Gradient Boosting and Linear Regression for Estimating Coastal Bathymetry Based on Sentinel-2 Images
Abstract
:1. Introduction
2. Literature Review
3. Data Collection and Research Methods
3.1. Study Area and Multibeam Echo-Sounder Data
3.2. Satellite Data Processing
3.3. Satellite-Derived Bathymetry Methods
3.3.1. Linear and Log-Ratio Model
3.3.2. Four-Visible-Band Ratio (FVBR) Model
4. Results
4.1. In situ Bathymetry Analysis
4.2. Comparison of Satellite-Derived and In Situ Bathymetries
5. Discussion
5.1. Temporal Variation in Bathymetry Estimates
5.2. Satellite-Derived Bathymetry Maps
5.3. Recommendations for Future Studies
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dissanayake, P.; Yates, M.L.; Suanez, S.; Floc’h, F.; Krämer, K. Climate Change Impacts on Coastal Wave Dynamics at Vougot Beach, France. J. Mar. Sci. Eng. 2021, 9, 1009. [Google Scholar] [CrossRef]
- Kirezci, E.; Young, I.R.; Ranasinghe, R.; Muis, S.; Nicholls, R.J.; Lincke, D.; Hinkel, J. Projections of Global-Scale Extreme Sea Levels and Resulting Episodic Coastal Flooding over the 21st Century. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Ding, S.; Nitivattananon, V.; Tang, J. Long-Term Dynamic of Land Reclamation and Its Impact on Coastal Flooding: A Case Study in Xiamen, China. Land 2021, 10, 866. [Google Scholar] [CrossRef]
- Ibrahim, H.D.; Xue, P.; Eltahir, E.A.B. Multiple Salinity Equilibria and Resilience of Persian/Arabian Gulf Basin Salinity to Brine Discharge. Front. Mar. Sci. 2020, 7, 573. [Google Scholar] [CrossRef]
- Yagoub, M.M.; Kolan, G.R. Monitoring Coastal Zone Land Use and Land Cover Changes of Abu Dhabi Using Remote Sensing. J. Indian Soc. Remote Sens. 2006, 34, 57–68. [Google Scholar] [CrossRef]
- Stumpf, R.P.; Holderied, K.; Sinclair, M. Determination of Water Depth with High-resolution Satellite Imagery over Variable Bottom Types. Limnol. Oceanogr. 2003, 48, 547–556. [Google Scholar] [CrossRef]
- Casal, G.; Monteys, X.; Hedley, J.; Harris, P.; Cahalane, C.; McCarthy, T. Assessment of Empirical Algorithms for Bathymetry Extraction Using Sentinel-2 Data. Int. J. Remote Sens. 2019, 40, 2855–2879. [Google Scholar] [CrossRef]
- Poursanidis, D.; Traganos, D.; Reinartz, P.; Chrysoulakis, N. On the Use of Sentinel-2 for Coastal Habitat Mapping and Satellite-Derived Bathymetry Estimation Using Downscaled Coastal Aerosol Band. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 58–70. [Google Scholar] [CrossRef]
- Hamylton, S.M.; Hedley, J.D.; Beaman, R.J. Derivation of High-Resolution Bathymetry from Multispectral Satellite Imagery: A Comparison of Empirical and Optimisation Methods through Geographical Error Analysis. Remote Sens. 2015, 7, 16257–16273. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-K.; Philpot, W.D. Using Airborne Bathymetric Lidar to Detect Bottom Type Variation in Shallow Waters. Remote Sens. Environ. 2007, 106, 123–135. [Google Scholar] [CrossRef]
- Sagawa, T.; Yamashita, Y.; Okumura, T.; Yamanokuchi, T. Satellite Derived Bathymetry Using Machine Learning and Multi-Temporal Satellite Images. Remote Sens. 2019, 11, 1155. [Google Scholar] [CrossRef] [Green Version]
- Najar, M.A.; Benshila, R.; Bennioui, Y.E.; Thoumyre, G.; Almar, R.; Bergsma, E.W.J.; Delvit, J.-M.; Wilson, D.G. Coastal Bathymetry Estimation from Sentinel-2 Satellite Imagery: Comparing Deep Learning and Physics-Based Approaches. Remote Sens. 2022, 14, 1196. [Google Scholar] [CrossRef]
- Niroumand-Jadidi, M.; Bovolo, F.; Bruzzone, L. SMART-SDB: Sample-Specific Multiple Band Ratio Technique for Satellite-Derived Bathymetry. Remote Sens. Environ. 2020, 251, 112091. [Google Scholar] [CrossRef]
- Pereira, P.; Baptista, P.; Cunha, T.; Silva, P.A.; Romão, S.; Lafon, V. Estimation of the Nearshore Bathymetry from High Temporal Resolution Sentinel-1A C-Band SAR Data—A Case Study. Remote Sens. Environ. 2019, 223, 166–178. [Google Scholar] [CrossRef]
- Bergsma, E.W.J.; Almar, R.; Rolland, A.; Binet, R.; Brodie, K.L.; Bak, A.S. Coastal Morphology from Space: A Showcase of Monitoring the Topography-Bathymetry Continuum. Remote Sens. Environ. 2021, 261, 112469. [Google Scholar] [CrossRef]
- Wang, L.; Liu, H.; Su, H.; Wang, J. Bathymetry Retrieval from Optical Images with Spatially Distributed Support Vector Machines. GIScience Remote Sens. 2019, 56, 323–337. [Google Scholar] [CrossRef]
- Misra, A.; Vojinovic, Z.; Ramakrishnan, B.; Luijendijk, A.; Ranasinghe, R. Shallow Water Bathymetry Mapping Using Support Vector Machine (SVM) Technique and Multispectral Imagery. Int. J. Remote Sens. 2018, 39, 4431–4450. [Google Scholar] [CrossRef]
- Mateo-Pérez, V.; Corral-Bobadilla, M.; Ortega-Fernández, F.; Vergara-González, E.P. Port Bathymetry Mapping Using Support Vector Machine Technique and Sentinel-2 Satellite Imagery. Remote Sens. 2020, 12, 2069. [Google Scholar] [CrossRef]
- Dredging Today Unique System Installs Kongsberg EM 2040 Multibeam Echo Sounder on Bayanat Vessels. Available online: https://www.dredgingtoday.com/2014/07/02/unique-system-installs-kongsberg-em-2040-multibeam-echo-sounder-on-bayanat-vessels/ (accessed on 20 August 2022).
- Ody, A.; Doxaran, D.; Vanhellemont, Q.; Nechad, B.; Novoa, S.; Many, G.; Bourrin, F.; Verney, R.; Pairaud, I.; Gentili, B. Potential of High Spatial and Temporal Ocean Color Satellite Data to Study the Dynamics of Suspended Particles in a Micro-Tidal River Plume. Remote Sens. 2016, 8, 245. [Google Scholar] [CrossRef] [Green Version]
- Hedley, J.D.; Harborne, A.R.; Mumby, P.J. Simple and Robust Removal of Sun Glint for Mapping Shallow-Water Benthos. Int. J. Remote Sens. 2005, 26, 2107–2112. [Google Scholar] [CrossRef]
- Gholamy, A.; Kreinovich, V.; Kosheleva, O. Why 70/30 or 80/20 Relation between Training and Testing Sets: A Pedagogical Explanation. In Departmental Technical Reports (CS); University of Texas at El Paso: El Paso, TX, USA, 2018. [Google Scholar]
- NASA Chlorophyll a (Chlor_a). Available online: https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/ (accessed on 20 August 2022).
- NASA Diffuse Attenuation Coefficient for Downwelling Irradiance at 490 Nm (Kd_490). Available online: https://oceancolor.gsfc.nasa.gov/atbd/kd_490/ (accessed on 20 August 2022).
- Lee, Z.; Du, K.; Arnone, R. A Model for the Diffuse Attenuation Coefficient of Downwelling Irradiance. J. Geophys. Res. Ocean. 2005, 110. [Google Scholar] [CrossRef]
- Escoto, J.E.; Blanco, A.C.; Argamosa, R.J.; Medina, J.M. Pasig River Water Quality Estimation Using an Empirical Ordinary Least Squares Regression Model of Sentinel-2 Satellite Images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 46, 161–168. [Google Scholar] [CrossRef]
- Natekin, A.; Knoll, A. Gradient Boosting Machines, a Tutorial. Front. Neurorobot. 2013, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- XGBoost XGBoost Documentation. Available online: https://xgboost.readthedocs.io/en/latest/index.html%0Ahttps://xgboost.readthedocs.io/en/latest/#%0Ahttps://xgboost.readthedocs.io/en/latest/ (accessed on 20 August 2022).
- Al-Shehhi, M.R.; Nelson, D.; Farzanah, R.; Alshihi, R.; Salehi-Ashtiani, K. Characterizing Algal Blooms in a Shallow & a Deep Channel. Ocean Coast. Manag. 2021, 213, 105840. [Google Scholar]
- Al Kaabi, M.R.; Zhao, J.; Ghedira, H. MODIS-Based Mapping of Secchi Disk Depth Using a Qualitative Algorithm in the Shallow Arabian Gulf. Remote Sens. 2016, 8, 423. [Google Scholar] [CrossRef] [Green Version]
- Al-Salem, K.; Neelamani, S.; Al-Nassar, W. Wind Energy Map of Arabian Gulf. Nat. Resour. 2018, 9, 212–228. [Google Scholar] [CrossRef]
- Al-Ghadban, A.N.; Massoud, M.S.; Abdali, F. Bottom Sediments of the Arabian Gulf: I. Sedimentological Characteristics. Kuwait J. Sci. Eng. 1996, 23, 71–88. [Google Scholar]
- Tides4fishing. Available online: https://tides4fishing.com/ae/united-arab-emirates/abu-dhabi (accessed on 10 August 2022).
Gradient Boosting | Linear | |||||||
---|---|---|---|---|---|---|---|---|
Month | Sir Bani Yas | Abu Dhabi | Sir Bani Yas | Abu Dhabi | ||||
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | |
January | 0.83 | 5.6 | 0.4 | 9.6 | 0.68 | 10.27 | 0.12 | 14.01 |
February | 0.9 | 3.28 | 0.69 | 5.02 | 0.79 | 6.66 | 0.64 | 5.71 |
March | 0.85 | 4.9 | 0.71 | 4.61 | 0.72 | 9.04 | 0.65 | 5.67 |
April | 0.84 | 5.1 | 0.6 | 6.37 | 0.76 | 7.86 | 0.57 | 6.94 |
May | 0.91 | 2.98 | 0.46 | 8.64 | 0.84 | 5.14 | 0.41 | 9.38 |
June | 0.87 | 4.11 | 0.52 | 7.72 | 0.79 | 6.87 | 0.49 | 8.14 |
July | 0.88 | 3.87 | 0.62 | 6.12 | 0.80 | 6.53 | 0.44 | 8.87 |
August | 0.83 | 5.5 | 0.65 | 5.67 | 0.73 | 8.79 | 0.47 | 8.42 |
September | 0.87 | 4.2 | 0.71 | 4.56 | 0.79 | 6.74 | 0.56 | 7.09 |
October | 0.89 | 3.41 | 0.64 | 5.67 | 0.76 | 7.75 | 0.48 | 8.24 |
November | 0.76 | 7.73 | 0.66 | 5.39 | 0.67 | 10.76 | 0.43 | 9.17 |
December | 0.7 | 9.66 | 0.61 | 6.25 | 0.62 | 12.36 | 0.40 | 9.59 |
Gradient Boosting | Linear | |||||||
---|---|---|---|---|---|---|---|---|
Month | Sir Bani Yas | Abu Dhabi | Sir Bani Yas | Abu Dhabi | ||||
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | |
January | 0.24 | 24.55 | 0.16 | 13.48 | 0.49 | 16.53 | 0.04 | 15.35 |
February | 0.68 | 10.35 | 0.57 | 6.81 | 0.69 | 9.86 | 0.68 | 5.18 |
March | 0.45 | 17.69 | 0.55 | 7.22 | 0.59 | 13.27 | 0.61 | 6.23 |
April | 0.56 | 14.26 | 0.44 | 8.87 | 0.62 | 12.15 | 0.52 | 7.69 |
May | 0.79 | 6.90 | 0.24 | 12.12 | 0.77 | 7.57 | 0.34 | 10.58 |
June | 0.45 | 17.82 | 0.43 | 9.05 | 0.59 | 13.07 | 0.48 | 8.23 |
July | 0.68 | 10.27 | 0.44 | 9.00 | 0.69 | 9.88 | 0.45 | 8.71 |
August | 0.53 | 15.02 | 0.52 | 7.73 | 0.61 | 12.69 | 0.46 | 8.70 |
September | 0.69 | 9.89 | 0.54 | 7.41 | 0.73 | 8.74 | 0.62 | 6.11 |
October | 0.53 | 15.08 | 0.23 | 12.29 | 0.64 | 11.75 | 0.31 | 11.08 |
November | 0.38 | 20.07 | 0.42 | 9.30 | 0.54 | 14.74 | 0.43 | 9.12 |
December | 0.33 | 21.65 | 0.45 | 8.71 | 0.49 | 16.43 | 0.41 | 9.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdul Gafoor, F.; Al-Shehhi, M.R.; Cho, C.-S.; Ghedira, H. Gradient Boosting and Linear Regression for Estimating Coastal Bathymetry Based on Sentinel-2 Images. Remote Sens. 2022, 14, 5037. https://doi.org/10.3390/rs14195037
Abdul Gafoor F, Al-Shehhi MR, Cho C-S, Ghedira H. Gradient Boosting and Linear Regression for Estimating Coastal Bathymetry Based on Sentinel-2 Images. Remote Sensing. 2022; 14(19):5037. https://doi.org/10.3390/rs14195037
Chicago/Turabian StyleAbdul Gafoor, Fahim, Maryam R. Al-Shehhi, Chung-Suk Cho, and Hosni Ghedira. 2022. "Gradient Boosting and Linear Regression for Estimating Coastal Bathymetry Based on Sentinel-2 Images" Remote Sensing 14, no. 19: 5037. https://doi.org/10.3390/rs14195037
APA StyleAbdul Gafoor, F., Al-Shehhi, M. R., Cho, C. -S., & Ghedira, H. (2022). Gradient Boosting and Linear Regression for Estimating Coastal Bathymetry Based on Sentinel-2 Images. Remote Sensing, 14(19), 5037. https://doi.org/10.3390/rs14195037