Distribution and Driving Force of Water Use Efficiency under Vegetation Restoration on the Loess Plateau
Abstract
:1. Introduction
2. Model Approach
2.1. Introduction to the Study Area
2.2. Data Sources
2.3. Research Methods
2.4. Analysis Method
2.4.1. Trend Analysis
2.4.2. Coefficient of Variation
2.4.3. Correlation Analysis
3. Results
3.1. Data Verification
3.2. NDVI Annual Variation on the Loess Plateau
3.3. Variation of WUE on the Loess Plateau
3.4. The Relationship and Correlation between NDVI and WUE
3.5. WUE Driving Factor Determination
4. Discussion
4.1. Areas where NDVI and WUE Increased at the Same Time
4.2. Areas where NDVI Decreased but WUE Increased
4.3. Areas where NDVI Increased but WUE Decreased
4.4. Areas where NDVI and WUE Decreased Simultaneously
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yushan, L. Effects of forest on water circle on the Loess Plateau. J. Nat. Resour. 2001, 5, 32–37. [Google Scholar]
- Yuan, L.H.; Jiang, W.G.; Shen, W.M.; Liu, Y.H.; Wang, W.J.; Tao, L.L.; Zheng, H.; Liu, X.F. Analysis of temporal and spatial changes of vegetation cover in the Yellow River Basin from 2000 to 2010. J. Ecol. 2013, 33, 24. [Google Scholar]
- Shu-yu, Z.; Deng-ke, L.; Yi-gang, J.; Xing-min, L.; Bei, G. Analysis of Seasonal Dynamics of Vegetation Change in Shaanxi Province Based MODIS NDVI Time Series Data. Chin. J. Agrometeorol. 2007, 28, 88–92. [Google Scholar]
- An, Z.; Kukla, G.J.; Porter, S.C.; Xiao, J. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years. Quat. Res. 1991, 36, 29–36. [Google Scholar] [CrossRef]
- An, Z.; Kukla, G.; Porter, S.C.; Xiao, J. Late quaternary dust flow on the chinese Loess Plateau. Catena 1991, 18, 125–132. [Google Scholar] [CrossRef]
- Lindroth, A.; Cienciala, E. Water use efficiency of short-rotation Salix viminalis at leaf, tree and stand scales. Tree Physiol. 1996, 1–2, 257–262. [Google Scholar] [CrossRef]
- Ben-Asher, J.; Alpert, P.; Ben-Zvi, A. Dew is a major factor affecting vegetation water use efficiency rather than a source of water in the eastern Mediterranean area. Water Resour. Res. 2010, 46, 437–441. [Google Scholar] [CrossRef]
- Brümmer, C.; Black, T.A.; Jassal, R.S.; Grant, N.J.; Spittlehouse, D.L.; Chen, B.; Nesic, Z.; Amiro, B.D.; Arain, M.A.; Barr, A.G.; et al. How climate and vegetation type influence evapotranspiration and water use efficiency in Canadian forest, peatland and grassland ecosystems. Agric. For. Meteorol. 2012, 153, 14–30. [Google Scholar] [CrossRef]
- Huang, M.; Piao, S.; Sun, Y.; Ciais, P.; Cheng, L.; Mao, J.; Poulter, B.; Shi, X.; Zeng, Z.; Wang, Y. Change in terrestrial ecosystem water-use efficiency over the last three decades. Glob. Change Biol. 2015, 21, 2366–2378. [Google Scholar] [CrossRef]
- Tang, X.; Li, H.; Desai, A.; Nagy, Z.; Luo, J.; Kolb, T.E.; Olioso, A.; Xu, X.; Yao, L.; Kutsch, W.; et al. How is water-use efficiency of terrestrial ecosystems distributed and changing on Earth? Sci. Rep. 2014, 4, 7483. [Google Scholar] [CrossRef]
- Scartazza, A.; Vaccari, F.P.; Bertolini, T.; Di Tommasi, P.; Lauteri, M.; Miglietta, F.; Brugnoli, E. Comparing integrated stable isotope and eddy covariance estimates of water-use efficiency on a Mediterranean successional sequence. Oecologia 2014, 176, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Zhao, A.; Zhang, A.; Cao, S.; Feng, L.; Pei, T. Spatiotemporal patterns of water use efficiency in China and responses to multi-scale drought. Theor. Appl. Climatol. 2020, 140, 559–570. [Google Scholar] [CrossRef]
- Cao, H.-X.; Zhang, Z.-B.; Xu, P.; Chu, L.-Y.; Shao, H.-B.; Lu, Z.-H.; Liu, J.-H. Mutual physiological genetic mechanism of plant high water use efficiency and nutrition use efficiency. Colloids Surf. B Biointerfaces 2007, 57, 1–7. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, Y.; Shi, X. Analysis of spatial and temporal evolution of vegetation cover on Loess Plateau based on AVHRR and MODIS NDVI data. J. Appl. Sci. 2016, 34, 702–712. [Google Scholar]
- Xin, Z.; Xu, J.; Huang, J. Spatial and temporal evolution of vegetation cover in response to climate in the Loess Plateau region. Adv. Nat. Sci. 2007, 17, 9. [Google Scholar]
- Fang, L.; Huimin, Y.; Fengxue, G.; Zhongen, N.; Mei, H. Net Primary Productivity Increased on the Loess Plateau Following Implementation of the Grain to Green Program. J. Resour. Ecol. 2017, 8, 413–421. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Zhao, J.; Rustomji, P.; Hairsine, P. Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z.; Lü, Y.; Zeng, Y.; Li, Y.; Jiang, X.; et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Yao, Y.B.; Li, Y.H.; Wang, Y.R.; Zhang, X.Y.; Wei, F. Effects of the climate and climatic productivity in the Loess Plateau of China on global climate change. Agric. Res. Arid. Areas 2005, 23, 202–208. [Google Scholar]
- Wang, Y.; Fan, J.; Shao, M.; Bai, Y. Analysis of effects of climate change on reference evapotranspiration on the Loess Plateau in recent 50 years. Trans. Chin. Soc. Agric. Eng. 2008. [Google Scholar]
- Sun, W.; Song, X.; Mu, X.; Gao, P.; Wang, F.; Zhao, G. Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau. Agric. For. Meteorol. 2015, 209, 87–99. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, D.; Gan, R.; Chiew, F.H.S.; McVicar, T.R.; Zhang, Q.; Yang, Y. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017. Remote Sens. Environ. 2019, 222, 165–182. [Google Scholar] [CrossRef]
- Tian, H.; Chen, G.; Liu, M.; Zhang, C.; Sun, G.; Lu, C.; Xu, X.; Ren, W.; Pan, S.; Chappelka, A. Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895–2007. For. Ecol. Manag. 2010, 259, 1311–1327. [Google Scholar] [CrossRef]
- Rui, G.; Li, F.; He, W.; Yang, S.; Sun, G. Spatial and Temporal Variability of Annual Precipitation during 1958–2007 in Loess Plateau, China. In Proceedings of the Computer & Computing Technologies in Agriculture Iv-ifip Tc 12 Conference, Nanchang, China, 22–25 October 2010. [Google Scholar]
- Gooch, J.W. Coefficient of Variation. In Encyclopedic Dictionary of Polymers; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Kumari, S.; Nie, J.; Chen, H.-S.; Ma, H.; Stewart, R.; Li, X.; Lu, M.-Z.; Taylor, W.M.; Wei, H. Evaluation of Gene Association Methods for Coexpression Network Construction and Biological Knowledge Discovery. PLoS ONE 2012, 7, e50411. [Google Scholar] [CrossRef] [PubMed]
- Peñuelas, J.; Canadell, J.G.; Ogaya, R. Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Glob. Ecol. Biogeogr. 2011, 20, 597–608. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Shao, M.; Jia, X. A Review of Studies on Dried Soil Layers in the Loess Plateau. Adv. Earth Sci. 2016, 31, 14–22. [Google Scholar]
- Xie, H.; Li, R.; Yang, Q.; Li, J.; Liang, W. Effect of Returning Farmland to Forest (Pasture) and Changes of Precipitation on Soil Erosion in the Yanhe Basin. Sci. Agric. Sin. 2009, 42, 569–576. [Google Scholar]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Yang, Y.; Guan, H.; Shang, S.; Di, L.; Simmons, C.T. Toward the Use of the MODIS ET Product to Estimate Terrestrial GPP for Nonforest Ecosystems. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1624–1628. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, J. Characteristics of NDVI changes under the different vegetation types in Shaanxi Province from 1982 to 2013. J. Arid. Land Resour. Environ. 2017. [Google Scholar]
- Zhang, X.; Zhao, W.; Liu, Y.; Fang, X.; Feng, Q. The relationships between grasslands and soil moisture on the Loess Plateau of China: A review. Catena 2016, 145, 56–67. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, M.; Wang, Q.; Shao, M.A. Physical and chemical properties of soil bio-crust on rehabilitated grassland in hilly Loess Plateau of China. Chin. J. Appl. Ecol. 2006, 17, 1429–1434. [Google Scholar]
- Zhengjia, L.; Quanqin, S.; Jiyuan, L. The Performances of MODIS-GPP and -ET Products in China and Their Sensitivity to Input Data (FPAR/LAI). Remote Sens. 2014, 7, 135–152. [Google Scholar]
- Wang, F.; Jiang, H.; Cheng, M.; Zhang, L.J.; Liu, J.; Yu, K.Y. Estimation of water use efficiency in the terrestrial ecosystems of the Yangtze River Delta region, China. Terr. Atmos. Ocean. Sci. 2019, 30, 247–264. [Google Scholar] [CrossRef] [Green Version]
Product Model | Surface Parameters | Time Resolution | Spatial Resolution |
---|---|---|---|
PMLV2v0.1.7 | GPP | 8 d | 500 m |
PMLV2v0.1.7 | ET | 8 d | 500 m |
MOD13A2 | NDVI | 16 d | 500 m |
SRTM V4.1 | DEM | - | 90 m |
Period | 2001–2010 | 2011–2020 | |
---|---|---|---|
value | Min | 0.007 | 0.010 |
Max | 0.940 | 0.946 | |
Mean | 0.507 | 0.584 | |
STD | 0.203 | 0.198 | |
CV | 0.062 | 0.052 | |
Growth rate | Min | −0.090 | −0.097 |
Max | 0.090 | 0.099 | |
Mean | 0.007 | 0.006 | |
STD | 0.009 | 0.008 | |
CV | 0.066 | 0.058 |
Period | 2001–2010 | 2011–2020 | |
---|---|---|---|
value | Min | 0.000 | 0.000 |
Max | 29.106 | 29.486 | |
Mean | 1.120 | 1.350 | |
STD | 0.619 | 0.666 | |
CV | 0.081 | 0.082 | |
Growth rate | Min | −0.291 | −0.291 |
Max | 0.247 | 0.423 | |
Mean | 0.015 | 0.032 | |
STD | 0.025 | 0.035 | |
CV | 0.085 | 0.074 |
Period | NDVI | WUE | Area Change Ratio (%) |
---|---|---|---|
2001–2010 | − | − | 10.12 |
− | + | 8.34 | |
+ | − | 13.08 | |
+ | + | 64.45 | |
2011–2020 | − | − | 5.28 |
− | + | 11.28 | |
+ | − | 8.81 | |
+ | + | 74.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, R.; Wang, D.; Cui, X.; Yao, X.; Li, S.; Wang, H.; Liu, B. Distribution and Driving Force of Water Use Efficiency under Vegetation Restoration on the Loess Plateau. Remote Sens. 2022, 14, 4513. https://doi.org/10.3390/rs14184513
Ma R, Wang D, Cui X, Yao X, Li S, Wang H, Liu B. Distribution and Driving Force of Water Use Efficiency under Vegetation Restoration on the Loess Plateau. Remote Sensing. 2022; 14(18):4513. https://doi.org/10.3390/rs14184513
Chicago/Turabian StyleMa, Ruixue, Dacheng Wang, Ximin Cui, Xiaojing Yao, Shenshen Li, Hongsen Wang, and Bingxuan Liu. 2022. "Distribution and Driving Force of Water Use Efficiency under Vegetation Restoration on the Loess Plateau" Remote Sensing 14, no. 18: 4513. https://doi.org/10.3390/rs14184513
APA StyleMa, R., Wang, D., Cui, X., Yao, X., Li, S., Wang, H., & Liu, B. (2022). Distribution and Driving Force of Water Use Efficiency under Vegetation Restoration on the Loess Plateau. Remote Sensing, 14(18), 4513. https://doi.org/10.3390/rs14184513