Ensemble Three-Dimensional Habitat Modeling of Indian Ocean Immature Albacore Tuna (Thunnus alalunga) Using Remote Sensing Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.1.1. Albacore Tuna Fishery Data
2.1.2. Oceanographic Data
2.2. Standardization of Nominal Catch Per Unit Effort
2.3. Selection of Oceanographic Parameters and Vertical LAYER
2.4. Construction and Evaluation of the Single-Algorithm Habitat Model
2.5. Ensemble Model Development, Evaluation, and Prediction
3. Results
3.1. Standardization of Nominal CPUE Data
3.2. Oceanographic Parameters and Vertical Layer Selection
3.3. Relation between Selected Environmental Layers & S.CPUE
3.4. Predictive Performance of Single-Algorithm Habitat Models
3.5. Ensemble Model Development and Prediction
4. Discussion
4.1. Evaluation of Ensemble Model
4.2. Immature Albacore Habitat
4.3. Potential Implications for Albacore Fisheries
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SDM | Species distribution model |
MODIS | Moderate Resolution Imaging Spectroradiometer |
COP | Copernicus |
AVHRR | Advanced Very High Resolution Radiometer |
SST | Temperature |
OXY | Dissolved oxygen |
SSC (0–2) | Chlorophyll (0–2 months lag) |
SSS | Salinity |
U | U-velocity |
V | V-velocity |
EKE | Eddie kinetic energy |
NPP | Net primary productivity |
MLD | Mixed layer depth |
SSH | Sea surface height above geoid |
N.CPUE | Nominal catch per unit effort |
S.CPUE | Standardized catch per unit effort |
GLM | Generalized linear modeling |
AIC | Akaike information criterion |
R2 | Correlation |
GAM | Generalized additive model |
BRT | Boosted regression trees |
RF | Random Forest |
RS | Random splitting |
LOOCV | Leave-one-out cross-validation |
R | Pearson correlation coefficient |
RMSE | Root mean square error |
MAE | Mean absolute error |
P.CPUE | Predicted catch per unit effort |
References
- Nikolic, N.; Morandeau, G.; Hoarau, L.; West, W.; Arrizabalaga, H.; Hoyle, S.; Nicol, S.J.; Bourjea, J.; Puech, A.; Farley, J.H.; et al. Review of albacore tuna, Thunnus alalunga, biology, fisheries and management. Rev. Fish Biol. Fish. 2017, 27, 775–810. [Google Scholar] [CrossRef]
- Khedkar, G.D.; Jadhao, B.V. Tuna and Tuna-like Fish of Tropical Climates; Elsevier Science Ltd.: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Fernandez-Polanco, J.; Llorente, I. Tuna economics and markets. In Advances in Tuna Aquaculture; Academic Press: Cambridge, MA, USA, 2016; pp. 333–350. [Google Scholar]
- Mondal, S.; Vayghan, A.H.; Lee, M.A.; Wang, Y.C.; Semedi, B. Habitat suitability modeling for the feeding ground of immature albacore in the southern Indian Ocean using satellite-derived sea surface temperature and chlorophyll data. Remote Sens. 2021, 13, 2669. [Google Scholar] [CrossRef]
- Chen, I.C.; Lee, P.F.; Tzeng, W.N. Distribution of albacore (Thunnus alalunga) in the Indian Ocean and its relation to environmental factors. Fish. Oceanogr. 2005, 14, 71–80. [Google Scholar] [CrossRef]
- Wang, S.P. CPUE standardization of blue marlin caught by Taiwanese large-scale longline fishery in the Indian Ocean. In Proceedings of the 17th Working Party on Billfish, La Reunion, France, 9–12 September 2019; IOTC-2019-WPB17, 18. p. 41. [Google Scholar]
- Taiwan National Report to the Scientific Committee of the Indian Ocean Tuna Commission, 2019.
- Li, X.; Wang, Y. Applying various algorithms for species distribution modelling. Integr. Zool. 2013, 8, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Elith, J.; Graham, C.H. Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Echography 2009, 32, 66–77. [Google Scholar] [CrossRef]
- Zimmermann, N.E.; Edwards, T.C., Jr.; Graham, C.H.; Pearman, P.B.; Svenning, J.C. New trends in species distribution modelling. Echography 2010, 33, 985–989. [Google Scholar] [CrossRef]
- Austin, M. Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecol. Model. 2007, 200, 1–19. [Google Scholar] [CrossRef]
- Levins, R. The strategy of model building in population ecology. Am. Sci. 1966, 54, 421–431. [Google Scholar]
- Rajeesh, R.; Dwarakish, G.S. Satellite oceanography—A review. Aquat. Procedia 2015, 4, 165–172. [Google Scholar] [CrossRef]
- Marra, J. Introduction to satellite oceanography. Limnol. Oceanogr. e-Lect. 2014, 4, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; He, P.; Xu, L.; Bach, P.; Wang, X.; Wan, R.; Tang, H.; Zhang, Y. The effects of mesoscale oceanographic structures and ambient conditions on the catch of albacore tuna in the South Pacific longline fishery. Fish. Oceanogr. 2020, 29, 238–251. [Google Scholar] [CrossRef]
- Chen, X.; Tian, S.; Chen, Y.; Liu, B. A modeling approach to identify optimal habitat and suitable fishing grounds for neon flying squid (Ommostrephes bartramii) in the northwest Pacific Ocean. Fish. Bull. 2010, 108, 1–14. [Google Scholar]
- Zainuddin, M.; Saitoh, S. Detection of potential fishing ground for albacore tuna using synoptic measurements of ocean color and thermal remote sensing in the northwestern North Pacific. Geophys. Res. Lett. 2004, 31, 31. [Google Scholar] [CrossRef]
- Zainuddin, M.; Saitoh, K.; Saitoh, S.-I. Albacore (Thunnus alalunga) fishing ground in relation to oceanographic conditions in the western North Pacific Ocean using remotely sensed satellite data. Fish. Oceanogr. 2008, 17, 61–73. [Google Scholar] [CrossRef] [Green Version]
- Lan, K.-W.; Lee, M.-A.; Chou, C.-P.; Vayghan, A.H. Association between the interannual variation in the oceanic environment and catch rates of bigeye tuna (Thunnus obesus) in the Atlantic Ocean. Fish. Oceanogr. 2018, 27, 395–407. [Google Scholar] [CrossRef]
- Xu, Y.; Nieto, K.; Teo, S.L.; McClatchie, S.; Holmes, J. Influence of fronts on the spatial distribution of albacore tuna (Thunnus alalunga) in the Northeast Pacific over the past 30 years (1982–2011). Prog. Oceanogr. 2017, 150, 72–78. [Google Scholar] [CrossRef]
- Yen, K.-W.; Chen, C.-H. Research Gap Analysis of Remote Sensing Application in Fisheries: Prospects for Achieving the Sustainable Development Goals. Remote Sens. 2021, 13, 1013. [Google Scholar] [CrossRef]
- Lan, K.W.; Nishida, T.; Lee, M.A.; Lu, H.J.; Huang, H.W.; Chang, S.K.; Lan, Y.C. Influence of the marine environment variability on the yellowfin tuna (Thunnus albacares) catch rate by the Taiwanese longline fishery in the Arabian sea, with special reference to the high catch in 2004. J. Mar. Sci. Technol. 2012, 20, 514–524. [Google Scholar]
- Chang, Y.J.; Hsu, J.; Lai, P.K.; Lan, K.W.; Tsai, W.P. Evaluation of the Impacts of Climate Change on Albacore Distribution in the South Pacific Ocean by Using Ensemble Forecast. Front. Mar. Sci. 2021, 1404. [Google Scholar] [CrossRef]
- Lan, K.W.; Chang, Y.J.; Wu, Y.L. Influence of oceanographic and climatic variability on the catch rate of yellowfin tuna (Thunnus albacares) cohorts in the Indian Ocean. In Deep Sea Research Part II: Topical Studies in Oceanography; Elsevier: Amsterdam, The Netherlands, 2020; Volume 175, p. 104681. [Google Scholar]
- Klemas, V. Remote sensing of environmental indicators of potential fish aggregation: An overview. Baltica 2012, 25, 99–112. [Google Scholar] [CrossRef] [Green Version]
- Pearce, J.; Ferrier, S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model. 2000, 133, 225–245. [Google Scholar] [CrossRef] [Green Version]
- Elith, J.H.; Graham, C.P.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Echography 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Tsoar, A.; Allouche, O.; Steinitz, O.; Rotem, D.; Kadmon, R. A comparative evaluation of presence-only methods for modelling species distribution. Divers. Distrib. 2007, 13, 397–405. [Google Scholar] [CrossRef]
- McKinney, J.; Hoffmayer, E.; Wu, W.; Fulford, R.; Hendon, J. Feeding habitat of the whale shark Rhincodon typus in the northern Gulf of Mexico determined using species distribution modelling. Mar. Ecol. Prog. Ser. 2012, 458, 199–211. [Google Scholar] [CrossRef] [Green Version]
- Scales, K.L.; Miller, P.I.; Ingram, S.N.; Hazen, E.L.; Bograd, S.J.; Phillips, R.A. Identifying predictable foraging habitats for a wide-ranging marine predator using ensemble ecological niche models. Divers. Distrib. 2016, 22, 212–224. [Google Scholar] [CrossRef] [Green Version]
- Alabia, I.D.; Saitoh, S.I.; Igarashi, H.; Ishikawa, Y.; Usui, N.; Kamachi, M.; Awaji, T.; Seito, M. Ensemble squid habitat model using three-dimensional ocean data. ICES J. Mar. Sci. 2016, 73, 1863–1874. [Google Scholar] [CrossRef] [Green Version]
- Araújo, M.B.; New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 2007, 22, 42–47. [Google Scholar] [CrossRef]
- Bates, J.M.; Granger, C.W.J. The combination of forecasts. J. Oper. Res. Soc. 1969, 20, 451–468. [Google Scholar] [CrossRef]
- Oppel, S.; Meirinho, A.; Ramírez, I.; Gardner, B.; O’Connell, A.F.; Miller, P.I.; Louzao, M. Comparison of five modelling techniques to predict the spatial distribution and abundance of seabirds. Biol. Conserv. 2012, 156, 94–104. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Cao, J.; Tian, S.; Chen, Y.; Zhang, S.; Wang, Z.; Zhou, X. A comparison between two GAM models in quantifying relationships of environmental variables with fish richness and diversity indices. Aquat. Ecol. 2014, 48, 297–312. [Google Scholar] [CrossRef]
- Wood, S.N.; Augustin, N.H. GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecol. Model. 2002, 157, 157–177. [Google Scholar] [CrossRef] [Green Version]
- Hastie, T.J.; Tibshirani, R.J. Generalized Additive Models; Chapman & Hall: London, UK, 1990; p. 335. [Google Scholar]
- Leathwick, J.R.; Elith, J.; Hastie, T. Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecol. Model. 2006, 199, 188–196. [Google Scholar] [CrossRef]
- Ptacnik, R.; Lepistö, L.; Willén, E.; Brettum, P.; Andersen, T.; Rekolainen, S.; Solheim, A.L.; Carvalho, L. Quantitative responses of lake phytoplankton to eutrophication in Northern Europe. Aquat. Ecol. 2008, 42, 227–236. [Google Scholar] [CrossRef]
- Chang, J.H.; Chen, Y.; Holland, D.; Grabowski, J. Estimating spatial distribution of American lobster Homarus americanus using habitat variables. Mar. Ecol. Prog. Ser. 2010, 420, 145–156. [Google Scholar] [CrossRef]
- Schmiing, M.; Afonso, P.; Tempera, F.; Santos, R.S. Predictive habitat modeling of reef fishes with contrasting trophic ecologies. Mar. Ecol. Prog. Ser. 2013, 474, 201–216. [Google Scholar] [CrossRef] [Green Version]
- Ratner, B. The correlation coefficient: Its values range between +1/−1, or do they? J. Target. Meas. Anal. Mark. 2009, 17, 139–142. [Google Scholar] [CrossRef] [Green Version]
- Wood, S.N. Generalized Additive Models: An Introduction with R; Chapman and Hall/CRC: Boca Raton, FL, USA, 2006. [Google Scholar]
- Akaike, H. A new look at the statistical model identification. In Selected Papers of Hirotugu Akaike; Parzen, E., Tanabe, K., Kitagawa, G., Eds.; Springer: New York, NY, USA, 1998; pp. 215–222. [Google Scholar]
- Thuiller, W.; Lafourcade, B.; Engler, R.; Araújo, M.B. BIOMOD—A platform for ensemble forecasting of species distributions. Ecography 2009, 32, 369–373. [Google Scholar] [CrossRef]
- Thuiller, W.; Georges, D.; Robin, E. R Package, version 3.1-64. In biomod2: Ensemble Platform for Species Distribution Modeling; Crane Holdings: Stamford, CT, USA, 2014. [Google Scholar]
- Perez, J.; Menendez, M.; Camus, P.; Mendez, F.J.; Losada, I.J. Statistical multi-model climate projections of surface ocean waves in Europe. Ocean. Model. 2015, 96, 161–170. [Google Scholar] [CrossRef]
- Quinci, E.M.; Torri, M.; Cuttitta, A.; Patti, B. Predicting Potential Spawning Habitat by Ensemble Species Distribution Models: The Case Study of European Anchovy (Engraulis encrasicolus) in the Strait of Sicily. Water 2022, 14, 1400. [Google Scholar] [CrossRef]
- Farley, J.H.; Hoyle, S.D.; Eveson, J.P.; Williams, A.J.; Davies, C.R.; Nicol, S.J. Maturity ogives for South Pacific albacore tuna (Thunnus alalunga) that account for spatial and seasonal variation in the distributions of mature and immature fish. PLoS ONE 2014, 9, e83017. [Google Scholar]
- Farley, J.H.; Williams, A.J.; Davies, C.R.; Clear, N.P.; Eveson, J.P.; Hoyle, S.D.; Nicol, S.J. Population Biology of Albacore Tuna in the Australian Region; Castray Esplanade: Hobart, Australia, 2012. [Google Scholar]
- Dotson, R.C. Minimum swimming speed of albacore, Thunnus alalunga. Fish. Bull 1976, 74, 955–960. [Google Scholar]
- Childers, J.; Snyder, S.; Kohin, S. Migration and behavior of juvenile North Pacific albacore (Thunnus alalunga). Fish. Oceanogr. 2011, 20, 157–173. [Google Scholar] [CrossRef] [Green Version]
- Sagarminaga, Y.; Arrizabalaga, H. Spatio-temporal distribution of albacore (Thunnus alalunga) catches in the northeastern Atlantic: Relationship with the thermal environment. Fish. Oceanogr. 2010, 19, 121–134. [Google Scholar] [CrossRef]
Environmental Data | Abb. | Unit | Source | Time Period | Spatial Resolution | Temporal Resolution |
---|---|---|---|---|---|---|
Temperature | SST | °C | COP | 1998–2016 | 0.08° × 0.08° | Monthly |
Dissolved oxygen | OXY | mmol/L | COP | 1998–2016 | 0.08° × 0.08° | Monthly |
Chlorophyll (0–2 months lag) | SSC (0–2) | mgm−3 | COP | 1998–2016 | 0.25°× 0.25° | Monthly |
Salinity | SSS | psu | COP | 1998–2016 | 0.08° × 0.08° | Monthly |
U-velocity | U | ms−1 | COP | 1998–2016 | 0.08° × 0.08° | Monthly |
V-velocity | V | ms−1 | COP | 1998–2016 | 0.08° × 0.08° | Monthly |
Eddie kinetic energy | EKE | m2s−2 | COP | 1998–2016 | 0.08° × 0.08° | Monthly |
Net primary productivity | NPP | mgm−3day−1 | COP | 1998–2016 | 0.25° × 0.25° | Monthly |
Mixed layer depth | MLD | meter | COP | 1998–2016 | 0.08° × 0.08° | Monthly |
Sea surface height above geoid | SSH | meter | COP | 1998–2016 | 0.08° × 0.08° | Daily |
No. | Models | AIC | Null | Residual | R2 | P(f) |
---|---|---|---|---|---|---|
1 | Year | 223,937 | 135,722 | 133,006 | 0.002 | <0.001 |
2 | Year + Month | 216,436 | 135,722 | 117,864 | 0.131 | <0.001 |
3 | Year + Month + Lat | 163,405 | 135,722 | 50,203 | 0.63 | <0.001 |
4 | Year + Month + Lat + Lon | 147,018 | 135,722 | 38,471 | 0.716 | <0.001 |
5 | Year + Month + Lat + Lon + Interactions | 142,977 | 135,722 | 35,249 | 0.781 | <0.001 |
GAM | Parameter | AIC | DEV EXP | Adj. R squ. | GCV |
OXY | 86,498.17 | 85.5 | 0.855 | 0.235 | |
SST | 86,563.96 | 85.4 | 0.854 | 0.232 | |
SSS | 150,073 | 59.6 | 0.596 | 0.652 | |
MLD | 174,173.6 | 40.5 | 0.405 | 0.961 | |
SSC1 | 179,620.9 | 36.1 | 0.361 | 1.049 | |
SSC0 | 185,294.5 | 28.9 | 0.289 | 1.149 | |
SSC2 | 195,414.9 | 21.3 | 0.213 | 1.912 | |
EKE | 186,516.8 | 27.5 | 0.274 | 1.721 | |
U | 187,736.4 | 26 | 0.26 | 1.195 | |
V | 199,962.5 | 9.96 | 0.099 | 1.454 | |
SSH | 200,105.2 | 9.75 | 0.097 | 1.458 | |
NPP | 205,861.6 | 1.01 | 0.009 | 1.599 | |
BRT | Parameter | RMSE | DEV EXP | Adj. R squ. | MAE |
OXY | 0.48 | 85.7 | 0.857 | 0.255 | |
SST | 0.483 | 85.5 | 0.855 | 0.264 | |
SSS | 0.797 | 60.5 | 0.605 | 0.462 | |
MLD | 0.979 | 40.5 | 0.405 | 0.662 | |
SSC1 | 0.992 | 39.4 | 0.394 | 0.678 | |
SSC0 | 1.123 | 27.9 | 0.279 | 0.84 | |
SSC2 | 1.145 | 24.5 | 0.245 | 0.856 | |
EKE | 1.002 | 32.8 | 0.328 | 0.691 | |
U | 1.077 | 28.4 | 0.284 | 0.789 | |
V | 1.199 | 10.9 | 0.109 | 0.942 | |
SSH | 1.206 | 9.8 | 0.098 | 0.904 | |
NPP | 1.242 | 4.7 | 0.047 | 0.991 | |
RF | Parameter | RMSE | DEV EXP | Adj. R squ. | MAE |
OXY | 0.445 | 83.6 | 0.836 | 0.251 | |
SST | 0.478 | 83.1 | 0.831 | 0.259 | |
SSS | 0.717 | 62.1 | 0.621 | 0.465 | |
MLD | 0.953 | 42.4 | 0.424 | 0.657 | |
SSC1 | 0.987 | 37.1 | 0.371 | 0.673 | |
SSC0 | 1.005 | 32.7 | 0.327 | 0.684 | |
SSC2 | 1.021 | 30.9 | 0.309 | 0.721 | |
EKE | 1.138 | 25.1 | 0.251 | 0.87 | |
U | 1.179 | 23.3 | 0.233 | 0.859 | |
V | 1.087 | 21.2 | 0.212 | 0.752 | |
SSH | 1.234 | 12.3 | 0.123 | 0.935 | |
NPP | 1.241 | 9.7 | 0.097 | 0.898 |
(a) | |||||
OXY | SST | SSS | MLD | SSC1 | |
OXY | 1 | ||||
SST | −0.58 | 1 | |||
SSS | 0.48 | −0.53 | 1 | ||
MLD | 0.55 | −0.56 | 0.4 | 1 | |
SSC1 | 0.3 | −0.42 | 0.16 | 0.3 | 1 |
(b) | |||||
OXY | SST | SSS | MLD | ||
OXY | |||||
SST | 4.3 | ||||
SSS | 3.8 | 4.0 | |||
MLD | 4.1 | 4.3 | 3.7 | ||
SSC1 | 2.7 | −3.5 | 1.1 | 2.9 |
Parameters | R-squ. | VIP |
---|---|---|
OXY_200 | 0.71 | 4 |
OXY_244 | 0.70 | 5 |
OXY_147 | 0.73 | 3 |
TEM_5 | 0.76 | 1 |
TEM_26 | 0.75 | 2 |
TEM_53 | 0.69 | 7 |
SAL_508 | 0.71 | 6 |
SAL_628 | 0.68 | 8 |
SAL_411 | 0.62 | 11 |
SSC1_508 | 0.66 | 9 |
SSC1_628 | 0.67 | 10 |
SSC1_411 | 0.60 | 12 |
MLD | 0.49 | 13 |
Parameters | Depth | Optimal Range | Units | S.CPUE |
---|---|---|---|---|
OXY | 200 | 240–260 | 12.17 | |
244 | 235–255 | mmol/L | 11.38 | |
147 | 240–260 | 11.99 | ||
TEM | 5 | 13–15 | 12.24 | |
26 | 12–14 | °C | 11.91 | |
53 | 14–16 | 10.63 | ||
SSS | 508 | 34.3–34.4 | 10.52 | |
628 | 34.3–34.4 | psu | 10.14 | |
411 | 34.4–34.5 | 8.33 | ||
SSC1 | 508 | 0.012–0.013 | 15.34 | |
628 | 0.005–0.006 | Mgm−3 | 7.86 | |
411 | 0.02–0.021 | 19.466 | ||
MLD | 250–260 | meter | 19.14 |
Validation Techniques | Methods | RMSE | R2 | MAE | |||
---|---|---|---|---|---|---|---|
70 | 30 | 70 | 30 | 70 | 30 | ||
10 fold | GLM | 0.516 | 0.507 | 0.819 | 0.809 | 0.388 | 0.381 |
GAM | 0.521 | 0.514 | 0.817 | 0.807 | 0.384 | 0.378 | |
BRT | 0.515 | 0.501 | 0.818 | 0.811 | 0.385 | 0.382 | |
RF | 0.514 | 0.502 | 0.818 | 0.813 | 0.387 | 0.383 | |
LOOCV | GLM | 0.514 | 0.507 | 0.815 | 0.803 | 0.386 | 0.379 |
GAM | 0.519 | 0.512 | 0.818 | 0.812 | 0.388 | 0.381 | |
BRT | 0.518 | 0.509 | 0.811 | 0.803 | 0.386 | 0.383 | |
RF | 0.512 | 0.503 | 0.812 | 0.803 | 0.386 | 0.381 | |
CV | GLM | 0.517 | 0.505 | 0.815 | 0.807 | 0.379 | 0.371 |
GAM | 0.514 | 0.508 | 0.814 | 0.805 | 0.378 | 0.377 | |
BRT | 0.513 | 0.504 | 0.815 | 0.811 | 0.381 | 0.371 | |
RF | 0.521 | 0.516 | 0.818 | 0.813 | 0.383 | 0.376 | |
Random Splitting | GLM | 0.555 | 0.543 | 0.811 | 0.804 | 0.387 | 0.382 |
GAM | 0.541 | 0.532 | 0.816 | 0.811 | 0.385 | 0.378 | |
BRT | 0.543 | 0.528 | 0.813 | 0.802 | 0.386 | 0.382 | |
RF | 0.548 | 0.533 | 0.813 | 0.803 | 0.384 | 0.378 |
Single-Algorithm Model | AIC | RMSE | MAE |
---|---|---|---|
GLM | 13,254.23 | 0.771 | 0.456 |
GAM | 11,354.15 | 0.623 | 0.402 |
BRT | 10,999.87 | 0.598 | 0.376 |
RF | 10,785.35 | 0.595 | 0.354 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mondal, S.; Wang, Y.-C.; Lee, M.-A.; Weng, J.-S.; Mondal, B.K. Ensemble Three-Dimensional Habitat Modeling of Indian Ocean Immature Albacore Tuna (Thunnus alalunga) Using Remote Sensing Data. Remote Sens. 2022, 14, 5278. https://doi.org/10.3390/rs14205278
Mondal S, Wang Y-C, Lee M-A, Weng J-S, Mondal BK. Ensemble Three-Dimensional Habitat Modeling of Indian Ocean Immature Albacore Tuna (Thunnus alalunga) Using Remote Sensing Data. Remote Sensing. 2022; 14(20):5278. https://doi.org/10.3390/rs14205278
Chicago/Turabian StyleMondal, Sandipan, Yi-Chen Wang, Ming-An Lee, Jinn-Shing Weng, and Biraj Kanti Mondal. 2022. "Ensemble Three-Dimensional Habitat Modeling of Indian Ocean Immature Albacore Tuna (Thunnus alalunga) Using Remote Sensing Data" Remote Sensing 14, no. 20: 5278. https://doi.org/10.3390/rs14205278
APA StyleMondal, S., Wang, Y. -C., Lee, M. -A., Weng, J. -S., & Mondal, B. K. (2022). Ensemble Three-Dimensional Habitat Modeling of Indian Ocean Immature Albacore Tuna (Thunnus alalunga) Using Remote Sensing Data. Remote Sensing, 14(20), 5278. https://doi.org/10.3390/rs14205278