic loss, and human fatalities and injuries. Several major sinkhole incidents,
including in urban roads, have been reported in recent years, e.g., in Hangzhou, China (April 2016) [1],
Fukuoka, Japan (November 2016) [2], and Cheltenham township, PA, USA (January 2017) [3].
Extraction of groundwater, changes in water drainage patterns, and water main breakages are
considered to be the main causes of the underground cavities that can potentially develop into
urban sinkholes [4,5]. As sinkholes often appear without any forewarning, the demand for their early
detection in urban areas is increasing.

Nondestructive sensing via ground-penetrating radar (GPR) is gaining popularity for
underground visualization, because it offers noncontact testing, fast scanning speeds, and deep
penetration [6]. GPR emits high-frequency electromagnetic waves into the subsurface and analyzes
the reflected electromagnetic waves. As reflection only occurs if there is an abrupt change in the
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electromagnetic characteristics of the medium, underground structures and their boundaries can
be identified by analyzing the received signal. The main applications of GPR have been in the
archeological and geological fields, where it is used for mapping subsurface features [7–9]. It has
been also applied for other fields [10], including demining [11], identifying veins of the mineral [12],
monitoring of mines and tunnels [13], and forensic applications [14]. Its use has recently been extended
to detecting underground cavities and potential sinkholes [15–17].

Currently, the identification and classification of underground objects with GPR data heavily rely
on the time-consuming and labor-intensive work of well-trained experts. In urban areas, an expert
may be able to analyze no more than a few kilometers of three-dimensional GPR (3D GPR) data in
a week. Moreover, the interpretation of these data depends on the subjective judgment of the expert,
meaning that the results may be unreliable at times. GPR signals reflected from the pavement layer
of urban roads typically dominate the reflection profile because of the large permittivity difference
between the pavement interface and air. Underground objects cause relatively weak and noisy
reflected signals, making data interpretation more challenging. Although the dominant signals
can be partially eliminated by subtracting a reference signal from the GPR signal (known as the
subtraction or background removal method [18,19]), this method is highly susceptible to noise and
small signal disturbances in the time domain, e.g., variations in pavement thickness or unexpected
arbitrary boundary conditions in the pavement. Time-varying gains have been used to enhance weak
reflection signals [6,20], but this requires the careful selection of the gain values on the part of the user.
A further technical challenge in GPR data interpretation is that similar GPR features are often generated
by different underground objects. Even if an underground object is identified, it is challenging to
classify it. In particular, the reflected signal from an underground cavity is often indistinguishable from
the signals from other underground objects, such as pipes, manholes, or gravel. Without cumbersome
underground boreholing, it can be difficult to confirm the presence of a cavity.

This study addresses these issues by proposing an instantaneous phase analysis technique for
underground object classification. This technique aims to enhance the visibility of underground objects
and provide objective criteria for GPR data interpretation, so that the objects can be automatically
classified without expert intervention. Background filtering is first applied to 3D GPR data to enhance
the visibility of objects beneath urban roads and hence reduce the need for human intervention in data
analysis. The background signals, including dominant reflections from the pavements, are filtered
out using a basis pursuit approach, and the underground objects are visualized by reconstructing
the filtered 3D GPR data. An instantaneous phase analysis technique is then applied to classify the
visualized underground objects. Reflections from cavities are in-phase with the direct GPR waves,
whereas reflections from other underground objects are out-of-phase, meaning that underground
objects can be classified while using phase analysis. Although the proposed technique uses a simple
electromagnetic wave propagation model, numerical modeling and experimental validation with rare
field-test data from urban roads in Seoul, South Korea confirm that it is effective for underground
object identification.

This paper is organized, as follows. Section 2 details the working principles of GPR and explains
the proposed instantaneous phase analysis technique. In Section 3, the technique is numerically
validated using models of various types of underground objects, such as an underground cavity and a
buried pipe. Section 4 then examines the feasibility of the proposed technique with experimental field
data obtained from urban roads in Seoul, South Korea. The paper concludes with a brief summary and
discussion of its application in Section 5.

2. Underground Object Classification Using GPR Data

This section sets out the proposed instantaneous phase analysis method for underground object
classification. The working principles of GPR and the technical limitations of conventional GPR data
analysis techniques are first briefly introduced. A novel underground object classification technique
to automatically classify the underground objects is then proposed. This involves enhancing the
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visibility of underground GPR signals through the application of a basis pursuit filter and then using
instantaneous phase analysis to classify the visualized object.

2.1. Working Principles of GPR

Figure 1 schematically illustrates a typical GPR setup for underground object visualization.
The GPR system consists of an antenna and a data acquisition system (upper part of Figure 1).
In the antenna system, a transmitter (T) emits high frequency electromagnetic wave pulses and a
receiver (R) detects the reflected electromagnetic waves. Electromagnetic wave pulse excitation is
commonly achieved while using stepped-frequency technology by sweeping the desired frequency
band [21]. Any change in the electromagnetic characteristics of the medium, such as its permittivity
and permeability, causes the electromagnetic waves to be reflected [22]. The incident electromagnetic
field of the waves at the reflection location can be represented by

Ei(z, t) = Eiej(k1z−ωt)x̂, (1)

Bi(z, t) =
Ei

v1
ej(k1z−ωt)ŷ, (2)

where Ei(z, t) and Bi(z, t) indicate the incident electric and magnetic fields at a specific depth z
and point in time t, and Ei is the amplitude of the incident electric field. k1, ω, and v1 refer to the
wavenumber, frequency, and velocity of the electromagnetic waves in the corresponding medium,
respectively. The reflected electromagnetic field can be expressed as

Er(z, t) = Erej(−k1z−ωt)x̂, (3)

Br(z, t) = −Er

v1
ej(−k1z−ωt)ŷ. (4)

here, Er represents the amplitude of the reflected electric field:

Er =

(
n1 − n2

n1 + n2

)
Ei =

√
ε1µ1 −

√
ε2µ2√

ε1µ1 +
√

ε2µ2
Ei, (5)

where n1 and n2 are the refractive indices of each medium. ε1 and µ1, and ε2 and µ2 refer to the
relative permittivity and relative permeability of the initial medium (1) and the new medium (2),
respectively. These reflected electromagnetic waves are then collected by the data acquisition system.
The collected signal contains multiple pulses corresponding to each reflection. The amplitude of
the reflected electromagnetic field is larger where there is a greater difference in electromagnetic
properties. Note that the above explained electromagnetic wave propagation is a simplified model
and it does not perfectly match with the actual wave propagation on the soil. However, even though
the proposed technique uses a simple electromagnetic wave propagation model, its superiority for
underground object classification will be verified while using numerical and experimental methods in
the following sections.

The reflection data are next analyzed for underground object detection. When GPR scans along
the region of interest, three different data representations, A-, B-, and C-scans, are typically obtained.
These are illustrated in the lower part of Figure 1. The A-scan provides punctual time domain
information (the z-axis in Figure 1) at a certain spatial point. The B-scan image, representing the x–z
plane, is constructed by stacking multiple A-scan data along the scanning direction (the x-axis in
Figure 1). If there is an abrupt change in permittivity due to an underground object in a specific area,
a parabola typically appears in the B-scan image. This phenomenon occurs because the transmitter
and receiver are not located at the exact same spatial location. This parabola feature is often used
to detect underground objects. The C-scan image is obtained in the x–y domain by stacking B-scan
images that were measured by multiple antennae. C-scan images can be obtained along the z-axis to
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physically represent a certain depth. C-scan images revealing cross-sectional images of objects are also
useful for detection purposes.

Remote Sens. 2018, 10, x FOR PEER REVIEW  3 of 24 

 

visibility of underground GPR signals through the application of a basis pursuit filter and then using 
instantaneous phase analysis to classify the visualized object. 

2.1. Working Principles of GPR 

Figure 1 schematically illustrates a typical GPR setup for underground object visualization. The 
GPR system consists of an antenna and a data acquisition system (upper part of Figure 1). In the 
antenna system, a transmitter (T) emits high frequency electromagnetic wave pulses and a receiver 
(R) detects the reflected electromagnetic waves. Electromagnetic wave pulse excitation is commonly 
achieved while using stepped-frequency technology by sweeping the desired frequency band [21]. 
Any change in the electromagnetic characteristics of the medium, such as its permittivity and 
permeability, causes the electromagnetic waves to be reflected [22]. The incident electromagnetic field 
of the waves at the reflection location can be represented by ( , ) = ( ) , (1) ( , ) = ( ) , (2) 

where i( , ) and i( , ) indicate the incident electric and magnetic fields at a specific depth  
and point in time t, and i is the amplitude of the incident electric field. , , and  refer to the 
wavenumber, frequency, and velocity of the electromagnetic waves in the corresponding medium, 
respectively. The reflected electromagnetic field can be expressed as ( , ) = ( ) , (3) ( , ) = − ( ) . (4) 

Here,  represents the amplitude of the reflected electric field: = −+ = √ − √√ + √ , (5) 

where  and  are the refractive indices of each medium.  and , and  and  refer to the 
relative permittivity and relative permeability of the initial medium (1) and the new medium (2), 
respectively. These reflected electromagnetic waves are then collected by the data acquisition system. 
The collected signal contains multiple pulses corresponding to each reflection. The amplitude of the 
reflected electromagnetic field is larger where there is a greater difference in electromagnetic 
properties. Note that the above explained electromagnetic wave propagation is a simplified model 
and it does not perfectly match with the actual wave propagation on the soil. However, even though 
the proposed technique uses a simple electromagnetic wave propagation model, its superiority for 
underground object classification will be verified while using numerical and experimental methods 
in the following sections. 

 
Figure 1. Working principles of ground-penetrating radar (GPR). Figure 1. Working principles of ground-penetrating radar (GPR).

2.2. GPR Signal Analysis for Underground Object Classification

Figure 2 provides an overview of the proposed technique for underground object classification,
which proceeds according to four steps: (1) GPR data collection, (2) background filtering to
enhance underground object visualization, (3) instantaneous phase analysis for underground object
classification, and (4) decision making.Remote Sens. 2018, 10, x FOR PEER REVIEW  5 of 24 
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2.2.1. GPR Data Collection

Time domain GPR signals are collected from each spatial scanning location along the region of
interest. A two-dimensional GPR (2D GPR) image (B-scan image) is obtained by representing the
collected data in the time and spatial domains. Electromagnetic wave attenuation along the depth
direction is compensated by applying gain factors. Electromagnetic waves are typically attenuated as
they propagate through a medium [23]. This phenomenon can be represented as [24]

Er,measured = Ere−αl , (6)

where Er,measured is the measured amplitude of the reflected electric field, l is the distance propagated
by the electromagnetic waves, and α is the attenuation constant given by

α = ω

√√√√µε

2

[√
1 +

( σ

ωε

)2
− 1

]
. (7)

here, σ refers to the charge density of the medium. The attenuation is compensated by applying the
following gain factor to the measured signal E0:

E(t) = eαv1tE0(t) = eαlE0

(
l

v1

)
. (8)

2.2.2. Background Filtering to Enhance Underground Object Visualization

To extract the reflected signals from underground objects from the GPR data, it is necessary to
remove the undesired background signals, including (1) pavement surface reflections, (2) reflections
from underground layers, and (3) background noise. Interactions between the electromagnetic
waves and underground objects can be identified more easily by representing the measured
time domain signal s (T × 1 vector) as a weighted linear combination of bases via the following
transformation [25,26]:

s = Dα, D = {d1, d2, . . . , dL}, (9)

where α is a representation of s in the transformed domain with the dimension L× 1. D is a T × L
dictionary matrix and consists of di bases (i = 1, . . . , L). Each basis di is a time domain signal with the
same dimensions as s.

We define a reference point as a pristine scanning location without underground objects in the
inspection area. The reference signal Eref measured from the reference point is expressed, as follows:

Eref(t) = Ee−jωt, (10)

where ω refers to the electromagnetic wave frequency. In the dictionary used in this study, each basis
represents a reference signal with a specific time delay. For example, di denotes the reference signal
with a time delay of (L/2− i)∆t:

di = E(t + (L/2− i)∆t) = E
(
t +
(

L′ − i
)
∆t
)
= Ee−jω(t+(L′−i)∆t). (11)

in other words, the measured GPR data s is represented as a sum of reference signals with different
time delay. Any change in s from the reference signal Eref, such as underground object reflections,
is compensated by adding weighted di with proper time delay. This is as a time-domain function
is represented by a sum of multiple sinusoidal signals with different amplitude and frequency in
Fourier transform.

A large L value is preferable for achieving a high resolution in the transformed domain, or a shorter
time delay difference ∆t in this case. Then, Equation (9) typically represents an underdetermined
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system of equations (L > T), creating nonunique solutions for α. Additional information is required
to select single α from the nonunique multiple possibilities. A unique solution for α can be obtained
via the assumption that the actual solution has the sparsest representation, minimizing the number
of nonzero entities in α [27]. On the basis of this assumption, Chen and Donoho proposed the basis
pursuit approach to solve the underdetermined system in Equation (9) [28]. The sparsest representation
is obtained by solving the following with a given dictionary D:

min ||α ||1 s.t. s = Dα, (12)

where ||α ||1 denotes the `1 norm of α. Candes provides an open-source implementation solving
Equation (12) coded with MATLAB [29], and the proposed technique has been realized based on the
code. Then, time domain GPR signals can be sparsely represented while using the dictionary.

Figure 3 presents how to filter background signals using the transformation in Equation (9). s is
the measured signal, D is defined in Equation (10), and α is solved using Equation (12) so that there is
no unknown left. If the current scanning location does not include an underground object (as is the
case in the center of Figure 3, the measured GPR signal, s, can be represented by only a single basis
corresponding to the reference signal (left of Figure 3). This is the only nonzero element in α, and a
sparse representation of the time domain signal is possible in the dictionary domain. s can then be
represented as

s = E(t) = dL′ = dL′αL′ . (13)

The GPR signal measured from a scanning location where there is an underground object in
the dictionary domain (right of Figure 3) is represented by Equation (14). The underground object
reflection now exists in the GPR signal. The measured signal s can be represented as the superposition
of the reference signal and the reflected signal from the underground object:

s = E(t) + E(t + m∆t) = dL′αL′ + dL′−mαL′−m, (14)

where m∆t indicates the depth of the underground object.Remote Sens. 2018, 10, x FOR PEER REVIEW  7 of 24 
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As shown in Equations (13) and (14), a new basis dL′−m appears only if an underground object
is present. Thus, the background signals can be filtered out by removing the basis corresponding to
the reference signal dL′ . The resultant dictionary domain data are then inversely transformed into the
time domain. Finally, an image of the subsurface region is constructed from the filtered time domain
data. Only the reflection signals from underground objects are highlighted in this image, and the other
background signals are eliminated.

2.2.3. Instantaneous Phase Analysis for Underground Object Classification

Although the filtered images contain only reflections from underground objects, the nature
of these objects is still unknown. Phase information provides a useful means of classifying them,
because the phase depends on the permittivity of the corresponding underground object.

Because the permeability of most of the underground objects is similar, Equation (5), which
expresses the reflected electromagnetic waves from an underground object, can be rewritten as

Er =

(
n1 − n2

n1 + n2

)
Ei =

√
ε1 −

√
ε2√

ε1 +
√

ε2
Ei. (15)

If the permittivity of the underground object ε2 is lower than that of the surroundings ε1,√
ε1−
√

ε2√
ε1+
√

ε2
> 0 and the reflected electromagnetic waves are in phase with the incident waves. However,

a higher ε2 will lead to out-of-phase reflected electromagnetic waves. As cavities have low permittivity
relative to other underground objects, they can be detected on the basis of the relationship of the phase
of the underground reflections to that of the direct waves (Figure 4).
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To this end, it is necessary to analyze the phase information at the location of the underground
object, but this location is usually unknown. Here, the location of the underground object is estimated
as the location of the maximum amplitude of the A-scan signal that passes through the corresponding
parabola. A specific number of points are then selected above and below the estimated location of the
object. This number of points is determined on the basis of the data collection resolution of the GPR
device in the depth direction. The corresponding GPR signal I(x, z) is then converted to the complex
domain while using the Hilbert transform,

H(x, z) =
1
π

P
∫ ∞

−∞

I(x, z)
z− τ

dτ, (16)
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where P denotes the Cauchy principal value and x and z are the spatial coordinates in the scanning
direction and the depth direction, respectively. The instantaneous phase value at each spatial point can
then be calculated, as follows:

θ(x, z) = tan−1
(

Im[H(x, z)]
Re[H(x, z)]

)
, (17)

where Re and Im represent the real and imaginary components of a complex value, respectively.

2.2.4. Decision Making

In the final step, the phase information of the underground reflection is compared with the phase
of the direct GPR wave on the basis of the ratio of instantaneous phase change, ∆θ/∆z. This ratio is
calculated along the region where Equation (16) is applied. The underground object is considered
to be in-phase with the direct GPR wave if both of the phase change ratios have the same sign
(Figure 4a). Conversely, if their signs are different, they are considered to be out-of-phase, and it may
be a high-permittivity object, e.g., a pipe (Figure 4b).

3. Simulation Result: Numerical Validation Using GPR Simulation Data

3.1. Simulation Setup

The proposed underground object classification technique was numerically validated using
simulated 2D GPR data for various underground models. The proposed technique was applied to
a pristine model, a model with an underground cavity, and a model with an underground pipe.
The visibility of the underground object was enhanced by removing background signals, and the cavity
and pipe were distinguished from each other on the basis of phase information.

Open-source software, gprMax [30], was used to simulate electromagnetic wave propagation
while using the finite-difference time domain method. Figure 5 depicts the composition of the simulated
underground model. The model has a depth of 0.8 m and a width of 2.0 m, with a 0.2-m-thick upper
air layer. The spatial resolution of the model is 2 mm. To simulate the process of GPR data collection,
a virtual GPR device scans the model surface from left to right at intervals of 20 mm, resulting in
100 GPR signals. The virtual GPR device consists of a single channel transmitter and a single channel
receiver, 40 mm apart. The electromagnetic wave is a normalized first derivative of a Gaussian curve
with a center frequency of 1.6 GHz.Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 24 
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The white circle at 0.35 m depth in Figure 5 represents an underground object. For a pristine
model, this region is filled with soil (εs = 5). For models with an underground cavity and pipe,
the region is filled with air (εa = 1) and a perfect conductor (εp = ∞), respectively, to simulate the
corresponding underground object.

3.2. Classification Results for the Pristine Model

The proposed technique was first applied to the pristine model. The raw GPR image in Figure 6a
represents a cross-sectional view of the model. As expected, no reflection from an underground object
is observed, but dominant surface reflections are seen near the ground surface. The background filter
was applied to this region to identify any reflections from underground objects while using the leftmost
scanning location of the model as the reference point and the corresponding A-scan response as the
reference signal. No distinguishable features are observed in Figure 6b after filtering, indicating that
the proposed technique is valid for the pristine model and does not give a false positive.
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GPR data.

3.3. Classification Results for Models with Underground Objects

Next, the feasibility of the proposed technique for classifying underground objects was examined.
First, visualization enhancement via the proposed technique was studied while using models with a
cavity (Figure 7a) and a pipe (Figure 7b). Figure 7c,d shows that the background filtering effectively
removes the dominant surface reflections, allowing the underground objects to be clearly visualized.
In addition, the location of the first reflection wave packet perfectly matches the actual location of the
underground object, which is represented by a red circle.

However, it is not possible to classify the type of underground object on the basis of the filtered
images, as both objects are represented by parabolas. The instantaneous phase information for each case
was therefore examined in the filtered images and compared with the direct wave phase, corresponding
to the blue circles in Figure 7c,d. For the cavity (Figure 7e), the phase of the direct wave (blue box)
and that at the location of the underground object (red box) match each other. This in-phase reflection
implies that the cavity has lower permittivity relative to the surrounding soil. This can be distinguished
more easily after the binarization of the raw phase signals (Figure 7g). Binarization transforms the
phase value to −1, 0, or 1, simplifying the comparison with the direct wave phase. The phase change
ratio is positive for both direct waves and the cavity reflection, indicating an in-phase relationship.
However, at the underground pipe (Figure 7f), the reflection is out-of-phase with the direct wave
because of its higher permittivity. The phase change ratio of the pipe reflection is negative, as shown in
Figure 7h. This numerical simulation demonstrates that cavities and pipes can be clearly distinguished
while using instantaneous phase information, as proposed in the previous section.
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removed. The instantaneous phase values (e,f) show that the direct wave (blue box, corresponding to 
the blue circles in (a,b)) and the underground object reflection (red box, corresponding to the red 
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cavity reflection (g), whereas the change ratio of the pipe reflection is negative (h). 
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Figure 7. Underground object classification results where an underground (a) cavity and (b) pipe are
present in the model. Red circles represent the locations of the underground objects. The reflections
from the underground objects are better visualized in (c,d), where the background signals have been
removed. The instantaneous phase values (e,f) show that the direct wave (blue box, corresponding to
the blue circles in (a,b)) and the underground object reflection (red box, corresponding to the red circles
in (a,b)) are in-phase for the cavity and out-of-phase for the pipe. This becomes easier to distinguish
after binarization, as shown in (g,h). Both phase change ratios are positive in the case of a cavity
reflection (g), whereas the change ratio of the pipe reflection is negative (h).

3.4. Robustness of the Proposed Technique to Complicated Underground Features

The proposed technique was applied to various simulation models with complicated underground
features. First, the sensitivity of the proposed technique was studied with different diameters (2 cm
and 25 cm) of the underground cavity. As shown in Figure 8, the predominant surface reflections were
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effectively removed after background filtering and the smallest cavity with a 2 cm diameter was clearly
visualized. In addition, the location of the first reflection wave packet matched very well with the
actual cavity location (red circles).
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Figure 8. Underground visualization results with different cavity sizes: (a,b) raw GPR images and (c,d)
processed GPR images with 2 and 25 cm diameter cavities, respectively. The red circles indicate the
size and location of each modeled cavity.

Second, the effect of the soil permittivity to the proposed technique was studied. Here, the soil
permittivity εs in Figure 5 was changed from 5 to 2 and 10. For the case εs = 2, smaller permittivity
difference between the soil and the cavity weakened cavity reflections (Figure 9a). But, the proposed
technique still highlights them (Figure 9b). Note that the GPR signals are dispersed to the depth
axis due to the slower electromagnetic wave speed in low permittivity media. On the other hand,
for the case εs = 10, stronger cavity reflections are observed, as predicted in Equation (5). There is no
dramatic change in pipe reflections as the pipe permittivity was already set very high (εp = ∞) and
the permittivity difference did not largely change after soil permittivity was changed. The dispersed
GPR signals are still observed in Figure 9e,g.

Next, multiple underground objects existed in a single model. In Figure 10a, a cavity and a pipe
were placed in parallel with 10 cm distance between them. The interactions of each electromagnetic
wave reflections are clearly visualized in raw GPR image (Figure 10b), and still exists after removing
the background signals (Figure 10c). However, the binarization of the phase signals clearly indicates
the in-phase cavity reflection (Figure 10d) and out-of-phase pipe reflection (Figure 10e). This result
implies that the proposed technique can identify multiple underground objects in the inspection region.



Remote Sens. 2018, 10, 1417 12 of 24
Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 24 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 9. Underground visualization results with different soil permittivity: (a,b) raw GPR images 
and (c,d) processed GPR images of a cavity with soil permittivity = 2 and = 10, respectively. 
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Figure 9. Underground visualization results with different soil permittivity: (a,b) raw GPR images
and (c,d) processed GPR images of a cavity with soil permittivity εs = 2 and εs = 10, respectively.
(e,f) raw GPR images and (g,h) processed GPR images of a pipe with soil permittivity εs = 2 and
εs = 10, respectively. The red circles indicate the size and location of each underground object.

Next, multiple underground objects existed in a single model. In Figure 10a, a cavity and a pipe
were placed in parallel with 10 cm distance between them. The interactions of each electromagnetic
wave reflections are clearly visualized in raw GPR image (Figure 10b), and still exists after removing
the background signals (Figure 10c). However, the binarization of the phase signals clearly indicates
the in-phase cavity reflection (Figure 10d) and out-of-phase pipe reflection (Figure 10e). This result
implies that the proposed technique can identify multiple underground objects in the inspection region.
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effectively removes them and demonstrates the robustness of the proposed technique to the 
underground disturbances (Figure 11e,f). The phase of the direct wave (blue box) and that at the 
location of the underground object (red box) match each other in both cases, implying their in-phase 
reflections. Note that additional phase packets. 
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Figure 10. Underground visualization results with multiple underground objects: (a) an underground
model with a cavity and a pipe, (b) raw GPR image and (c) background filtered GPR image. (d) and (e)
presents the instantaneous phase values at the cavity and the pipe location, respectively.

Finally, the effect of complex underground compositions was also studied. An additional sand
layer (εd = 3) is located below (Figure 11a) and above (Figure 11b) the cavity, respectively. Though this
layer creates another dominant reflection signals (Figure 11c,d), the proposed technique effectively
removes them and demonstrates the robustness of the proposed technique to the underground
disturbances (Figure 11e,f). The phase of the direct wave (blue box) and that at the location of
the underground object (red box) match each other in both cases, implying their in-phase reflections.
Note that additional phase packets.
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collection. Automatic data collection was carried out by integrating the GPR device into a vehicle. 
The average scanning speed was approximately 5 km/h. 

Figure 11. Underground visualization results for complex underground compositions: A sand layer
is added (a) below and (b) above a cavity. (c,d) raw GPR images and (e,f) background filtered GPR
images for each model. (g,h) presents the binarization of the phase signals at the cavity locations for
each model, both showing in-phase reflections.

4. Experimental Result: Field Validation Tests Using 3D GPR Data

4.1. Experimental Setup

The proposed underground classification technique was experimentally validated by generating
visualizations of underground cavities, buried pipes, and underground gravels from 3D GPR data
collected from urban roads in Seoul, South Korea. The performance of the proposed method in
analyzing a pristine region was also investigated to validate its robustness.

The inspected region was a 0.7 km stretch of an urban road in a residential area near Yaksu subway
station, located in Jung-gu, Seoul, as shown in Figure 12a A DXG1820 GPR antenna (3D-RADAR),
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which includes 20 T and R channels corresponding to a 1.5 m scanning width, was used for this
experiment. The measured GPR signals were collected with a GEOSCOPE MK IV data acquisition
system that was provided by 3D-RADAR, which has a time resolution of 0.35 ns and a maximum
sampling rate of 13,000 Hz. The input signal has a frequency range of 200–3000 MHz, with a
step-frequency input waveform. Figure 12b shows the equipment that was used for field data collection.
Automatic data collection was carried out by integrating the GPR device into a vehicle. The average
scanning speed was approximately 5 km/h.Remote Sens. 2018, 10, x FOR PEER REVIEW  15 of 24 

 

 
(a) 

(b) 

Figure 12. Field testing on urban roads in Seoul, South Korea: (a) location of the region inspected and 
(b) field data collection system. 

The region inspected was composed of four layers: a surface layer, a basecourse, a sub-base, and 
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Figure 12. Field testing on urban roads in Seoul, South Korea: (a) location of the region inspected and
(b) field data collection system.

The region inspected was composed of four layers: a surface layer, a basecourse, a sub-base, and
a road bed. The uppermost surface layer is a 10-cm-thick asphalt pavement. This is underlain by a
20-cm-thick basecourse (usually consisting of construction aggregate). The third layer is a 30-cm-thick
sub-base of unbound granular or cement-bound materials. The road bed layer is typically much
thicker than the other layers, depending on the ground conditions. Four representative regions of
the 0.7 km inspection area were selected for the field validation of the proposed technique, as shown
in Figure 13. The pristine region does not contain any underground objects. In Region 1, there is an
underground cavity (gray circle with a solid outline) in the subbase layer. A pipe (brown circle with a
dashed outline) is buried in Region 2 and it is perpendicular to the scanning direction. This region is
inspected as an example of common artificial underground objects in urban road. There is a punctual
gravel (black circle with a dotted outline) in the basecourse layer of Region 3. Gravels widely exist in
urban roads but usually misclassified as cavities with their similar size and shape. The classification
robustness of the proposed technique is examined with this region.
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indicate that the proposed technique is suitable for analyzing pristine regions without giving false 
positives. 
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Figure 13. Composition of the subsurface and the four analyzed regions.

4.2. Underground Object Classification in the Pristine Region

The proposed technique was first applied to the pristine region. This region comprises the four
underground layers, but there are no underground objects. The raw GPR image that is shown
in Figure 14a is a representative B-scan side view at a width of 1.275 m. There are no visible
reflections from underground objects, but there are clear dominant surface pavement reflections
near the ground surface. Background filtering was applied to the image to locate any reflections
from underground objects while using the leftmost scanning location of the region as the reference
point and the corresponding response as the reference signal. This results in Figure 14b, in which no
distinguishable features are observed. Moreover, no objects are identified in the three C-scan images on
the right side of Figure 14b, which correspond to the red lines in the B-scan image. These results indicate
that the proposed technique is suitable for analyzing pristine regions without giving false positives.
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Figure 14. Results of subsurface analysis in the pristine region with (a) raw GPR data and (b) data 
processed using the proposed technique at a width of 1.275 m. The C-scan images on the right 
correspond to the red lines in (b). No underground objects are observed. (c) Raw phase and (d) 
binarized phase information for the direct wave (blue circle in (b)) are also shown. 

The instantaneous phase information of the direct waves corresponding to the blue circle in 
Figure 14b was analyzed and is represented by a blue box in Figure 14c. The phase change ratio is 
positive for the direct waves (Figure 14d). 
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The proposed technique was applied to the three regions with different underground objects. 
For all three regions, the proposed technique effectively visualized and classified the underground 
objects. 

In Region 1, a cavity is located in the sub-base layers. However, there is no clear reflected signal 
from a cavity in the side view of the raw GPR image at 0.375 m width (Figure 15a), owing to the 
dominance of surface pavement reflections. After background filtering, the cavity reflections become 
much more apparent (Figure 15b). These reflections are also consistent with the actual cavity location, 
which is indicated by a red circle. A circular object can be seen in three C-scan images around the 
location of the observed object (red lines in Figure 15b). The instantaneous phase is shown in Figure 
15c, with the phase corresponding to the cavity reflection being indicated by a red box. It has a 
positive phase change ratio (Figure 15d). 

Figure 14. Results of subsurface analysis in the pristine region with (a) raw GPR data and (b) data
processed using the proposed technique at a width of 1.275 m. The C-scan images on the right
correspond to the red lines in (b). No underground objects are observed. (c) Raw phase and (d)
binarized phase information for the direct wave (blue circle in (b)) are also shown.

The instantaneous phase information of the direct waves corresponding to the blue circle in
Figure 14b was analyzed and is represented by a blue box in Figure 14c. The phase change ratio is
positive for the direct waves (Figure 14d).

4.3. Underground Object Classification in the Regions with Underground Objects

The proposed technique was applied to the three regions with different underground
objects. For all three regions, the proposed technique effectively visualized and classified the
underground objects.

In Region 1, a cavity is located in the sub-base layers. However, there is no clear reflected signal
from a cavity in the side view of the raw GPR image at 0.375 m width (Figure 15a), owing to the
dominance of surface pavement reflections. After background filtering, the cavity reflections become
much more apparent (Figure 15b). These reflections are also consistent with the actual cavity location,
which is indicated by a red circle. A circular object can be seen in three C-scan images around the
location of the observed object (red lines in Figure 15b). The instantaneous phase is shown in Figure 15c,
with the phase corresponding to the cavity reflection being indicated by a red box. It has a positive
phase change ratio (Figure 15d).
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Figure 15. Results of underground classification for a cavity in Region 1 with (a) raw GPR data and 
(b) data processed using the proposed technique at a width of 0.375 m. The cavity is clearly visualized 
in the C-scan images on the right, which correspond to the red lines in (b). (c) Raw phase and (d) 
binarized phase information for the cavity reflection (red circle in (b)) show a positive phase change 
ratio. 

The next example is a pipe; these are very common under urban roads. The pipe in Region 2 is 
not visible in the raw GPR image (Figure 16a), but its location is clear after background filtering 
(Figure 16b). The C-scan images show that the pipe runs perpendicular to the scanning direction. The 
C-scan images show a pipe shape that is distinct from the cavity case (Figure 15), thus making it 
possible to distinguish a pipe from a cavity in 3D GPR images. In addition, the reflection from the 
pipe (Figure 16c,d) is out of phase with the direct wave in Figure 14 and it has a negative phase 
change ratio. 

Figure 15. Results of underground classification for a cavity in Region 1 with (a) raw GPR data and (b)
data processed using the proposed technique at a width of 0.375 m. The cavity is clearly visualized in
the C-scan images on the right, which correspond to the red lines in (b). (c) Raw phase and (d) binarized
phase information for the cavity reflection (red circle in (b)) show a positive phase change ratio.

The next example is a pipe; these are very common under urban roads. The pipe in Region 2
is not visible in the raw GPR image (Figure 16a), but its location is clear after background filtering
(Figure 16b). The C-scan images show that the pipe runs perpendicular to the scanning direction.
The C-scan images show a pipe shape that is distinct from the cavity case (Figure 15), thus making it
possible to distinguish a pipe from a cavity in 3D GPR images. In addition, the reflection from the pipe
(Figure 16c,d) is out of phase with the direct wave in Figure 14 and it has a negative phase change ratio.
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phase information for the cavity reflection (red circle in (b)) show a negative phase change ratio. 

The last example is a gravel. Gravels are widely observed in urban underground GPR images, 
but it is challenging to distinguish them from a cavity on the basis of 3D GPR images only. While 
other underground structures, including pipes, can be easily differentiated from their shape in the C-
scan images, a gravel is often misclassified as a cavity with their similar size and shape. Although an 
object is visualized in both the B-scan and C-scan (Figure 17b) images after background filtering, 
there are no grounds for classifying it as a cavity or a different type of underground object. However, 
the reflection from the identified object (Figure 17c,d) is out-of-phase with the direct wave in Figure 
14, while the cavity reflections show in-phase reflections in Figure 15. 

Figure 16. Results of underground classification for a pipe in Region 2 with (a) raw GPR data and (b)
data processed using the proposed technique at a width of 1.2 m. The pipe is clearly visible in the
C-scan images on the right, which correspond to the red lines in (b). (c) Raw phase and (d) binarized
phase information for the cavity reflection (red circle in (b)) show a negative phase change ratio.

The last example is a gravel. Gravels are widely observed in urban underground GPR images,
but it is challenging to distinguish them from a cavity on the basis of 3D GPR images only. While other
underground structures, including pipes, can be easily differentiated from their shape in the C-scan
images, a gravel is often misclassified as a cavity with their similar size and shape. Although an object
is visualized in both the B-scan and C-scan (Figure 17b) images after background filtering, there are no
grounds for classifying it as a cavity or a different type of underground object. However, the reflection
from the identified object (Figure 17c,d) is out-of-phase with the direct wave in Figure 14, while the
cavity reflections show in-phase reflections in Figure 15.
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Figure 17. Results of underground classification of Region 3 gravels with (a) raw GPR data and (b) data
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C-scan images on the right, which correspond to the red lines in (b). (c) Raw phase and (d) binarized
phase information for the gravel reflection (red circle in (b)) show a negative phase change ratio.

5. Discussion

5.1. Underground Object Classification Compared with the Conventional Subtraction Method

The underground object classification performance of the proposed technique is compared with
the conventional subtraction method [12,13]. The subtraction method, which is being widely used
in GPR data and image processing, eliminates the dominant surface reflections by subtracting a
reference signal from the raw GPR data. However, this method is highly susceptible to noise and small
signal disturbances in the time domain, e.g., variations in pavement thickness or unexpected arbitrary
boundary conditions in the pavement.

Figure 18 clearly represents the limitation of the subtraction method. For each region,
the dominant surface reflections are not fully eliminated, even after applying the subtraction method
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(Figure 18a,c,e). As the subtraction method assumes identical underground background reflections
from every spatial point, even a small measurement disturbance from field condition affects its
elimination performance. Another limitation is that the underground layer boundaries are also
highlighted after applying gain enhancement. While the proposed technique extracts the object
reflections information while using the basis pursuit approach, the subtraction method cannot
distinguish the object reflection and the underground layer reflection and highlights both of them if
they are placed nearby. The red boxes in Figure 18a,c,e indicate the uneliminated soil layer boundaries
even after applying the subtraction method, while they are successfully eliminated using the proposed
technique in Figure 18b,d,f. The basis pursuit approach can compensate the disturbance between
the reference signal and the actual measurement, leading the effective elimination of the background
reflections. As already presented in Section 3.4, the proposed technique has an effective underground
layer reflection elimination performance and highlights only the underground object.
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Figure 18. Underground classification results for Regions 1, 2, and 3 with data processed by (a,c,e) the
subtraction method and (b,d,f) the proposed technique, respectively. The red boxes in (a,c,e) indicates
the uneliminated soil layer boundaries even after applying the subtraction method, while they are
successfully eliminated using the proposed technique in (b,d,f).
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5.2. Underground Object Classification Using a Phase Change Ratio

Another limitation in the conventional GPR analysis, including the subtraction method, is that
they do not tell about the nature of the identified underground objects. The proposed phase analysis
technique is thus applied to classify the object. The phase information and the phase change ratio are
analyzed for Regions 1 to 3 in Figures 15–17, respectively, and the results are summarized in Table 1.

Table 1. Comparisons of the phase change ratio in each region with the reference region.

Region Underground Object Phase Change Ratio Comparison with the Reference

Reference - +25.4 m−1 -
1 Cavity +50.9 m−1 In-phase
2 Pipe −43.7 m−1 Out-of-phase
3 Gravels −25.4 m−1 Out-of-phase

For the cavity reflection in Region 1, it has a positive phase change ratio (Figure 15d) and it
matches the direct wave phase in the reference region (Figure 14d). It is thus an in-phase reflection,
implying that the object has low permittivity in comparison with the surrounding soil and can therefore
be classified as a cavity.

On the other hand, the reflection from the pipe (Figure 16c,d) is out of phase with the direct wave
in Figure 14 and has a negative phase change ratio. Though the actual pipe material information
is not provided to the authors, the pipe material is estimated to have higher permittivity than soil,
possibly metal, from the observed phase inversion. Please note that the reflection from the pipe can
be in phase if it has lower permittivity than the soil (e.g., polyethylene or Teflon) and the only use of
phase information can lead to false alarms. However, the proposed technique still identifies the pipe
while using both its background filtered C-scan images and the phase information, making it possible
to be complementary to each other in underground object identification process. The negative phase
change ration in Region 3 (Figure 17d) also indicates that the object is not a cavity and must be an
underground object with a high permittivity, possibly a gravel.

Therefore, as the phase of the underground object reflection is related with the object permittivity,
it is possible to have an additional information for underground object classification via the proposed
phase analysis.

5.3. Limitations of the Proposed Technique

However, certain technical limitations of the proposed technique should be addressed before it
can be applied to more realistic conditions. Careful selection of the reference signal is required, as the
performance of the background filtering technique strongly depends on reference signal selection and
dictionary construction. For example, if the reference signal includes any undesired underground
object, the background filter will not work properly. Follow-up studies are underway to automate the
reference signal selection process by using the machine-learning techniques.

Development of a fully automated identification system through integration with a GPR scanning
system and further validation with multiple in situ datasets are also required.

6. Conclusions

This study proposes a robust technique for classifying underground objects while using (1)
background filtering of 3D GPR data to remove environmental noise and field deviations and (2)
phase analysis to distinguish underground cavities and possible sinkholes from other underground
objects. The proposed technique enhances the visibility of underground objects by highlighting the
electromagnetic waves reflected only from underground objects. The permittivity of the identified
objects is then compared with that of the surrounding soils using the corresponding instantaneous
phase information. The object is classified as a cavity if its permittivity is lower than that of its
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surroundings. The performance of the proposed technique was validated while using numerical
simulations and field data obtained from urban roads in Seoul, South Korea. The use of such field-test
data is particularly useful because of its rarity in previously published literature.

The authors are now extending the proposed technique to utilize a machine-learning-based
automatic cavity classification system. The proposed technique provides additional information with
which to train such a system, such as enhanced images and phase change ratios, promoting faster and
more robust classification results than is possible through the time-consuming efforts of human experts.
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