HFENet: Hierarchical Feature Extraction Network for Accurate Landcover Classification
Abstract
:1. Introduction
- (1)
- A Hierarchical Feature Extraction (HFE) strategy is proposed. According to the difference of the information contained in the top-level and bottom-level network feature maps, the strategy adopts specific information-mining methods in different network layers to extract the spatial location information, channel information, and global information contained in the feature maps, so as to improve the information mining ability of the network.
- (2)
- A Multi-level Feature Fusion (MFF) method is proposed. Aiming at the fusion problem of multiple feature maps with size and semantic differences, this method adopts the method of up sampling the input feature maps step by step and re-weighting them according to the channels, so as to reduce the impact caused by the difference of semantic information, improve the attention of the network to the spatial location information, and enhance the feature expression ability of the network.
- (3)
- A Hierarchical Feature Extraction Network (HFENet) model is proposed, which includes HFE and MFF modules. First, the HFE strategy is used to fully mine the information of feature maps, and then the MFF method is used to enhance the expression of feature information, so as to improve the recognition ability of the network to the easily confused and small-scale features and achieve the result of accurate surface coverage classification.
- (4)
- The effectiveness of the two modules proposed in our framework is verified by ablation experiments; the effectiveness of our proposed HFENet was demonstrated by performing landcover classification/image segmentation on three remote sensing image datasets and comparing it with the state-of-the-art models (PSPNet [17], DeepLabv3+ [36], DANet [18], etc.).
2. Related Work
2.1. Research on Landcover Classification with Semantic Segmentation Network
2.2. Attention Mechanisms in Image Semantic Segmentation Network
3. Methods
3.1. HFENet
Algorithm 1: Hierarchical Feature Extraction Network (HFENet). |
Input: original image, backbone (ResNet) Output: final segmentation result Pr Initialize: random initialization of weights for CA, CAM, PPM and SE
|
3.2. Hierarchical Feature Extraction (HFE)
Algorithm 2: Hierarchical Feature Extraction (HFE). |
Input: feature map B = [b1, b2, b3, b4] Output: hierarchical feature map B’ = [b’1, b’2, b’3, b’4] Initialize: random initialization of weights for convolution operator (Conv)
|
3.3. Multi-Scale Feature Fusion (MFF)
Algorithm 3: Multi-Scale Feature Fusion (MFF). |
Input: feature maps: B’ = [b’1, b’2, b’3, b’4] Output: fused multi-scale feature map: f0 Initialize: random initialization of weights for convolution operator (Conv), F= []
|
4. Experiments and Results
4.1. Experiments Settings
4.1.1. Datasets
MZData
LandCover.ai
WHU Building Dataset
4.1.2. Metrics
4.1.3. Training Details
4.2. Ablation Studies
4.3. Comparing with the State-of-the-Art
4.3.1. Experimental Results on MZData
4.3.2. Experimental Results on WHU Building Dataset
4.3.3. Experimental Results on landcover.ai
4.3.4. Comparison of Time and Space Complexity of the Models
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, D.; Zhang, L.; Xia, G. Automatic Analysis and Mining of Remote Sensing Big Data. Acta Geod. Cartogr. Sin. 2014, 43, 1211–1216. [Google Scholar] [CrossRef]
- Li, D.; Wang, M.; Shen, X.; Dong, Z. From Earth Observation Satellite to Earth Observation Brain. Geom. Inform. Sci. Wuhan Univ. 2017, 42, 143–149. [Google Scholar] [CrossRef]
- Lobry, S.; Marcos, D.; Murray, J.; Tuia, D. RSVQA: Visual Question Answering for Remote Sensing Data. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8555–8566. [Google Scholar] [CrossRef]
- Cheng, G.; Han, J. A survey on object detection in optical remote sensing images. ISPRS J. Photogramm. Remote Sens. 2016, 117, 11–28. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, Y.; Li, Y. A Survey on Deep Learning-Driven Remote Sensing Image Scene Understanding: Scene Classification, Scene Retrieval and Scene-Guided Object Detection. Appl. Sci. 2019, 9, 2110. [Google Scholar] [CrossRef]
- Li, Y.; Kong, D.; Zhang, Y.; Tan, Y.; Chen, L. Robust deep alignment network with remote sensing knowledge graph for zero-shot and generalized zero-shot remote sensing image scene classification. ISPRS J. Photogramm. Remote Sens. 2021, 179, 145–158. [Google Scholar] [CrossRef]
- Ardila, J.P.; Tolpekin, V.A.; Bijker, W.; Stein, A. Markov-random-field-based super-resolution mapping for identification of urban trees in VHR images. ISPRS J. Photogramm. Remote Sens. 2011, 66, 762–775. [Google Scholar] [CrossRef]
- Li, X.; Shao, G. Object-based urban vegetation mapping with high-resolution aerial photography as a single data source. Int. J. Remote Sens. 2012, 34, 771–789. [Google Scholar] [CrossRef]
- Longbotham, N.; Chaapel, C.; Bleiler, L.; Padwick, C.; Emery, W.J.; Pacifici, F. Very High Resolution Multiangle Urban Classification Analysis. IEEE Trans. Geosci. Remote Sens. 2011, 50, 1155–1170. [Google Scholar] [CrossRef]
- Martha, T.R.; Kerle, N.; van Westen, C.J.; Jetten, V.; Kumar, K.V. Segment Optimization and Data-Driven Thresholding for Knowledge-Based Landslide Detection by Object-Based Image Analysis. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4928–4943. [Google Scholar] [CrossRef]
- Danneels, G.; Pirard, E.; Havenith, H.-B. Automatic landslide detection from remote sensing images using supervised classification methods. Int. Geosci. Remote Sens. Symp. 2007, 3014–3017. [Google Scholar] [CrossRef]
- Knauer, U.; Von Rekowski, C.S.; Stecklina, M.; Krokotsch, T.; Minh, T.P.; Hauffe, V.; Kilias, D.; Ehrhardt, I.; Sagischewski, H.; Chmara, S.; et al. Tree Species Classification Based on Hybrid Ensembles of a Convolutional Neural Network (CNN) and Random Forest Classifiers. Remote Sens. 2019, 11, 2788. [Google Scholar] [CrossRef]
- Ustuner, M.; Sanli, F.B.; Dixon, B. Application of Support Vector Machines for Landuse Classification Using High-Resolution RapidEye Images: A Sensitivity Analysis. Eur. J. Remote Sens. 2015, 48, 403–422. [Google Scholar] [CrossRef]
- Jing, Z.; Guan, H.; Peng, D.; Yu, Y. Survey of Research in Image Semantic Segmentation Based on Deep Neural Network. Comp. Eng. 2020, 46, 1–17. [Google Scholar] [CrossRef]
- Deepan, P. Fusion of Deep Learning Models for Improving Classification Accuracy of Remote Sensing Images. J. Mech. Contin. Math. Sci. 2019, 14, 189–201. [Google Scholar] [CrossRef]
- Neupane, B.; Horanont, T.; Aryal, J. Deep Learning-Based Semantic Segmentation of Urban Features in Satellite Images: A Review and Meta-Analysis. Remote Sens. 2021, 13, 808. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar] [CrossRef]
- Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual Attention Network for Scene Segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3146–3154. [Google Scholar]
- Yu, C.; Wang, J.; Gao, C.; Yu, G.; Shen, C.; Sang, N. Context Prior for Scene Segmentation. In Proceedings of the Conference on Computer Vision and Pattern Recognition, CVPR Workshops 2020, IEEE/CVF, Seattle, WA, USA, 14–19 June 2020; pp. 12413–12422. [Google Scholar] [CrossRef]
- Panboonyuen, T.; Jitkajornwanich, K.; Lawawirojwong, S.; Srestasathiern, P.; Vateekul, P. Transformer-Based Decoder Designs for Semantic Segmentation on Remotely Sensed Images. Remote Sens. 2021, 13, 5100. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar] [CrossRef]
- Hu, M.; Li, Y.; Fang, L.; Wang, S. A2-FPN: Attention Aggregation based Feature Pyramid Network for Instance Segmentation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, virtual, 9–25 June 2021; pp. 15338–15347. [Google Scholar] [CrossRef]
- Jamaluddin, I.; Thaipisutikul, T.; Chen, Y.-N.; Chuang, C.-H.; Hu, C.-L. MDPrePost-Net: A Spatial-Spectral-Temporal Fully Convolutional Network for Mapping of Mangrove Degradation Affected by Hurricane Irma 2017 Using Sentinel-2 Data. Remote Sens. 2021, 13, 5042. [Google Scholar] [CrossRef]
- de Carvalho, O.L.F.; de Carvalho Júnior, O.A.; Silva, C.R.; de Albuquerque, A.O.; Santana, N.C.; Borges, D.L.; Gomes, R.A.; Guimarães, R.F. Panoptic Segmentation Meets Remote Sensing. Remote Sens. 2022, 14, 965. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar] [CrossRef]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Honolulu, HI, USA, 21–26 July 2017; pp. 936–944. [Google Scholar] [CrossRef]
- Xiao, T.; Liu, Y.; Zhou, B.; Jiang, Y.; Sun, J. Unified Perceptual Parsing for Scene Understanding. In Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; pp. 432–448. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In Proceedings of the CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 9992–10002. [Google Scholar] [CrossRef]
- Chu, X.; Tian, Z.; Wang, Y.; Zhang, B.; Ren, H.; Wei, X.; Xia, H.; Shen, C. Twins: Revisiting the Design of Spatial Attention in Vision Transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 9355–9366. [Google Scholar]
- Al-Alimi, D.; Shao, Y.; Feng, R.; Al-Qaness, M.A.A.; Elaziz, M.A.; Kim, S. Multi-Scale Geospatial Object Detection Based on Shallow-Deep Feature Extraction. Remote Sens. 2019, 11, 2525. [Google Scholar] [CrossRef]
- Zhao, W.; Peng, S.; Chen, J.; Peng, R. Contextual-Aware Land Cover Classification with U-Shaped Object Graph Neural Network. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, F.; Xiang, D.; Yin, Q.; Zhou, Y.; Wang, W. PolSAR Image Land Cover Classification Based on Hierarchical Capsule Network. Remote Sens. 2021, 13, 3132. [Google Scholar] [CrossRef]
- Liao, Y.; Liu, Q. Multi-Level and Multi-Scale Feature Aggregation Network for Semantic Segmentation in Vehicle-Mounted Scenes. Sensors 2021, 21, 3270. [Google Scholar] [CrossRef]
- Yuan, Q.; Shafri, H.; Alias, A.; Hashim, S. Multiscale Semantic Feature Optimization and Fusion Network for Building Extraction Using High-Resolution Aerial Images and LiDAR Data. Remote Sens. 2021, 13, 2473. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, Q.; Zhang, G. MLCRNet: Multi-Level Context Refinement for Semantic Segmentation in Aerial Images. Remote Sens. 2022, 14, 1498. [Google Scholar] [CrossRef]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef]
- Boguszewski, A.; Batorski, D.; Ziemba-Jankowska, N.; Dziedzic, T.; Zambrzycka, A. LandCover. ai: Dataset for Automatic Mapping of Buildings, Woodlands, Water and Roads from Aerial Imagery. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, virtual, 9–25 June 2021; pp. 1102–1110. [Google Scholar] [CrossRef]
- Ji, S.; Wei, S.; Lu, M. Fully Convolutional Networks for Multisource Building Extraction from an Open Aerial and Satellite Imagery Data Set. IEEE Trans. Geosci. Remote Sens. 2019, 57, 574–586. [Google Scholar] [CrossRef]
- Shelhamer, E.; Long, J.; Darrell, T. Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 39, 640–651. [Google Scholar] [CrossRef]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. arXiv 2014, arXiv:1412.7062. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Zheng, X.; Huan, L.; Xia, G.-S.; Gong, J. Parsing very high resolution urban scene images by learning deep ConvNets with edge-aware loss. ISPRS J. Photogramm. Remote Sens. 2020, 170, 15–28. [Google Scholar] [CrossRef]
- Wang, L.; Li, R.; Wang, D.; Duan, C.; Wang, T.; Meng, X. Transformer Meets Convolution: A Bilateral Awareness Network for Semantic Segmentation of Very Fine Resolution Urban Scene Images. Remote Sens. 2021, 13, 3065. [Google Scholar] [CrossRef]
- Cheng, H.K.; Chung, J.; Tai, Y.-W.; Tang, C.-K. CascadePSP: Toward Class-Agnostic and Very High-Resolution Segmentation via Global and Local Refinement. In Proceedings of the Conference on Computer Vision and Pattern Recognition, CVPR Workshops 2020, IEEE/CVF, Seattle, WA, USA, 14–19 June 2020; pp. 8887–8896. [Google Scholar] [CrossRef]
- Zhou, M.; Sui, H.; Chen, S.; Wang, J.; Chen, X. BT-RoadNet: A boundary and topologically-aware neural network for road extraction from high-resolution remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2020, 168, 288–306. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, F.; Xiang, Y.; You, H. DGFNet: Dual Gate Fusion Network for Land Cover Classification in Very High-Resolution Images. Remote Sens. 2021, 13, 3755. [Google Scholar] [CrossRef]
- Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 1254–1259. [Google Scholar] [CrossRef]
- Cao, R.; Fang, L.; Lu, T.; He, N. Self-Attention-Based Deep Feature Fusion for Remote Sensing Scene Classification. IEEE Geosci. Remote Sens. Lett. 2021, 18, 43–47. [Google Scholar] [CrossRef]
- Guo, M.-H.; Xu, T.-X.; Liu, J.-J.; Liu, Z.-N.; Jiang, P.-T.; Mu, T.-J.; Zhang, S.-H.; Martin, R.R.; Cheng, M.-M.; Hu, S.-M. Attention mechanisms in computer vision: A survey. Comput. Vis. Media 2021, 8, 331–368. [Google Scholar] [CrossRef]
- Chaudhari, S.; Mithal, V.; Polatkan, G.; Ramanath, R. An Attentive Survey of Attention Models. ACM Trans. Intell. Syst. Technol. 2021, 12, 1–32. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional block attention module. In Proceedings of the Lecture Notes in Computer Science, Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar] [CrossRef]
- Lu, X.; Zhong, Y.; Zheng, Z.; Zhang, L. GAMSNet: Globally aware road detection network with multi-scale residual learning. ISPRS J. Photogramm. Remote Sens. 2021, 175, 340–352. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 11531–11539. [Google Scholar] [CrossRef]
- Yuan, Y.; Huang, L.; Guo, J.; Zhang, C.; Chen, X.; Wang, J. OCNet: Object Context for Semantic Segmentation. Int. J. Comput. Vis. 2021, 129, 2375–2398. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar] [CrossRef]
- Hou, Q.; Zhou, D.; Feng, J. Coordinate Attention for Efficient Mobile Network Design. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13708–13717. [Google Scholar] [CrossRef]
- Zilong, H.; Wang, X.; Huang, L.; Huang, C.; Wei, Y.; Liu, W. CCNet: Criss-Cross Attention for Semantic Segmentation. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 603–612. [Google Scholar] [CrossRef]
- Niu, R.; Member, S.; Sun, X.; Member, S.; Tian, Y.; Diao, W.; Chen, K. Hybrid Multiple Attention Network for Semantic Seg-mentation in Aerial Images. IEEE Trans. Geosci. Remote Sens. 2021, 9, 571. [Google Scholar]
- Zhao, H.; Zhang, Y.; Liu, S.; Shi, J.; Loy, C.; Lin, D.; Jia, J. PSANet: Point-wise Spatial Attention Network for Scene Parsing. In Proceedings of the 2018 European Conference on Computer Vision, Munich, Germany, 8–14 September 2018. [Google Scholar] [CrossRef]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
MZData | Landcover.ai | WHU Building Dataset | ||
---|---|---|---|---|
Backbone | FCN | VGG16 | ||
Other Networks | ResNet101 | ResNet50 | ||
Number of Epochs | Total | 500 | 200 | 100 |
Early Stopping | 100 | 50 | 20 |
Method | mIoU | FWIoU | PA | mP | mRecall | mF1 |
---|---|---|---|---|---|---|
UperNet | 79.78 | 87.98 | 93.42 | 88.44 | 88.19 | 88.28 |
UperNet + HFE | 82.03 | 90.46 | 94.92 | 92.06 | 87.79 | 89.58 |
UperNet + MFF | 80.85 | 89.27 | 94.21 | 90.41 | 88.11 | 88.81 |
HFENet | 87.19 | 93.56 | 96.60 | 93.61 | 92.18 | 92.87 |
Model | Cropland | Garden Plot | Woodland | Grassland | Building | Road | Water | Bare Land |
---|---|---|---|---|---|---|---|---|
UperNet | 88.92 | 76.56 | 91.88 | 72.68 | 75.37 | 57.88 | 81.89 | 73.13 |
UperNet + MFF | 89.96 | 81.35 | 94.32 | 78.83 | 69.65 | 53.34 | 83.88 | 77.63 |
UperNet + HFE | 91.56 | 80.95 | 94.74 | 81.45 | 74.09 | 55.07 | 84.47 | 76.26 |
HFENet | 94.66 | 86.24 | 96.18 | 85.43 | 85.66 | 65.82 | 88.35 | 82.50 |
Model | mIoU | FWIoU | PA | mP | mRecall | mF1 |
---|---|---|---|---|---|---|
SegNet | 77.19 | 86.22 | 92.40 | 88.15 | 85.18 | 86.55 |
FCN | 75.63 | 85.84 | 91.99 | 85.44 | 85.09 | 85.20 |
PSPNet | 78.47 | 87.13 | 92.83 | 87.43 | 87.34 | 87.33 |
UperNet | 79.78 | 87.98 | 93.42 | 88.44 | 88.19 | 88.28 |
DANet | 79.65 | 87.91 | 93.38 | 88.13 | 87.27 | 89.09 |
DeepLabv3+ | 78.19 | 87.05 | 92.84 | 87.65 | 86.87 | 87.21 |
HFENet (ours) | 87.19 | 93.56 | 96.60 | 93.61 | 92.18 | 92.87 |
Model | Cropland | Garden Plot | Woodland | Grassland | Building | Road | Water | Bare Land |
---|---|---|---|---|---|---|---|---|
SegNet | 87.61 | 73.73 | 90.44 | 66.30 | 73.19 | 56.40 | 79.91 | 67.61 |
FCN | 86.60 | 74.95 | 91.13 | 69.64 | 68.07 | 43.22 | 77.73 | 69.79 |
PSPNet | 88.57 | 76.39 | 91.08 | 69.06 | 74.06 | 53.90 | 82.45 | 70.97 |
UperNet | 88.92 | 76.56 | 91.88 | 72.68 | 75.37 | 57.88 | 81.89 | 73.13 |
DANet | 88.98 | 78.72 | 91.88 | 71.45 | 75.18 | 55.47 | 83.20 | 72.30 |
DeepLabv3+ | 88.42 | 73.81 | 91.15 | 68.76 | 74.09 | 57.07 | 81.60 | 69.11 |
HFENet | 94.66 | 86.24 | 96.18 | 85.43 | 85.66 | 65.82 | 88.35 | 82.50 |
Model | mIoU | FWIoU | PA | mP | mRecall | mF1 | IoU | |
---|---|---|---|---|---|---|---|---|
Background | Building | |||||||
SegNet | 85.06 | 93.84 | 96.7 | 92.16 | 90.91 | 91.52 | 96.36 | 73.76 |
U-Net | 87.57 | 94.92 | 97.31 | 93.78 | 92.45 | 93.10 | 97.02 | 78.11 |
FCN | 80.55 | 91.43 | 95.08 | 85.83 | 91.98 | 88.55 | 94.54 | 66.55 |
PSPNet | 90.95 | 96.34 | 98.09 | 95.75 | 94.52 | 95.12 | 97.88 | 84.02 |
UperNet | 90.34 | 96.06 | 97.92 | 94.64 | 94.90 | 94.77 | 97.69 | 83.00 |
DANet | 90.95 | 96.33 | 98.09 | 95.51 | 94.74 | 95.12 | 97.87 | 84.02 |
DeepLabv3+ | 90.59 | 96.18 | 98.01 | 95.41 | 94.43 | 94.91 | 97.79 | 83.39 |
HFENet (ours) | 92.12 | 96.81 | 98.34 | 95.93 | 95.67 | 95.80 | 98.15 | 86.09 |
Model | mIoU | FWIoU | PA | mP | mRecall | mF1 |
---|---|---|---|---|---|---|
U-Net | 87.76 | 92.15 | 95.91 | 95.25 | 91.57 | 93.31 |
Deeplabv3+ | 87.56 | 91.81 | 95.72 | 94.30 | 92.16 | 93.19 |
PSPNet | 88.66 | 92.79 | 96.25 | 94.66 | 93.04 | 93.82 |
FCN | 85.38 | 91.75 | 95.66 | 90.64 | 92.86 | 91.71 |
UperNet | 88.76 | 92.56 | 96.12 | 94.00 | 93.82 | 93.91 |
DANet | 88.34 | 92.47 | 96.07 | 93.67 | 93.67 | 93.65 |
SegNet | 87.02 | 92.42 | 96.04 | 93.39 | 92.16 | 92.74 |
HFENet (ours) | 89.69 | 93.21 | 96.48 | 95.21 | 93.71 | 94.44 |
Model | Building | Water | Woodland | Other | mIoU |
---|---|---|---|---|---|
U-Net | 74.91 | 92.28 | 90.47 | 93.39 | 87.76 |
Deeplabv3+ | 74.89 | 92.29 | 89.90 | 93.15 | 87.56 |
PSPNet | 75.79 | 93.79 | 91.17 | 93.91 | 88.66 |
FCN | 66.38 | 91.81 | 90.41 | 92.94 | 85.38 |
UperNet | 77.44 | 93.01 | 90.83 | 93.77 | 88.76 |
DANet | 76.31 | 92.48 | 90.94 | 93.62 | 88.34 |
SegNet | 69.99 | 93.67 | 90.90 | 93.54 | 87.02 |
HFENet (ours) | 78.66 | 94.19 | 91.62 | 94.28 | 89.69 |
Model | Backbone | Parameter (M) | Flops (G) |
---|---|---|---|
FCN | VGG16 | 190.0 | 134.27 |
SegNet | ResNet50 | 53.55 | 47.62 |
U-Net | 30.00 | 141.31 | |
PSPNet | 53.55 | 184.58 | |
DeepLabv3+ | 59.34 | 40.35 | |
UperNet | 107.08 | 162.78 | |
DANet | 47.56 | 205.18 | |
HFENet (ours) | 107.10 | 162.80 | |
SegNet | ResNet101 | 72.55 | 67.09 |
U-Net | 48.99 | 219.21 | |
PSPNet | 70.42 | 262.48 | |
DeepLabv3+ | 69.37 | 88.85 | |
UperNet | 126.07 | 182.25 | |
DANet | 66.55 | 283.08 | |
HFENet (ours) | 126.09 | 182.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Yang, R.; Liu, H.; He, H.; Tan, J.; Li, S.; Qiao, Y.; Tang, K.; Wang, X. HFENet: Hierarchical Feature Extraction Network for Accurate Landcover Classification. Remote Sens. 2022, 14, 4244. https://doi.org/10.3390/rs14174244
Wang D, Yang R, Liu H, He H, Tan J, Li S, Qiao Y, Tang K, Wang X. HFENet: Hierarchical Feature Extraction Network for Accurate Landcover Classification. Remote Sensing. 2022; 14(17):4244. https://doi.org/10.3390/rs14174244
Chicago/Turabian StyleWang, Di, Ronghao Yang, Hanhu Liu, Haiqing He, Junxiang Tan, Shaoda Li, Yichun Qiao, Kangqi Tang, and Xiao Wang. 2022. "HFENet: Hierarchical Feature Extraction Network for Accurate Landcover Classification" Remote Sensing 14, no. 17: 4244. https://doi.org/10.3390/rs14174244
APA StyleWang, D., Yang, R., Liu, H., He, H., Tan, J., Li, S., Qiao, Y., Tang, K., & Wang, X. (2022). HFENet: Hierarchical Feature Extraction Network for Accurate Landcover Classification. Remote Sensing, 14(17), 4244. https://doi.org/10.3390/rs14174244