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Abstract: This study evaluated the vertical distribution of immature albacore tuna (Thunnus alalunga)
in the Indian Ocean as a function of various environmental parameters. Albacore tuna fishing data
were gathered from the logbooks of large-sized Taiwanese longline vessels. Fishery and environ-
mental data for the period from 1998 to 2016 were collected. In addition to the surface variable, the
most influential vertical temperature, dissolved oxygen (OXY), chlorophyll, and salinity layers were
found at various depths (i.e., 5, 26, and 53 m for SST; 200, 244, and 147 m for OXY; 508, 628, and
411 for SSCI; and 411, 508, and 773 m for SSS) among 20 vertical layers based on Akaike criterion
information value of generalized linear model. Relative to the 20 vertical layers base models, these
layers had the lowest Akaike information criteria. For the correlation between the standardized and
predicted catch per unit effort (CPUE), the correlation values for the generalized linear model (GLM),
generalized additive model (GAM), boosted regression tree (BRT), and random forest (RF) model
were 0.798, 0.832, 0.841, and 0.856, respectively. The GAM-, BRT-, and RF-derived full models were
selected, whereas the GLM-derived full model was excluded because its correlation value was the
lowest among the four models. From March to September, a higher immature albacore standardized
CPUE was mainly observed from 30◦S to 40◦S. A northward shift was observed after September, and
the standardized CPUE was mainly concentrated at the south coast of Madagascar from November
to January.

Keywords: albacore; ensemble species modelling; salinity; temperature; vertical distribution

1. Introduction

Albacore tuna is a highly migratory and carnivorous species belonging to the Scombri-
dae family [1]. This species is found in the temperate waters of all the three major oceans
(Indian, Pacific, and Atlantic) and is cosmopolitan in nature [2–4]. Albacore tuna is a key
commercial species, accounting for up to 6% of total global tuna catches by weight [5].
Taiwanese longline vessels have been fishing for Indian Ocean albacores since 1950. Tai-
wanese drifting longline vessels account for the majority of albacore catches in the Indian
Ocean (90% of total catches). The output of albacore tuna has increased in response to its
growing demand. The albacore harvest achieved by Taiwanese longline vessels increased
from 10,000 tons in 1950 to 102,594 tons in 2018 [6,7]. However, high exploitation levels ca
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lead to overfishing, which can cause the collapse of albacore stocks (recovery may require
several decades) and threaten livelihoods, communities, and food security. Therefore, the
spatial distribution of this species in the Indian Ocean must be comprehensively evaluated
to identify potential higher or lower habitat areas on the basis of marine habitat data.
Sustainable fishing- and ecosystem-based fishery management can be implemented by
regulating fishing efforts in higher or lower habitat regions.

Species distribution modeling (SDM; also known as habitat modeling, ecological niche
modeling, bioclimatic envelope modeling, or resource selection function modeling [8–10])
is the most frequently used technique for evaluating the habitat pattern of a species. The
basic premise of habitat modeling is to estimate species distribution by using computer
algorithms based on mathematical representations of the known distribution of a species in
environmental regions [11]. Reality, generality, and precision are the three main objectives
of habitat modeling [12]. Numerous statistical relationships between existing species
distributions and environmental variables are used in the prediction analysis.

To examine the potential effect of environmental variability on the distribution of
a species, high-resolution spatiotemporal oceanographic data are required. This type of
information can be found in data assimilation model products provided by several satellites,
including the Moderate Resolution Imaging Spectroradiometer (MODIS), Copernicus
(COP), and the Advanced Very High-Resolution Radiometer (AVHRR) etc., which provide
information on vertical oceanographic structures and how they affect species distribution.
The basic difference between different satellites is their spatial resolution. Multisatellite
detection has been performed to collect data on various oceanographic parameters since
1978. These data are particularly beneficial in the fields of oceanography and fishery
management [13–15]. Because of the availability of large-scale data, a further analysis
can enable obtaining useful information on fisheries misuse and management [16–19].
Multisatellite detection has increased our understanding of factors that affect the living
habitats of fish species and other related species [20–24]. In addition, data obtained through
precise detection can help academicians to develop cost-effective fishery management
models, modelers to generate statistics, and fishermen to become more fuel-efficient when
attempting to locate fishing sites [25].

Model comparison studies have revealed that various modeling methods differ in
terms of their statistical and predictive performance [26–29]. This might be due to basic
differences in model complexity. Researchers have examined multimodel frameworks
for obtaining robust forecasts by combining the capabilities of multiple model algorithms
that apply an ensemble model forecast technique [30,31]. To produce forecasts ensembles,
several simulations spanning multiple sets of initial conditions, model classes, parameters,
and boundary conditions are used [32]. A combination of forecasts produces a lower
mean error than any of its constituent single projections, when thees projection contains
information on single parameters [33]. Several recent studies have applied the ensemble
model technique for maritime habitat mapping and reported that this technique allows the
merging of habitat projections from multiple model algorithms with decreased bias and
high predictive accuracy [30,31,34].

By using the ensemble model technique and three-dimensional oceanographic data,
we evaluated the probable habitats of immature albacore tuna in the Indian Ocean. In our
previous study, only a single-algorithm model and surface oceanographic factors were used
to analyze immature albacore (average weight of <14 kg) habitat in the study region [35].
Although other habitat model studies have produced limited immature albacore habitat
predictions, we could not evaluate preferable vertical immature albacore habitat charac-
teristics because of the availability of numerous modeling platforms. Thus, the present
study examined the geographical and temporal patterns of immature albacore habitat by
using weighted mean ensemble projections (obtained from species distribution models)
and three-dimensional ocean data to fill potential information gaps. Thus, the present
study explored robust three-dimensional immature albacore habitat characteristics derived
from an ensemble of model forecasts and investigated the mechanistic linkage between the
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spatial and temporal variability of potential immature albacore habitats under changing
environmental conditions. Figure 1 illustrates the experimental flow of the present study.
For all the acronyms, refer to Abbreviations Section.
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2. Materials and Methods
2.1. Data Collection
2.1.1. Albacore Tuna Fishery Data

Weight at first maturity of Indian Ocean albacore is 14 kg [5]. Following this, an
average weight of 14 kg was taken as the threshold to separate mature and immature
albacore in the present study. The present study divided CPUE data into two categories,
which represent different life history stages of albacore tuna: immature (average weight
<14 kg), mature (average weight >14 kg). Only immature albacore data were used in the
present study (as present study is the continuation of Mondal et al., 2021).

Immature albacore tuna fishery data for the period from 1998 to 2016 were collected
from the fishing logbooks of large-sized longline vessels (deep-water fishing vessels with
a registered tonnage of >100 tons and a length of >24 m) of the Overseas Fisheries Devel-
opment Council of Taiwan. Data from small-sized fishing vessels (mostly coastal water
fishing vessels with a gross registered tonnage of <100 tons and a length of <24 m) were
not used in the present study because of the lack of data pertaining to the study period.
The data have a spatial coverage from 0◦S to 45◦S and from 20◦E to 120◦E with a spatial
resolution of 1◦ × 1◦. The logbooks recorded the year, month, latitude, longitude, number
of catches, number of hooks used, hooks per basket (data were not available for specific
years), and weight (whether the weight was dry or wet weight was not specified). Data
related to soaking time, hook depth, and operation time were not found in the data set.

2.1.2. Oceanographic Data

For our analysis, data on 10 oceanographic parameters were acquired from Coperni-
cus (The GLORYS12V1 product is the CMEMS global ocean eddy-resolving with 1/12◦

horizontal resolution from ERA5 reanalysis covering the altimetry (Table 1). The model
component is the NEMO. Along with track altimeter data, satellite data of vertical profiles
of different environmental parameters are jointly assimilated with a processing level of
L4. The data covered a range of spatial resolutions from 0◦S to 45◦S (albacore fishing is
only conducted in this region during specific months) and from 20◦E to 120◦E. To match
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the large-scale albacore tuna fisheries statistics from 1998 to 2016, data from all months
(i.e., January to December) for the period from 1998 to 2016 were collected. Environmental
data did not have a spatial coverage of 1◦ × 1◦; these data were interpolated to a 1◦ × 1◦

spatial grid (also the daily data were converted to monthly data) using MATLAB version
2019a (Kriging method—Kriging is a geostatistics method that predicts the value in a
geographic area given a set of measurements) because the spatial resolution of the fisheries
data was 1◦ × 1◦. As of February 2, 2022, all data were accessible. Data with daily temporal
resolution were converted into a monthly base using MATLAB version 2019a because the
temporal resolution of fisheries data was monthly. An earlier study [4] mentioned that a
phytoplankton patch must mature into a foraging ground after a minimum of 5–7 days,
and it was suggested that 1-month lag chlorophyll data be used as a potential predictor.
Additionally, it could take some time to find the predating zone by searching, therefore
a larger concentration of SSC might not always indicate a larger albacore biomass at a
given moment. In order to determine whether there was any meaningful justification for
employing SSC lag data, the authors attempted to use the lag data of SSC as well.

Table 1. Sources of various oceanographic variables derived from satellite source.

Environmental Data Abb. Unit Source Time
Period

Spatial
Resolution

Temporal
Resolution

Temperature SST ◦C COP 1998–2016 0.08◦ × 0.08◦ Monthly
Dissolved oxygen OXY mmol/L COP 1998–2016 0.08◦ × 0.08◦ Monthly

Chlorophyll (0–2 months lag) SSC (0–2) mgm−3 COP 1998–2016 0.25◦× 0.25◦ Monthly
Salinity SSS psu COP 1998–2016 0.08◦ × 0.08◦ Monthly

U-velocity U ms−1 COP 1998–2016 0.08◦ × 0.08◦ Monthly
V-velocity V ms−1 COP 1998–2016 0.08◦ × 0.08◦ Monthly

Eddie kinetic energy EKE m2s−2 COP 1998–2016 0.08◦ × 0.08◦ Monthly
Net primary productivity NPP mgm−3day−1 COP 1998–2016 0.25◦ × 0.25◦ Monthly

Mixed layer depth MLD meter COP 1998–2016 0.08◦ × 0.08◦ Monthly
Sea surface height above geoid SSH meter COP 1998–2016 0.08◦ × 0.08◦ Daily

COP—Copernicus. (https://resources.marine.copernicus.eu/products, accessed on 14 August 2022) EKE = 0.5
(U2 + V2). Unit for EKE is m2s−2.

2.2. Standardization of Nominal Catch Per Unit Effort

The relative abundance of immature albacore was indexed as catch per unit effort
(CPUE, nominal). Nominal CPUE (N.CPUE; per 1000 hooks) was calculated using the
following formula:

N.CPUE = (No. of albacore catch)/(No. of hooks used) (1)

In fisheries, CPUE is used as a reliable proxy for relative abundance. However, using
raw CPUE as an index of abundance can be problematic sometime. This is because CPUE
can be “hyper stable” or less sensitive to the rapid changes of abundance. Changes in the
fishing location, strategy, season, and fishing pattern can cause changes to CPUE that are
independent of relative abundance. To reduce the dominance of several spatial (latitude
and longitude) and temporal (year and month) factors, N.CPUE was standardized using
the common method of generalized linear modeling (GLM) to obtain a bias-filtered data set
(standardized CPUE, S.CPUE). The mgcv package [11,19,22] was used to build a stepwise
GLM model (Gaussian distribution) with five factors (Year, month, latitude, longitude,
and interactions) in R-studio version 3.6.0. Three interactions i.e., Year*Lat, Year*Lon, and
Lat*Lon were all included together. A total of five models were examined, and the optimal
model for standardization was selected on the basis of the lowest Akaike information
criterion (AIC) [4], the most deviance explained (percentage), and highest correlation (R2)
values. The Akaike information criterion (AIC) is an estimator of prediction error, and
thereby relative quality of statistical models, for a given set of data. Given a collection of

https://resources.marine.copernicus.eu/products
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models for the data, AIC estimates the quality of each model, relative to each of the other
models. The GLM models were built using the following formula:

GLMn: Log (N.CPUE + c) ~ a1 + a2 + a3 + . . . + an + µ + € (2)

where c is the constant value of 0.1, n is the number of variables, GLMn is the model with
n factors, µ is the interaction (Year*Lat, Year*Lon, and Lat*Lon), and € is a variable with
normal distribution and a mean value of zero.

2.3. Selection of Oceanographic Parameters and Vertical LAYER

The generalized additive model (GAM) is often used to select suitable environmen-
tal parameters prior to the development of a habitat model [35,36]. Because of complex
relationships between an angle community and the environment, determining whether
the relationship is linear or nonlinear is a difficult task. Therefore, models such as GAM
(Gaussian distribution with smoothing spline regression), which allow for nonlinear re-
actions, are more suitable than other models for examining relationships between angle
communities and conditions [37–41]). The use of boosted regression trees (BRTs) (no. of
regression trees used was 531 with interaction depth of 7 and bag fraction of 0.6) and
random forests (RFs) (no. of regression trees used was 325 with interaction depth of 4 and
bag fraction of 0.8) can aid parameter selection. Nonparametric random forest models can
model highly nonlinear relationships, resulting in improved classification performance. A
BRT is a type of a nonlinear model that divides data into regions on the basis of if–then
questions. The three aforementioned methods were employed in the present study to select
appropriate parameters, and each parameter was rated using each method on the basis
of their correlation value. Only parameters with a Pearson correlation value of >0.3 for at
least two of the three methods (i.e., GAM, BRT, and RF) were selected for our subsequent
analysis. Under the shaky linear rule, a correlation value of <0.3 indicates a weak positive
(negative) linear relationship [42]. R studio version 3.6.0 was used to test selected param-
eters for collinearity. Collinearity between parameter pairs was indicated by a Pearson
correlation value of >0.7 [23] and variance inflation factor value of >5.

The most influential oceanographic layers of the selected parameters for immature
albacore S.CPUE were identified using a GAM and the mgcv package version 1.8–2 [43];
this method is widely used in the literature [31]. Twenty vertical layers (5, 26, 53, 77, 97, 147,
200, 244, 300, 411, 508, 628, 773, 856, 947, and 1045 m) were initially used, and the vertical
profiles for the selected oceanographic variables were subsequently selected on the basis of
the three most influential vertical layers [31] that had the lowest AICs [44].

2.4. Construction and Evaluation of the Single-Algorithm Habitat Model

Following the finalization of the oceanographic variables, four single-algorithm mod-
els were built (full models that had all selected parameters and layers and were validated
using BIOMOD2) [45,46]. The four models were the GLM (Gaussian distribution), GAM
(Gaussian distribution with smoothing spline regression), BRT (no. of regression trees used
were 531 with interaction depth of 7 and bag fraction of 0.6), and RF (no. of regression trees
used were 325 with interaction depth of 4 and bag fraction of 0.8). The package’s species
distribution models also use a set of statistical techniques, which include conventional
regression-based models and current machine-learning platforms. Thus, the proposed
ranges of the single-algorithm models were all used to investigate and exploit their specific
prediction capabilities.

All single-algorithm models were initially assessed using four validation techniques
(i.e., random splitting [RS], leave-one-out cross-validation [LOOCV], 10-fold cross-validation
[10-fold], and repeated (3) 10-fold cross-validation [repeated 10-fold]. During the validation
process, the fishing data set with sample no. of 67,548 was divided into two random parts
at a 70:30 (training:testing) ratio. Three coefficients (i.e., Pearson correlation coefficient
[R], root-mean-square error [RMSE], and mean absolute error [MAE]) were calculated
for both the training and testing data by applying all the validation techniques in each
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single-algorithm model. We used the training data set to train the model, while the testing
data were used to compare the model performances. 70% of the data were used to train
a model. This same model was used to test the rest of the 30% data in order to check
the selected model’s biasedness for prediction. This biasedness was checked using three
coefficients (R, RMSE and MAE). Lesser difference between the coefficient values of training
and testing data sets indicated least biasedness. Thus, we applied these methodologies in
the present study. Validations were performed using the tidyverse and caret R-packages
(version 3.6.0). Smaller differences in R, RMSE, and MAE values between the two data sets
(70:30) indicate a more favorable model performance with less bias. After the successful
validation, Akaike information criterion [AIC], root-mean-square error [RMSE], and mean
absolute error [MAE] were calculated for all single-algorithm final models using 100% data
to evaluate the predictive performances of each single-algorithm model. Least AIC, RMSE,
and MAE value indicate the best performing model. The single-algorithm model with
higher AIC, RMSE, and MAE values was eliminated from the further analysis.

2.5. Ensemble Model Development, Evaluation, and Prediction

Following the performance evaluation of the single-algorithm models, we used R,
RMSE, and MAE to establish a weighted mean ensemble model for immature albacore
habitats by applying the full selected single-algorithm models. The ensemble model was
validated using four validation techniques (i.e., RS, LOOCV, 10-fold, and repeated (3)
10-fold). For the validation process, the fishing data set was randomly divided into 2 parts
at a 70:30 (training: testing) ratio. Three coefficients (i.e., Pearson correlation coefficient
[R], root-mean-square error [RMSE], and mean absolute error [MAE]) were calculated for
both the training and testing data by applying all the validation techniques in the ensemble
model. Validation was performed using the tidyverse and caret R-packages (version 3.6.0).
Lesser differences in R, RMSE, and MAE values between the two data sets (70:30) indicate
a more favorable model performance with less bias.

The ensemble model was used to perform the final prediction if the validation method
indicated a more favorable model performance with no significant biasedness. The pre-
dicted values for each point of the study area from the final model were mapped to a
1◦ × 1◦ spatial grid by using the ArcGIS software (version 10.2). The ensemble model was
used to predict CPUE (P.CPUE), which was then used as a proxy for relative abundance.

3. Results
3.1. Standardization of Nominal CPUE Data

The full GLM model (with all the factors) had the lowest AIC value (142,977) and the
highest R2 value (0.78) after stepwise GLM model generation was performed (Table 2).
The standardization model’s quantile–quantile plot and histogram (Figure 2) indicate an
almost normal distribution. Therefore, a selected model was employed to standardize the
N.CPUE of immature albacore. N.CPUE (monthly summed CPUE) ranged from 0.1 to 4000
(Figure 3). The monthly total CPUE decreased to a range of 0.1 to 2200 after standardization.
For the subsequent study of juvenile albacore tuna, S.CPUE was applied.

Table 2. Performance of various combinations of generalized linear models for the standardization of
immature albacore nominal CPUE.

No. Models AIC Null Residual R2 P(f)

1 Year 223,937 135,722 133,006 0.002 <0.001
2 Year + Month 216,436 135,722 117,864 0.131 <0.001
3 Year + Month + Lat 163,405 135,722 50,203 0.63 <0.001
4 Year + Month + Lat + Lon 147,018 135,722 38,471 0.716 <0.001
5 Year + Month + Lat + Lon + Interactions 142,977 135,722 35,249 0.781 <0.001

Lat = Latitude; Lon = Longitude; Interactions = Year*Lat, Year*Lon, Lat*Lon
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3.2. Oceanographic Parameters and Vertical Layer Selection

Table 3 presents the significance of various environmental characteristics when several
selection procedures were applied. The environmental characteristics of dissolved oxygen
(OXY), temperature (SST), salinity (SSS), mixed layer depth (MLD), and chlorophyll level
with a 1-month lag (SSC1) all had correlation values of >0.3 with S.CPUE when the GAM
technique was used. OXY (0.855) had the highest correlation with S.CPUE. The generalized
cross-validation (GCV) index for OXY was the lowest among the metrics. For correlation
and GCV index values, SSC1 outperformed the chlorophyll level with no lag (SSC0) and
chlorophyll level with a 2-month lag (SSC2). OXY, SST, SSS, MLD, SSC1, and eddy kinetic
energy (EKE) all had correlation values of >0.3 with S.CPUE when the BRT method was
used. OXY (0.857) had the highest correlation with S.CPUE. OXY had the lowest RMSE
and MAE index values among all the parameters. In the correlation of RMSE and MAE
index values, SSC1 outperformed SSC0 and SSC2. OXY, SST, SSS, MLD, SSC0, SSC1, and
SSC2 had correlation values of >0.3 with S.CPUE when the RF technique was used. OXY
(0.836) had the highest correlation with S.CPUE. OXY had the lowest RMSE and MAE
index values among all the parameters. Although all SSC delays had correlation values of
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>0.3, SSC1 outperformed SSC0 and SSC2 in terms of correlation, RMSE, and MAE index
values. Consequently, only SSC1 was selected. The aforementioned data indicate that for
all the selection methods, OXY, SST, SSS, MLD, and SSC1 had correlation values of >0.3.
EKE only had a correlation value of >0.3 when the BRT method was used. Therefore, the
final model was constructed using only OXY, SST, SSS, MLD, and SSC1. A multicollinearity
test revealed that the selected parameters did not exhibit any collinearity (Table 4).

Table 3. Environment parameters selected using GAM, BRT, and RF for immature albacore tuna
model construction.

GAM

Parameter AIC DEV EXP Adj. R squ. GCV

OXY 86,498.17 85.5 0.855 0.235
SST 86,563.96 85.4 0.854 0.232
SSS 150,073 59.6 0.596 0.652

MLD 174,173.6 40.5 0.405 0.961
SSC1 179,620.9 36.1 0.361 1.049
SSC0 185,294.5 28.9 0.289 1.149
SSC2 195,414.9 21.3 0.213 1.912
EKE 186,516.8 27.5 0.274 1.721

U 187,736.4 26 0.26 1.195
V 199,962.5 9.96 0.099 1.454

SSH 200,105.2 9.75 0.097 1.458
NPP 205,861.6 1.01 0.009 1.599

BRT

Parameter RMSE DEV EXP Adj. R squ. MAE

OXY 0.48 85.7 0.857 0.255
SST 0.483 85.5 0.855 0.264
SSS 0.797 60.5 0.605 0.462

MLD 0.979 40.5 0.405 0.662
SSC1 0.992 39.4 0.394 0.678
SSC0 1.123 27.9 0.279 0.84
SSC2 1.145 24.5 0.245 0.856
EKE 1.002 32.8 0.328 0.691

U 1.077 28.4 0.284 0.789
V 1.199 10.9 0.109 0.942

SSH 1.206 9.8 0.098 0.904
NPP 1.242 4.7 0.047 0.991

RF

Parameter RMSE DEV EXP Adj. R squ. MAE

OXY 0.445 83.6 0.836 0.251
SST 0.478 83.1 0.831 0.259
SSS 0.717 62.1 0.621 0.465

MLD 0.953 42.4 0.424 0.657
SSC1 0.987 37.1 0.371 0.673
SSC0 1.005 32.7 0.327 0.684
SSC2 1.021 30.9 0.309 0.721
EKE 1.138 25.1 0.251 0.87

U 1.179 23.3 0.233 0.859
V 1.087 21.2 0.212 0.752

SSH 1.234 12.3 0.123 0.935
NPP 1.241 9.7 0.097 0.898

A GAM analysis of the effects of vertical SST, OXY, SSC1, and SSS on immature albacore
S.CPUE was performed to identify the subsurface habitat characteristics of immature
albacore. In addition to the surface variable (MLD), the most influential vertical SST,
OXY, SSC1 and SSS layers were found at various depths (i.e., 5, 26, and 53 m for SST; 200,
244, and 147 m for OXY; 508, 628, and 411 for SSC1; and 411, 508, and 773 m for SSS).
Relative to the upper-surface base models, these layers had lower AICs. Table 5 evaluated
the different selected environmental layers, with respect to S.CPUE, based on Pearson
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correlation analysis and VIP score ranking. Results showed that temperature at 5 m depth
was more important than other selected layers, followed by temperature at 26 m depth.
Temperature at 53 m depth did not show any significant importance, with a VIP rank of 7.
The third most important was oxygen at 147 m depth, followed by 200 m and 244 m. For
both the SSS and SSC1, 508 m depth showed more importance than 411 m and 628 m depth.
MLD showed the lowest correlation with S.CPUE, with a VIP ranking of 13.

Table 4. (a) Multicollinearity test results for parameters selected for the immature albacore tuna
model based on Pearson correlation analysis value. (b) Multicollinearity test results for parameters
selected for the immature albacore tuna model based on VIF value.

(a)

OXY SST SSS MLD SSC1

OXY 1
SST −0.58 1
SSS 0.48 −0.53 1

MLD 0.55 −0.56 0.4 1
SSC1 0.3 −0.42 0.16 0.3 1

(b)

OXY SST SSS MLD

OXY
SST 4.3
SSS 3.8 4.0

MLD 4.1 4.3 3.7
SSC1 2.7 −3.5 1.1 2.9

Table 5. Evaluation of different selected environmental layers with respect to S.CPUE.

Parameters R-squ. VIP

OXY_200 0.71 4
OXY_244 0.70 5
OXY_147 0.73 3
TEM_5 0.76 1
TEM_26 0.75 2
TEM_53 0.69 7
SAL_508 0.71 6
SAL_628 0.68 8
SAL_411 0.62 11
SSC1_508 0.66 9
SSC1_628 0.67 10
SSC1_411 0.60 12

MLD 0.49 13

3.3. Relation between Selected Environmental Layers & S.CPUE

Table 6 showed the optimal ranges of different environmental parameters in different
vertical layers with respect to the highest S.CPUE. The optimal range of OXY for both_ 200,
and 147 m depth was 240–260 mmol/L with respect to the highest S.CPUE, whereas for the
244 m depth this range was a little lesser (235–255). The optimal range of TEM at 5, 26, and
53 m depth was 13–15 ◦C, 12–14 ◦C, and 14–16 ◦C, respectively, for the highest S.CPUE.
The optimal range of SSS for both_508, and 628 m depth was 34.3–34.4 psu, whereas this
range was a little higher at 411 m depth (34.4–34.5 psu). For MLD, the optimal range was
between 240–260 m for the highest S.CPUE.
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Table 6. Optimal ranges of different environmental parameters in different vertical layers with respect
to the highest S.CPUE.

Parameters Depth Optimal Range Units S.CPUE

OXY
200 240–260 12.17
244 235–255 mmol/L 11.38
147 240–260 11.99

TEM
5 13–15 12.24
26 12–14 ◦C 11.91
53 14–16 10.63

SSS
508 34.3–34.4 10.52
628 34.3–34.4 psu 10.14
411 34.4–34.5 8.33

SSC1
508 0.012–0.013 15.34
628 0.005–0.006 Mgm−3 7.86
411 0.02–0.021 19.466

MLD 250–260 meter 19.14

3.4. Predictive Performance of Single-Algorithm Habitat Models

All the single-algorithm full models exhibited favorable predictive performance. The
S.CPUE–P.CPUE Pearson correlation values obtained using the GLM, GAM, BRT, and
RF methods were 0.798, 0.832, 0.841, and 0.856, respectively, from Pearson correlation
analysis. Table 7 presents the prediction performance (as measured by RMSE, MAE, and
R2) achieved using the full single-algorithm models for the selected parameters when each
of the three validation techniques were used. The RMSE, MAE, and R2 values obtained
from the randomly split data sets exhibited no significant bias in predictive performance.
All the single-algorithm models were revealed to be suitable for making predictions.

Table 7. Prediction performance of single-algorithm models when three validation techniques
were applied.

Validation Techniques Methods
RMSE R2 MAE

70 30 70 30 70 30

10 fold

GLM 0.516 0.507 0.819 0.809 0.388 0.381
GAM 0.521 0.514 0.817 0.807 0.384 0.378
BRT 0.515 0.501 0.818 0.811 0.385 0.382
RF 0.514 0.502 0.818 0.813 0.387 0.383

LOOCV

GLM 0.514 0.507 0.815 0.803 0.386 0.379
GAM 0.519 0.512 0.818 0.812 0.388 0.381
BRT 0.518 0.509 0.811 0.803 0.386 0.383
RF 0.512 0.503 0.812 0.803 0.386 0.381

CV

GLM 0.517 0.505 0.815 0.807 0.379 0.371
GAM 0.514 0.508 0.814 0.805 0.378 0.377
BRT 0.513 0.504 0.815 0.811 0.381 0.371
RF 0.521 0.516 0.818 0.813 0.383 0.376

Random
Splitting

GLM 0.555 0.543 0.811 0.804 0.387 0.382
GAM 0.541 0.532 0.816 0.811 0.385 0.378
BRT 0.543 0.528 0.813 0.802 0.386 0.382
RF 0.548 0.533 0.813 0.803 0.384 0.378

3.5. Ensemble Model Development and Prediction

Table 8 showed the predictive performances of all the single-algorithm models based
on AIC, RMSE, and MAE using 100% of data. All the four single-algorithm full models
exhibited proximal and favorable performance. The GAM-, BRT-, and RF-derived full
models were selected and the GLM-derived full model was excluded because P.CPUE
obtained through this model exhibited the highest AIC, RMSE, and MAE value of all
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4 single-algorithm models with S.CPUE. Hence, final ensemble model was constructed
using only GAM, BRT, and RF single-algorithm models. Model validation showed no
significant differences in R, RMSE, and MAE values between training and test data for
ensemble modeling all the validation techniques applied. Figure 4 reveals the findings as
follows. From March to September, a high immature albacore S.CPUE was mainly observed
between 30◦S and 40◦S; after September, a northward shift occurred; and from November to
January, S.CPUE was mainly concentrated at the south coast of Madagascar. After January,
an eastward shift occurred. The P.CPUE obtained from the ensemble model exhibited a
high correlation with S.CPUE (0.867). A random splitting evaluation did not reveal any
significant bias.

Table 8. Evaluation of single-algorithm models with full data set for ensemble model construction.

Single-Algorithm Model AIC RMSE MAE

GLM 13,254.23 0.771 0.456
GAM 11,354.15 0.623 0.402
BRT 10,999.87 0.598 0.376
RF 10,785.35 0.595 0.354
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4. Discussion

The present study proposed a new method for inferring the potential habitats of
immature albacore tuna, a commercially and ecologically crucial resource, in the Indian
Ocean, on the basis of vertical oceanographic preferences. We used a combination of state-
of-the-art species habitat algorithms and three-dimensional oceanographic data obtained
from a high-resolution numerical model to develop high-quality habitat projections for
immature albacore tuna. We investigated vertical immature albacore habitat characteristics,
the potential link between environmental circumstances and potential albacore habitats by
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applying the aforementioned method. Consequently, we examined the ensemble’s habitat
models quantitatively for operational albacore resource management applications.

4.1. Evaluation of Ensemble Model

Although the single-algorithm models exhibited consistent oceanographic parameter
rankings, they differed in their intermodel statistical performance. These findings reflect an
inherent intermodel uncertainty, indicating that the predictive power of statistical methods
varies significantly [9]. Furthermore, compared with the top-performing single-algorithm
predictions, combining immature albacore habitat forecasts by using the weighted means of
three of the four top-performing models resulted in improved performance with respect to
the accuracy of immature albacore habitat predictions (Figure 4). This finding corresponds
to those of other studies, which reported that using the ensemble model method instead of
a single-algorithm platform to forecast marine habitat affinities produces more favorable
results [34,47]. Therefore, the ensemble model technique can be a useful tool for operational
fisheries (e.g., mapping probable fishing areas) and resource management (e.g., identifying
predictable foraging habitats that may include key zones for fish). Three possible reasons
can be given in order to describe the good prediction failure by ensemble model in the
panel a-j-k-l. Firstly, noise, bias and variance: the combination of decisions from multiple
models can help to improve the overall performance. Hence, one of the key reasons to use
ensemble models is overcoming noise, bias and variance. However, ensemble models in
machine learning might have any noise, bias and variance from different models. This can
be one possible reason for few prediction failures in the present study. Authors planned
to use more advanced models for ensemble prediction in order to rectify areas of lack in
the present study. The second reason was the existence of selected ideal environmental
ranges. Furthermore, the area with a high S.CPUE of immature albacore tuna from April to
September is where the fish feed. These two details can be used to map out where young
albacore tuna are found in the Indian Ocean. Since October through January are not prime
feeding months, and because it is summer, young albacore may vertically dive to reach the
best SST. These reasons might be the causes of the decline in high CPUE values observed in
the southern region between October and January.

4.2. Immature Albacore Habitat

In water temperatures between 11.5 ◦C and 18 ◦C, albacore tuna use physiological ther-
moregulation to maintain a stable body temperature of approximately 20 ◦C [48]. The body
temperature of albacore tuna has been reported to decrease to <11.5 ◦C, which prompts
individual tuna fish to change their behavior by migrating vertically into warmer waters to
restore their body temperature. During their active growth phase, albacore tuna require a
considerable amount of energy, which may explain their presence in areas where prey con-
gregate at the water surface. Few studies have explored the high-energy intake of immature
albacore tuna [49,50]. The high-energy requirements of such fish are expected to affect their
distribution; specifically, individual fish tend to congregate in high-productivity locations
where food is abundant. Because of the abundance of prey species in surface waters and
the minimal need to forage in deeper waters, the vertical distribution of albacore tuna
may be restricted to surface waters. However, with their thermoregulation capabilities [48]
and swim bladder development [51], albacore tuna can dive into deep waters [52]. Our
findings suggest that immature albacore tuna engage in vertical diving behavior only when
necessary (e.g., for forging, hiding, thermoregulation, and osmoregulation). Moreover, our
results indicate that the vertical distribution of immature albacore is affected by thermal
preferences (as indicated by their diet); the vertical distribution of prey species, which is
influenced by the ocean’s thermal structure; or a combination of both factors.

Results indicated that, of the examined layers, the temperature at 5 m depth was
the most significant, followed by that at 26 m depth. With a VIP score of 7, temperature
at 53 m of depth did not demonstrate any major importance. At 147 m, oxygen ranked
third in importance, ahead of 200 and 244 m. This occurred because 508 m depth was
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more significant than 411 m and 628 m depth for both the SSS and SSC1, respectively.
With a VIP ranking of 13, MLD displayed the lowest correlation with S.CPUE. In terms
of the maximum S.CPUE, the best OXY range for both the 200 and 147 m depths was
240–260 mmol/L, whereas it was slightly lower for the 244 m depth (235–255). For the
highest S.CPUE, the best TEM temperature ranges at 5, 26, and 53 m deep were 13–15 ◦C,
12–14 ◦C, and 14–16 ◦C, respectively. The ideal SSS range was 34.3–34.4 psu at both 508
and 628 m depth, but this range was slightly greater at 411 m depth (34.4–34.5 psu). For
MLD, a range of between 240 and 260 m produced the highest S.CPUE. Changes in SST
will control the muscle contraction. Slower muscle contraction will reduce the tail beat
frequency and eventually will affect the swimming speed of fish. With the increase in
SST, maximum swimming speed increases. However, an increase in SST greater than
the preferred range will increment the energy costs for albacore, resulting in diminished
execution and push, and it will influence the growth of albacore. Ambient SST affects the
maximum swimming speed of fish. Being a carnivorous species [1], albacore has an indirect
relationship with chlorophyll. SSC is the primary producer in the oceanic ecosystem, with
secondary producers such as fish [4,6], shrimp, squid, and octopus feeding on it. Immature
albacore then feed on these secondary producers. Thus, SSC is a critical factor to consider
when describing the abundance of immature albacore tuna. SSS can be a crucial predictor.
If the SSS is decreased from the preferred range of albacore then water density will also
decrease, eventually affecting the swimming behavior (swimming is difficult in less dense
water, thus swimming will cost higher energy loss) of albacore tuna. If the SSS is higher
than the preferred range of immature albacore, then it will affect the osmoregulatory cost
(use of extra energy) and begin affecting the growth of albacore tuna. MLD and SSH are
related to each other and to SST. MLD is primarily determined by the action of turbulent
mixing of the water mass due to wind stress and heat exchange at the air–sea interface.
Cooling in SST can induce convection, which enlarges the MLD and decreases SSH.

Two possible reasons can affect the higher S.CPUE (used as the proxy of relative
abundance) of immature albacore tuna. Presence of preferred optimal environmental
ranges can be the first reason. Moreover, the location with high S.CPUE of immature
albacore during April to September is the feeding zone of immature albacore tuna. These
two facts can describe the spatial distribution of immature albacore tuna in the Indian
Ocean. October to January is not the feeding time, and because of summer, an increase in
SST might cause immature albacore to vertically dive in order to obtain the optimal SST.
These might be the reasons behind the disappearance of high CPUE values in the southern
sector from October–January.

4.3. Potential Implications for Albacore Fisheries

Understanding the species’ regional dynamics and interactions at the population
scale in all oceanic regions is a key aspect of efforts to improve albacore management.
Because albacore movement is affected by seasonal (ideal temperature) and food supply
considerations, population structures found between and within oceans are challenging
to explain [53]. Furthermore, albacore tuna shift vertically and horizontally in water
columns throughout their life cycle, a behavior which increases the difficulty of determining
their distribution. Multiple species distribution models, stratified by space and time for
each ocean basin and albacore tuna fishery, are required to clarify the albacore’s complex
distribution and spatial dynamics and the effect of changing environmental conditions.

5. Conclusions

In addition to the surface variable, the most influential vertical SST, OXY, SSC1 and SSS
layers were found at various depths (i.e., 5, 26, and 53 m for SST; 200, 244, and 147 m for OXY;
508, 628, and 411 for SSCI; and 411, 508, and 773 m for SSS). Relative to the upper-surface
base models, these layers had the lowest AICs. The GLM, GAM, BRT, and RF methods
produced S.CPUE–P.CPUE correlation values of 0.798, 0.832, 0.841, and 0.856, respectively.
The anticipated CPUE obtained through the GLM-derived full model exhibited the lowest
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correlation with S.CPUE; thus, only the GAM-, BRT-, and RF-derived full models were
selected. From March to September, a high level immature albacore S.CPUE was mainly
observed between 30◦S and 40◦S; after September, a northward shift occurred; and from
November to January, S.CPUE was mainly concentrated at the south coast of Madagascar.
Our findings indicate that the vertical distribution of immature albacore is affected by
thermal preferences (as indicated by their diet); the vertical distribution of prey species,
which is affected by the ocean’s thermal structure; or a combination of both factors.
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SDM Species distribution model
MODIS Moderate Resolution Imaging Spectroradiometer
COP Copernicus
AVHRR Advanced Very High Resolution Radiometer
SST Temperature
OXY Dissolved oxygen
SSC (0–2) Chlorophyll (0–2 months lag)
SSS Salinity
U U-velocity
V V-velocity
EKE Eddie kinetic energy
NPP Net primary productivity
MLD Mixed layer depth
SSH Sea surface height above geoid
N.CPUE Nominal catch per unit effort
S.CPUE Standardized catch per unit effort
GLM Generalized linear modeling
AIC Akaike information criterion
R2 Correlation
GAM Generalized additive model
BRT Boosted regression trees
RF Random Forest
RS Random splitting
LOOCV Leave-one-out cross-validation
R Pearson correlation coefficient
RMSE Root mean square error
MAE Mean absolute error
P.CPUE Predicted catch per unit effort
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