Estimation of Chlorophyll-a Concentrations in Lanalhue Lake Using Sentinel-2 MSI Satellite Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Acquisition of In Situ Limnological Data
2.3. Satellite Data and Processing
2.4. Chlorophyll-a Models
2.5. Assessment of Empirical Algorithm (EA) and Multiple Linear Regression (MLR) Performances
3. Results
3.1. Chlorophyll-a and Satellite Image Results
3.2. Empirical Algorithm and Multiple Linear Regression Results
3.3. Generation of Chlorophyll-a Maps from MLR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, Extracting, and Monitoring Surface Water From Space Using Optical Sensors: A Review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Huovinen, P.; Ramírez, J.; Caputo, L.; Gómez, I. Mapping of spatial and temporal variation of water characteristics through satellite remote sensing in Lake Panguipulli, Chile. Sci. Total Environ. 2019, 679, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Ha, N.T.T.; Thao, N.T.P.; Koike, K.; Nhuan, M.T. Selecting the Best Band Ratio to Estimate Chlorophyll-a Concentration in a Tropical Freshwater Lake Using Sentinel 2A Images From a Case Study of Lake Ba Be (Northern Vietnam). ISPRS Int. J. Geo-Inf. 2017, 6, 290. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Zhu, W.; Tian, Y.Q.; Yu, Q.; Zheng, Y.; Huang, L. Remote estimation of colored dissolved organic matter and chlorophyll-a in Lake Huron using Sentinel-2 measurements. J. Appl. Remote Sens. 2017, 11, 1. [Google Scholar] [CrossRef]
- Buma, W.G.; Lee, S.I. Evaluation of Sentinel-2 and Landsat 8 Images for Estimating Chlorophyll-a Concentrations in Lake Chad, Africa. Remote Sens. 2020, 12, 2437. [Google Scholar] [CrossRef]
- Yang, X.E.; Wu, X.; Hao, H.L.; He, Z.L. Mechanisms and assessment of water eutrophication. J. Zhejiang Univ. Sci. B 2008, 9, 197–209. [Google Scholar] [CrossRef] [Green Version]
- Delegido, J.; Tenjo, C.; Ruiz-Verdú, A.; Peña, R.; Moreno, J. Modelo empírico para la determinación de clorofila-a en aguas continentales a partir de los futuros Sentinel-2 y 3. Validación con imágenes HICO. Rev. Teledetec. 2014, 41, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Soomets, T.; Uudeberg, K.; Jakovels, D.; Brauns, A.; Zagars, M.; Kutser, T. Validation and Comparison of Water Quality Products in Baltic Lakes Using Sentinel-2 MSI and Sentinel-3 OLCI Data. Sensors 2020, 20, 742. [Google Scholar] [CrossRef] [Green Version]
- Almanza, V.; Pedreros, P.; Laughinghouse IV, H.D.; Félez, J.; Parra, O.; Azócar, M.; Urrutia, R. Association between trophic state, watershed use, and blooms of cyanobacteria in south-central Chile. Limnologica 2019, 75, 30–41. [Google Scholar] [CrossRef]
- Bresciani, M.; Cazzaniga, I.; Austoni, M.; Sforzi, T.; Buzzi, F.; Morabito, G.; Giardino, C. Mapping phytoplankton blooms in deep subalpine lakes from Sentinel-2A and Landsat-8. Hydrobiologia 2018, 824, 197–214. [Google Scholar] [CrossRef]
- Dörnhöfer, K.; Oppelt, N. Remote sensing for lake research and monitoring—Recent advances. Ecol. Indic. 2016, 64, 105–122. [Google Scholar] [CrossRef]
- Potes, M.; Rodrigues, G.; Penha, A.M.; Novais, M.H.; Costa, M.J.; Salgado, R.; Morais, M.M. Use of Sentinel 2—MSI for water quality monitoring at Alqueva reservoir, Portugal. Proc. IAHS 2018, 380, 73–79. [Google Scholar] [CrossRef]
- Sent, G.; Biguino, B.; Favareto, L.; Cruz, J.; Sá, C.; Dogliotti, A.I.; Palma, C.; Brotas, V.; Brito, A.C. Deriving Water Quality Parameters Using Sentinel-2 Imagery: A Case Study in the Sado Estuary, Portugal. Remote Sens. 2021, 13, 1043. [Google Scholar] [CrossRef]
- Ouma, Y.O.; Noor, K.; Herbert, K. Modelling Reservoir Chlorophyll-a, TSS, and Turbidity Using Sentinel-2A MSI and Landsat-8 OLI Satellite Sensors with Empirical Multivariate Regression. J. Sens. 2020, 2020, 8858408. [Google Scholar] [CrossRef]
- Ogashawara, I.; Kiel, C.; Jechow, A.; Kohnert, K.; Ruhtz, T.; Grossart, H.P.; Hölker, F.; Nejstgaard, J.C.; Berger, S.A.; Wollrab, S. The Use of Sentinel-2 for Chlorophyll-A Spatial Dynamics Assessment: A Comparative Study on Different Lakes in Northern Germany. Remote Sens. 2021, 13, 1542. [Google Scholar] [CrossRef]
- Ansper, A.; Alikas, K. Retrieval of Chlorophyll a from Sentinel-2 MSI Data for the European Union Water Framework Directive Reporting Purposes. Remote Sens. 2019, 11, 64. [Google Scholar] [CrossRef] [Green Version]
- Lama, G.F.C.; Errico, A.; Francalanci, S.; Solari, L.; Chirico, G.B.; Preti, F. Hydraulic Modeling of Field Experiments in a Drainage Channel Under Different Riparian Vegetation Scenarios. In Innovative Biosystems Engineering for Sustainable Agriculture, Forestry and Food Production; Coppola, A., Di Renzo, G., Altieri, G., D’Antonio, P., Eds.; Springer: Cham, Switzerland, 2020; Volume 67, pp. 69–77. [Google Scholar] [CrossRef]
- Busico, G.; Kazakis, N.; Cuoco, E.; Colombani, N.; Tedesco, D.; Voudouris, K.; Mastrocicco, M. A novel hybrid method of specific vulnerability to anthropogenic pollution using multivariate statistical and regression analyses. Water Res. 2020, 171, 115386. [Google Scholar] [CrossRef]
- Kansoh, R.; Abd-El-Mooty, M.; Abd-El-Baky, R. Computing the Water Budget Components for Lakes by Using Meteorological Data. Civ. Eng. J. 2020, 6, 1255–1265. [Google Scholar] [CrossRef]
- Wang, L.; Xu, M.; Liu, Y.; Liu, H.; Beck, R.; Reif, M.; Emery, E.; Young, J.; Wu, Q. Mapping Freshwater Chlorophyll-a Concentrations at a Regional Scale Integrating Multi-Sensor Satellite Observations with Google Earth Engine. Remote Sens. 2020, 12, 3278. [Google Scholar] [CrossRef]
- Caballero, I.; Navarro, G. Monitoring cyanoHABs and water quality in Laguna Lake (Philippines) with Sentinel-2 satellites during the 2020 Pacific typhoon season. Sci. Total Environ. 2021, 788, 147700. [Google Scholar] [CrossRef]
- Hu, Y.; Xu, X.; Wu, F.; Sun, Z.; Xia, H.; Meng, Q.; Huang, W.; Zhou, H.; Gao, J.; Li, W.; et al. Estimating Forest Stock Volume in Hunan Province, China, by Integrating In Situ Plot Data, Sentinel-2 Images, and Linear and Machine Learning Regression Models. Remote Sens. 2020, 12, 186. [Google Scholar] [CrossRef] [Green Version]
- Cardall, A.; Tanner, K.; Williams, G. Google Earth Engine Tools for Long-Term Spatiotemporal Monitoring of Chlorophyll-a Concentrations. Open Water J. 2021, 7, 4. [Google Scholar]
- Kumar, L.; Mutanga, O. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sens. 2018, 10, 1509. [Google Scholar] [CrossRef] [Green Version]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S.; et al. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Topp, S.N.; Pavelsky, T.M.; Jensen, D.; Simard, M.; Ross, M.R.V. Research Trends in the Use of Remote Sensing for Inland Water Quality Science: Moving Towards Multidisciplinary Applications. Water 2020, 12, 169. [Google Scholar] [CrossRef] [Green Version]
- Bramich, J.; Bolch, C.J.S.; Fischer, A. Improved red-edge chlorophyll-a detection for Sentinel 2. Ecol. Indic. 2021, 120, 106876. [Google Scholar] [CrossRef]
- Li, S.; Song, K.; Wang, S.; Liu, G.; Wen, Z.; Shang, Y.; Lyu, L.; Chen, F.; Xu, S.; Tao, H.; et al. Quantification of chlorophyll-a in typical lakes across China using Sentinel-2 MSI imagery with machine learning algorithm. Sci. Total Environ. 2021, 778, 146271. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Molkov, A.A.; Fedorov, S.V.; Pelevin, V.V.; Korchemkina, E.N. Regional Models for High-Resolution Retrieval of Chlorophyll a and TSM Concentrations in the Gorky Reservoir by Sentinel-2 Imagery. Remote Sens. 2019, 11, 1215. [Google Scholar] [CrossRef]
- Free, G.; Bresciani, M.; Trodd, W.; Tierney, D.; 0´Boyle, S.; Plant, C.; Deakin, J. Estimation of lake ecological quality from Sentinel-2 remote sensing imagery. Hydrobiologia 2020, 847, 1423–1438. [Google Scholar] [CrossRef]
- Pirasteh, S.; Mollaee, S.; Fatholahi, S.N.; Li, J. Estimation of Phytoplankton Chlorophyll-a Concentrations in the Western Basin of Lake Erie Using Sentinel-2 and Sentinel-3 Data. Can. J. Remote Sens. 2020, 46, 585–602. [Google Scholar] [CrossRef]
- Kuhn, C.; Valerio, A.M.; Ward, N.; Loken, L.; Sawakuchi, H.O.; Kampel, M.; Richey, J.; Stadler, P.; Crawford, J.; Striegl, R.; et al. Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity. Remote Sens. Environ. 2019, 224, 104–118. [Google Scholar] [CrossRef] [Green Version]
- Peppa, M.; Vasilakos, C.; Kavroudakis, D. Eutrophication Monitoring for Lake Pamvotis, Greece, Using Sentinel-2 Data. ISPRS Int. J. Geo-Inf. 2020, 9, 143. [Google Scholar] [CrossRef] [Green Version]
- Toming, K.; Kutser, T.; Laas, A.; Sepp, M.; Paavel, B.; Nõges, T. First Experiences in Mapping Lake Water Quality Parameters with Sentinel-2 MSI Imagery. Remote Sens. 2016, 8, 640. [Google Scholar] [CrossRef] [Green Version]
- Grendaitė, D.; Stonevičius, E.; Karosienė, J.; Savadova, K.; Kasperovičienė, J. Chlorophyll-a concentration retrieval in eutrophic lakes in Lithuania from Sentinel-2 data. Geol. Geogr. 2018, T4, 15–28. [Google Scholar] [CrossRef]
- Parra, O.; Valdovinos, C.; Urrutia, R.; Cisternas, M.; Habit, E.; Mardones, M. Caracterización y tendencias tróficas de cinco lagos costeros de Chile Central. Limnetica 2003, 22, 51–83. [Google Scholar] [CrossRef]
- Ivanda, A.; Šerić, L.; Bugarić, M.; Braović, M. Mapping Chlorophyll-a Concentrations in the Kaštela Bay and Brač Channel Using Ridge Regression and Sentinel-2 Satellite Images. Electronics 2021, 10, 3004. [Google Scholar] [CrossRef]
- The European Space Agency. SENTINEL-2 User Handbook. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library (accessed on 20 April 2021).
- Tavares, M.H.; Lins, R.C.; Harmel, T.; Fragoso, C.R., Jr.; Martínez, J.M.; Motta-Marques, D. Atmospheric and sunglint correction for retrieving chlorophyll-a in a productive tropical estuarine-lagoon system using Sentinel-2 MSI imagery. ISPRS J. Photogramm. Remote Sens. 2021, 174, 215–236. [Google Scholar] [CrossRef]
- Marujo, R.F.B.; Fronza, J.G.; Soares, A.R.; Queiroz, G.R.; Ferreira, K.R. Evaluating the Impact of LASRC and Sen2Cor Atmospheric Correction Algorithms of Landast-8/OLI and Sentinel-2/MSI Data Over AERONET Stations in Brazilan Territory. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 3, 271–277. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.; Ma, Q.; Zhang, H.K.; Liu, J. Evaluation of Sentinel-2A Surface Reflectance Derived Using Sen2Cor in North America. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1997–2021. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 3, 885–900. [Google Scholar] [CrossRef]
- Matus-Hernández, M.Á.; Hernández-Saavedra, N.Y.; Martínez-Rincón, R.O. Predictive performance of regression models to estimate Chlorophyll-a concentration based on Landsat imagery. PLoS ONE 2018, 13, e0205682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knoben, W.J.M.; Freer, J.E.; Woods, R.A. Technical note: Inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta efficiency scores. Hydrol. Earth Syst. Sci. 2019, 23, 4323–4331. [Google Scholar] [CrossRef] [Green Version]
- Briceño, I.; Pérez, W.; San, M.D.; Ramos, S. Determination of water quality vichuquén lake, using satellite images landsat 8, sensor OLI, year 2016, Chile. Rev. Teledetec. 2018, 52, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Karaoui, I.; Arioua, A.; Bouldhar, A.; Hssaisoune, M.; Mouatassime, S.E.; Ouhamchich, K.A.; Elhamdouni, D. Evaluating the potential of Sentinel-2 satellite images for water quality characterization of artificial reservoirs: The Bin El Ouidane Reservoir case study (Morocco). Meteorol. Hydrol. Water Manag. 2019, 7, 31–39. [Google Scholar]
- Pizani, F.M.C.; Maillard, P.; Ferreira, A.F.F.; De Amorim, C.C. Estimation of Water Quality in a Reservoir from Sentinel-2 MSI and Landsat-8 OLI Sensors. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 3, 401–408. [Google Scholar] [CrossRef]
- Delegido, J.; Tenjo, C.; Ruiz-Verdu, A.; Pereira-Sandoval, M.; Pasqualotto, N.; Gibaja, G.; Verrelst, J.; Peña, R.; Urrego, P.E.; Borràs, J.; et al. Aplicaciones de Sentinel-2 a estudios de vegetación y calidad de aguas continentales. In Geotecnologías, Herramientas para la Construcción de una Nueva Visión del Cambio Global y su Transformación para un Futuro Sostenible: Libro de Actas del XVII Simposio Internacional en Percepción Remota y Sistemas de Información Geográfica, 1st ed.; Sione, W.F., Viva Mayer, F.M., Antes, M.E., Serafini, M.C., Eds.; SELPER: Luján, Argentina, 2017; pp. 1111–1126. Available online: https://www.researchgate.net/publication/311572231 (accessed on 5 September 2022).
- O´Reilly, J.E.; Maritorena, S.; Siegel, D.A.; O’Brien, M.C.; Toole, D.; Mitchell, B.G.; Kahru, M.; Chavez, F.P.; Strutton, P.; Cota, G.F.; et al. Ocean Color Chlorophyll a Algorithms for SeaWiFS, OC2 and OC4: Version 4. In SeaWiFS Postlaunch Technical Report Series; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2000; Volume 11. Available online: https://www.researchgate.net/publication/284044296 (accessed on 5 September 2022).
- Hunter, P.H.; Tyler, A.N.; Willby, N.J.; Gilvear, D.J. The spatial dynamics of vertical migration by Microcystis aeruginosa in a eutrophic shallow lake: A case study using high spatial resolution time-series airborne remote sensing. Limnol. Ocean. 2008, 53, 2391–2406. [Google Scholar] [CrossRef]
- Kutser, T.; Paavel, B.; Verpoorter, C.; Ligi, M.; Soomets, T.; Toming, K.; Casal, G. Remote Sensing of Black Lakes and Using 810 nm Reflectance Peak for Retrieving Water Quality Parameters of Optically Complex Waters. Remote Sens. 2016, 8, 497. [Google Scholar] [CrossRef]
- Aranha, T.R.B.T.; Martinez, J.N.; Souza, E.P.; Barros, M.U.G.; Martins, E.S.P.R. Remote Analysis of the Chlorophyll-a Concentration Using Sentinel-2 MSI Images in a Semiarid Environment in Northeastern Brazil. Water 2022, 14, 451. [Google Scholar] [CrossRef]
- Shi, J.; Shen, Q.; Yao, Y.; Li, J.; Chen, F.; Wang, R.; Xu, W.; Gao, Z.; Wang, L.; Zhou, Y. Estimation of Chlorophyll-a Concentrations in Small Water Bodies: Comparison of Fused Gaofen-6 and Sentinel-2 Sensors. Remote Sens. 2022, 14, 229. [Google Scholar] [CrossRef]
- Habeeb, N.J.; Weli, S.T. Combination of GIS with Different Technologies for Water Quality: An Overview. HighTech Innov. J. 2021, 2, 262–272. [Google Scholar] [CrossRef]
- Katlane, R.; Du-pouy, C.; El Kilani, B.; Berges, J.C. Estimation of Chlorophyll and Turbidity Using Sentinel 2A and EO1 Data in Kneiss Archipelago Gulf of Gabes, Tunisia. Int. J. Geosci. 2020, 11, 708–728. [Google Scholar] [CrossRef]
- Watanabe, F.; Alcântara, E.; Rodrigues, T.; Rotta, L.; Bernardo, N.; Imai, N. Remote sensing of the chlorophyll-a based on OLI/Landsat-8 and MSI/Sentinel-2A (Barra Bonita reservoir, Brazil). An. Acad. Bras. Cienc. 2020, 90, 1987–2000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barría, P.; Chadwick, C.; Ocampo-Melgar, A.; Galleguillos, M.; Garreaud, R.; Díaz-Vasconcellos, R.; Poblete-Caballero, D. Water management or megadrought: What caused the Chilean Aculeo Lake drying? Reg. Environ. Chang. 2021, 21, 19. [Google Scholar] [CrossRef]
- Ocampo-Melgar, A.; Barria, P.; Chadwick, C.; Villoch, P. Restoration perceptions and collaboration challenges under severe water scarcity: The Aculeo Lake process. Restor. Ecol. 2021, 29, e13337. [Google Scholar] [CrossRef]
Dates Spring–Summer | Sampling Points | Minimum | Maximum | Mean | Standard Deviation |
---|---|---|---|---|---|
8–11 January 2019 | 11 | 3.7 | 16.4 | 9.9 | 4.8 |
12–17 March 2020 | 11 | 5.1 | 74.1 | 20.4 | 26.3 |
24 November 2021 | 6 | 3.4 | 7.9 | 5.2 | 1.8 |
18 January 2022 | 6 | 1.9 | 8.4 | 4.5 | 2.8 |
Dates Fall–Winter | Sampling Points | Minimum | Maximum | Mean | Standard Deviation |
4–8 September 2018 | 11 | 3.8 | 15.2 | 7.9 | 3.3 |
30 July 2019–2 August 2019 | 11 | 3.8 | 8.1 | 5.9 | 1.3 |
30 June 2021 | 6 | 7.4 | 13 | 9.3 | 2.0 |
Sentinel-2 Imagery Dates Spring–Summer | Matching Points | Minimum Chl-a | Maximum Chl-a |
---|---|---|---|
9 January2019 | 5 | 7.5 | 16.4 |
14 March 2020 | 11 | 5.1 | 74.1 |
22 November 2021 | 2 | 3.8 | 6.0 |
18 January 2022 | 6 | 1.9 | 8.4 |
Sentinel-2 Imagery Dates Fall–Winter | Matching Points | Minimum Chl-a | Maximum Chl-a |
4 September 2018 | 4 | 3.8 | 8.7 |
2 August 2019 | 11 | 3.8 | 8.1 |
30 June 2021 | 2 | 7.4 | 9.4 |
Ref. | Algorithm | Equation | R2 | R2adj | RMSE | MAE | PBIAS | NSE |
---|---|---|---|---|---|---|---|---|
[51] | 0.85 | 0.84 | 7.72 | 4.76 | −26.70 | 0.72 | ||
[51] | 0.24 | −0.18 | 27.47 | 16.12 | 37.41 | −1.77 | ||
[52] | OC2V4 | 0.54 | 0.52 | 13.72 | 6.88 | 61.98 | 0.14 | |
[53] | 0.02 | −0.1 | 17.06 | 9.15 | −88.77 | −0.34 | ||
[54] | 0.62 | 0.58 | 16.37 | 7.32 | −67.50 | −0.24 |
Data Type | Period | Chl-a Concentration (μg L−1) | Multiple Linear Regressions of Chl-a and Sentinel-2 Bands |
---|---|---|---|
TOA | Spring– Summer | 1.9–74.1 1.9–16.4 | Chl-a = −32.3888 + 0.1949 × B2 + −0.1527 × B3 + −0.9148 × B4 + 0.8488 × B5 + 0.1287 × B7 + 0.2505 × B8A + 0.1674 × B11 + −0.3580 × B12 Chl-a = −45.8781 + 0.1447 × B2 + −0.1262 × B3 + 0.2150 × B5 + −0.3866 × B6 + 0.2505 × B8A + 0.1203 × B11 + −0.2633 × B12 |
BOA | Spring– Summer | 1.9–74.1 1.9–16.4 | Chl-a = 8.0035 + 0.0909 × B2 + −0.0999 × B3 + −0.4048 × B4 + 0.6738 × B5 + 0.1491 × B6 + −0.4849 × B7 + 0.2896 × B8A + −0.1577 × B11 Chl-a = 7.3146 + −0.0575 × B02 + 0.1329 × B05 + −0.0925 × B06 + −0.2548 × B07 + 0.3379 × B8A + 0.0479 × B11 |
TOA | Fall– Winter | 3.8–8.7 | Chl-a = −83.3051 + −0.0595 × B2 + 0.4792 × B3 + −0.4375 × B4 + 0.1006 × B5 + −0.1045 × B7 |
BOA | Fall– Winter | 3.8–9.4 | Chl-a = 8.5290 + −0.0460 × B3 − 0.0440 × B4 + 0.1412 × B5 + −0.0288 × B6 + 0.0429 × B7 + −0.2077 × B11 + 0.1669 × B12 |
Calibration | Validation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Data Type | Period | Chl-a Value | R2 | R2adj | RMSE | MAE | PBIAS | NSE | RMSE | MAE |
TOA | Spring– Summer | 1.9–74.1 1.9–16.4 | 0.91 0.87 | 0.86 0.77 | 5.97 1.27 | 4.91 1.11 | 0.5 −4.4 | 0.91 0.94 | 3.31 2.58 | 2.74 1.94 |
BOA | Spring– Summer | 1.9–74.1 1.9–16.4 | 0.98 0.99 | 0.97 0.98 | 2.58 0.51 | 2.00 0.39 | 0 0 | 0.98 0.99 | 4.98 3.79 | 3.67 3.45 |
TOA | Fall– Winter | 3.8–8.7 | 0.96 | 0.92 | 0.32 | 0.26 | 0.21 | 0.96 | 2.52 | 2.25 |
BOA | Fall– Winter | 3.8–9.4 | 0.94 | 0.83 | 0.43 | 0.38 | 0 | 0.94 | 2.68 | 1.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barraza-Moraga, F.; Alcayaga, H.; Pizarro, A.; Félez-Bernal, J.; Urrutia, R. Estimation of Chlorophyll-a Concentrations in Lanalhue Lake Using Sentinel-2 MSI Satellite Images. Remote Sens. 2022, 14, 5647. https://doi.org/10.3390/rs14225647
Barraza-Moraga F, Alcayaga H, Pizarro A, Félez-Bernal J, Urrutia R. Estimation of Chlorophyll-a Concentrations in Lanalhue Lake Using Sentinel-2 MSI Satellite Images. Remote Sensing. 2022; 14(22):5647. https://doi.org/10.3390/rs14225647
Chicago/Turabian StyleBarraza-Moraga, Francisca, Hernán Alcayaga, Alonso Pizarro, Jorge Félez-Bernal, and Roberto Urrutia. 2022. "Estimation of Chlorophyll-a Concentrations in Lanalhue Lake Using Sentinel-2 MSI Satellite Images" Remote Sensing 14, no. 22: 5647. https://doi.org/10.3390/rs14225647
APA StyleBarraza-Moraga, F., Alcayaga, H., Pizarro, A., Félez-Bernal, J., & Urrutia, R. (2022). Estimation of Chlorophyll-a Concentrations in Lanalhue Lake Using Sentinel-2 MSI Satellite Images. Remote Sensing, 14(22), 5647. https://doi.org/10.3390/rs14225647