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Abstract: Landcover classification is an important application in remote sensing, but it is always
a challenge to distinguish different features with similar characteristics or large-scale differences.
Some deep learning networks, such as UperNet, PSPNet, and DANet, use pyramid pooling and
attention mechanisms to improve their abilities in multi-scale features extraction. However, due to
the neglect of low-level features contained in the underlying network and the information differences
between feature maps, it is difficult to identify small-scale objects. Thus, we propose a novel
image segmentation network, named HFENet, for mining multi-level semantic information. Like
the UperNet, HFENet adopts a top-down horizontal connection architecture while includes two
improved modules, the HFE and the MFF. According to the characteristics of different levels of
semantic information, HFE module reconstructs the feature extraction part by introducing an attention
mechanism and pyramid pooling module to fully mine semantic information. With the help of a
channel attention mechanism, MFF module up-samples and re-weights the feature maps to fuse
them and enhance the expression ability of multi-scale features. Ablation studies and comparative
experiments between HFENet and seven state-of-the-art models (U-Net, DeepLabv3+, PSPNet, FCN,
UperNet, DANet and SegNet) are conducted with a self-labeled GF-2 remote sensing image dataset
(MZData) and two open datasets landcover.ai and WHU building dataset. The results show that
HFENet on three datasets with six evaluation metrics (mIoU, FWIoU, PA, mP, mRecall and mF1) are
better than the other models and the mIoU is improved 7.41–10.60% on MZData, 1.17–11.57% on
WHU building dataset and 0.93–4.31% on landcover.ai. HFENet can perform better in the task of
refining the semantic segmentation of remote sensing images.

Keywords: landcover classification; semantic segmentation; hierarchical feature extraction (HFE);
multi-level feature fusion (MFF)

1. Introduction

Thanks to the rapid development of aerospace technology, communication technology
and information processing technology, people have entered the era of remote sensing big
data. How to fully explore and mine the growing remote sensing image information has
become an urgent problem to be solved [1–3]. Landcover classification in remote sensing is
a basic and important task in remote sensing big data processing [4–6], and it is also a basic
work for ecological environment protection [7,8], urban planning [9], geological disaster
monitoring [10,11], and other fields.

At present, landcover classification in remote sensing images mainly adopts machine
learning methods, including shallow machine learning and deep learning. Among them,
shallow machine learning methods are mainly represented by Random Forest (RF) [12],
Support Vector Machine (SVM) [13], etc., which are based on manually-extracted objects
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such as color, texture, geometric shape and spatial structure, and other feature informa-
tion. Landcover classification is achieved by learning classification rules from supervised
information [14]. Deep learning methods automatically extract low-level image features of
objects from images by building deep networks, and combining them into high-level ab-
stract features, whereby higher classification accuracy can be achieved, which have become
the mainstream methods for remote sensing image landcover classification research [15,16].

Since remote sensing images not only have the phenomena of “inter-class similarity
and intra-class variance”, but also have large scale differences between objects of the
same class, which make the automatic classification of remote sensing images have the
problems of confusing the classification of similar features and difficulty in identifying
small-scale features [16]. To address the confusing problem of similar features classification,
scholars [17–20] used Pyramid Pooling Module (PPM), Attention Mechanism (AM), and
other methods to model the spatial location and channel relationship. These modules
extract the contextual information of features and mutual information between channels,
improve the model’s ability to model and understand complex scenes, and reduce confusing
information interference. However, these methods are aimed at the feature extraction of the
lowest level features, and do not make full use of the spatial position information contained
in the top-level features. They are more suitable for the recognition of large-scale objects,
while the recognition effect of small-scale objects is not ideal.

To solve the problem that small-scale features are difficult to be recognized, the current
methods [21–24] mostly use the combination of feature extraction and feature fusion to
recover the detailed information of images step by step, among which the representative
networks are U-Net [25], FPN [26], UperNet [27], Swin [28] and Twins [29], etc. In the
research of remote sensing image landcover classification, these methods are often used
to improve the recognition ability of multi-scale features. In order to improve the effect
of feature extraction, Dalal AL-Alimi [30] proposed a method combining pyramid extrac-
tion network and SE attention mechanism, which can reduce the loss of small objects by
selectively retaining the useful information in the feature map through SE. However, the
feature map is not fully mined, resulting in the deviation of the detected anchor frame.
Wenzhi Zhao [31] uses graph convolution to extract the bottom features of the network,
which is used to capture the long-term dependence in the network and improves the
ability to obtain the network context information. However, it ignores the spatial position
information contained in the top feature information, resulting in an inaccurate outline
of the recognized features. Jianda Cheng [32] uses a capsule network instead of ResNet
for feature extraction, which can enhance the network’s hierarchical understanding of
the whole and part of the object and is more conducive to the network’s modeling of
the object. However, the advantages of this global and local representation can be more
obvious in the recognition of large-scale objects and have little impact on the recognition of
small-scale objects. In view of the improvement of the effect of feature fusion method, Yong
Liao [33] uses the attention mechanism and residual connection to fuse multi-scale features,
which can improve the ability of the network to extract low-level feature information and
high-level semantic information. However, when using the attention mechanism to fuse
features, it mainly operates on the underlying features, ignoring the difference between the
top-level features and the underlying features, and increasing the risk of small-scale objects
being ignored. Qinglie yuan [34] uses the residual branch network to assist the backbone
network in feature transformation, which can enhance the multi-modal data fusion ability
of the network. However, this method of realizing adjacent feature fusion through simple
element addition ignores the difference of information between feature maps, resulting in
the inability to accurately extract low-level semantic information such as the position of the
object, and it is difficult to identify small-scale targets [22,35].
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To solve the above-mentioned problems, based on UperNet [27], this paper proposes
a semantic segmentation network, named HFENet, for mining multi-level semantic infor-
mation, to solve the problems that similar features are easy to be confused and small-scale
features are difficult to be identified in remote sensing image landcover classification, so
as to improve the accuracy of remote sensing image landcover classification. The main
contributions of this paper include:

(1) A Hierarchical Feature Extraction (HFE) strategy is proposed. According to the
difference of the information contained in the top-level and bottom-level network
feature maps, the strategy adopts specific information-mining methods in different
network layers to extract the spatial location information, channel information, and
global information contained in the feature maps, so as to improve the information
mining ability of the network.

(2) A Multi-level Feature Fusion (MFF) method is proposed. Aiming at the fusion problem
of multiple feature maps with size and semantic differences, this method adopts the
method of up sampling the input feature maps step by step and re-weighting them
according to the channels, so as to reduce the impact caused by the difference of
semantic information, improve the attention of the network to the spatial location
information, and enhance the feature expression ability of the network.

(3) A Hierarchical Feature Extraction Network (HFENet) model is proposed, which in-
cludes HFE and MFF modules. First, the HFE strategy is used to fully mine the
information of feature maps, and then the MFF method is used to enhance the expres-
sion of feature information, so as to improve the recognition ability of the network to
the easily confused and small-scale features and achieve the result of accurate surface
coverage classification.

(4) The effectiveness of the two modules proposed in our framework is verified by ab-
lation experiments; the effectiveness of our proposed HFENet was demonstrated
by performing landcover classification/image segmentation on three remote sens-
ing image datasets and comparing it with the state-of-the-art models (PSPNet [17],
DeepLabv3+ [36], DANet [18], etc.).

The rest of this paper is organized as follows. Section 2 introduces related research
work, mainly reviews the development of semantic segmentation in the field of remote
sensing image landcover classification in recent years and focuses on the methods based on
deep learning. Section 3 elaborates on the structure of the proposed HFENet and details
the design ideas of the proposed HFE and MFF modules. Section 4 gives the experimental
details and results on a self-labeled dataset (MZData) and two public datasets (landCover.ai,
WHU Building dataset) [37,38]. In Section 5, a comprehensive analysis is performed for the
obtained results. Section 6 contains a discussion.

2. Related Work

In this section, we first introduce the research of deep Semantic Segmentation Network
(SSN) in remote sensing image landcover classification, and then discuss the research of
AM in image SSN.

2.1. Research on Landcover Classification with Semantic Segmentation Network

SSN is a hot research method in remote sensing image landcover classification. By
automatically extracting object features from original images, it is more beneficial to mine
high-level semantic information and achieve high-precision pixel-level classification [33,34].
Classical SSNs include FCN [39], U-Net [25], DeepLab series of networks [36,40–42] and
PSPNet [17], which are aimed at medicine, autonomous driving and other fields, respec-
tively. For problems such as receptive field, multi-scale features, edge recognition refine-
ment and global context information, corresponding solutions are proposed to improve the
feature extraction and feature expression capabilities of the network.
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To address the problem of difficult recognition of small-scale surface objects in remote
sensing images, Zheng et al. [43] proposed an end-to-end Edge-aware neural Network
(EaNet) that captures rich multi-scale contextual information with strong continuous fea-
ture relationships by combining a Large Kernel Pyramid Pooling (LKPP) module; Wang
et al. [44] proposed a bilateral perceptual network containing dependent paths and texture
paths to fully capture long-term relationships and detailed information in VHR images;
Cheng et al. [45] proposed a cascade segmentation refinement model (CascadePSP), which
achieves refinement segmentation by aggregating the features extracted from different
layers of the backbone network. To be able to refine the object boundary information, Zhou
et al. [46] incorporated the edge detection task and the semantic segmentation task into
the same framework. Guo et al. [47] proposed an end-to-end double-gate fusion network
(DGFNet), which effectively extracts both low-level spatial information and high-level
semantic information of the image. These studies all combine semantic information from
different layers in the network to obtain finer pixel-level classification results; however,
since they often use a single approach to extract semantic features at different layers, they
do not consider the variability of semantic features at different layers, which may lead to
the lack of extraction results.

2.2. Attention Mechanisms in Image Semantic Segmentation Network

AM is a process of feature selection [48]. It promotes the feature extraction and ex-
pression ability of the entire network by shifting attention to the most relevant features and
ignoring irrelevant parts, so as to efficiently analyze and understand complex scenes [49–51].
In computer vision, the AM extracts information that is more beneficial to the task through
adaptive weighting according to the input image information and has achieved good results
in many visual tasks [28,52,53]. Four basic types of attention can be classified according
to the dimensions in which they act [50]: Channel Attention, Spatial Attention, Temporal
Attention, and Branching Attention. Since channel and spatial location information are the
basic attributes of images, the channel and Spatial Attention Mechanism can encode and
infer image features from two different dimensions, thereby enhancing the network’s ability
to learn feature information. Therefore, in image semantic segmentation, we usually focus on
applications of Channel Attention and SA [52,54,55].

In terms of Channel Attention, Hu et al. [56] proposed a “Squeeze and Excite” module
(SE), which compresses the global features of each channel through Global Average Pooling
(GAP), using full connection to obtain the relationship between channels and improve the
representation ability. Based on the SE idea, Woo et al. [52] used maximum pooling and
average pooling instead of GAP to improve the representation of the network using shared
MLPs for channel relation inference. In terms of Spatial Attention, Hou et al. [57] proposed
Coordinate Attention (CA), which uses a specific convolutional approach to encode each
channel in two spatial directions and uses convolution to generate an attention vector that
can accurately acquire the location of the target, effectively enhancing the learning and
expression abilities. Existing research shows that the AM can analyze the features most
relevant to the current task, which can be used for judgment and decision-making of high-
level semantic information [18,58,59]. However, since the high-level semantic information
is usually extracted based on the level-by-level down sampling of the backbone network, it
may lead to the loss of small-scale objects in the image and the precise position information
between objects, so that the small-scale objects cannot be fully recognized.
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3. Methods

In order to solve the problems of confusing the classification of similar features and
difficult recognition of small-scale features in landcover classification, we propose an
improved SSN based on UperNet, namely HFENet (as shown in Figure 1). In this section,
we first introduce the structure of HFENet, and then introduce each part of the framework
in detail, as well as the design ideas of each part.

Remote Sens. 2022, 14, 4244 5 of 25 
 

 

improved SSN based on UperNet, namely HFENet (as shown in Figure 1). In this section, 
we first introduce the structure of HFENet, and then introduce each part of the framework 
in detail, as well as the design ideas of each part. 

 
Figure 1. The overall framework of HFENet. 

3.1. HFENet 
The entire structure of HFENet is similar to that of UperNet. It is a top-down 

horizontal connection system (as shown in Figure 1), which consists of two parts: HFE 
and MFF. The HFE module takes the original image as input and obtains five different 
scale feature maps Block_i (i = 0, 1, 2, 3, 4) through the backbone network (generally using 
the ResNet series network), and then uses a specific operation (CA, CAM or PPM) for 
feature extraction, generating four feature maps Block_i’ (i = 1, 2, 3, 4) containing different 
feature information and scales. The MFF module takes the output feature map of the HFE 
module as input. First, MFF transforms Block_4’ into Feature_4, upsamples Feature_4 to 
the same size as Block_3’, adds it to Block_3’ to generate Feature_3, and repeats this 
process to generate Feature_2 and Feature_1. Then, Feature_i (i = 2, 3, 4) is upsampled to 
the same size as Feature_1 and superimposed on it, and the SE is used for weight 
assignment to obtain the final feature map Feature_0. Finally, Feature_0 is input into the 
semantic segmentation classifier to obtain the final segmentation result. The detailed 
information about HFENet is shown in Algorithm 1. 

  

Figure 1. The overall framework of HFENet.

3.1. HFENet

The entire structure of HFENet is similar to that of UperNet. It is a top-down horizontal
connection system (as shown in Figure 1), which consists of two parts: HFE and MFF. The
HFE module takes the original image as input and obtains five different scale feature maps
Block_i (i = 0, 1, 2, 3, 4) through the backbone network (generally using the ResNet series
network), and then uses a specific operation (CA, CAM or PPM) for feature extraction,
generating four feature maps Block_i’ (i = 1, 2, 3, 4) containing different feature information
and scales. The MFF module takes the output feature map of the HFE module as input.
First, MFF transforms Block_4’ into Feature_4, upsamples Feature_4 to the same size as
Block_3’, adds it to Block_3’ to generate Feature_3, and repeats this process to generate
Feature_2 and Feature_1. Then, Feature_i (i = 2, 3, 4) is upsampled to the same size as
Feature_1 and superimposed on it, and the SE is used for weight assignment to obtain the
final feature map Feature_0. Finally, Feature_0 is input into the semantic segmentation
classifier to obtain the final segmentation result. The detailed information about HFENet is
shown in Algorithm 1.
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Algorithm 1: Hierarchical Feature Extraction Network (HFENet).

Input: original image, backbone (ResNet)
Output: final segmentation result Pr
Initialize: random initialization of weights for CA, CAM, PPM and SE

1: Extract feature maps B from original image through backbone: B = [b0, b1, b2, b3, b4]
2: Extract hierarchical feature map using specific operations from B: b’1 ← CA(b1), b’2 ← b2,

b’3 ← CAM(b3), b’4 ← PPM(b4)
3: Unify the number of channels of the feature map by convolution operation (Conv):

f 4 ← Conv(b’4), b’3 ← Conv(b’3), b’2 ← Conv(b’2), b’1 ← Conv(b’1)
4: Up sample (Up) the feature maps and connect them with shortcuts step by step:

f 3 ← b’3 + Up(f 4), f 2 ← b’2 + Up(f 3), f 1 ← b’1 + Up(f 2)
5: Unify the shapes of the feature maps with up sample (Up): f 4 ← Up(f 4), f 3 ← Up(f 3),

f 2 ← Up(f 2)
6: Concatenate (Cat) feature maps by channel and assign their weights with SE: f 0 ← SE

(Cat(f 4,f 3,f 2,f 1))
7: Obtain the final segmentation result Pr through the semantic segmentation classifier

(Seg_Head): Pr ← Seg_Head(f 0)

3.2. Hierarchical Feature Extraction (HFE)

Since the underlying network features of a deep convolutional neural network contain
rich spatial location information, and the top-level network features contain more high-level
semantic information [47], using a single feature extraction method for different feature
layers may lead to information loss and affect the accuracy of small objects recognition.
In order to make better use of the feature information of different layers in the deep
convolutional neural network, the strategies of using CA, CAM and PPM to pay attention
to spatial location, channel relationship, and global information are designed respectively,
so that the network can extract richer feature information and enhance the network’s ability
to recognize small objects.

In the HFE module (as shown in Figure 2), Block_1, Block_2, Block_3, and Block_4
respectively represent the feature maps output by different layers of the backbone network.
In many state-of-the-art networks [17,59,60], they use Block_4 to extract multi-scale features
information to improve the network’s utilization of global context information; use Block_3
to classify, segment and calculate losses to assist network classification decisions and
speed up network convergence speed. Block_1 is at the bottom of the network and is
the main network layer representing low-level information of spatial location; Block_2
is between Block_1 and Block_3, mixing high-level semantic information and low-level
spatial location information.
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This paper adopts the PPM for Block_4. PPM obtains multi-scale feature information
of feature maps by different pooling methods and aggregates the multi-scale information
to obtain Block_4’ with global, multi-scale information to enhance the network’s ability
to utilize global information. For Block_3, CAM [52] is introduced. First, CAM takes
the feature map along the channel direction by maximum pooling and global pooling to
obtain the salient information and background information on the feature map channels,
and then uses MLP to model the two information to fully explore the interrelationship
between each channel and improve the specific high-level semantic information expression,
and finally sums with the input feature map to obtain Block_3’ containing the channel
relationships. CA [57] is introduced for Block_1. First, CA uses a specific convolution
kernel to pool the different directions of the spatial dimension of the feature map and
retains the most significant features of the image in the X and Y directions and aggregates
them. Then, the 2D convolution is used to fuse the information of the feature maps in the X
and Y directions to establish the spatial relationship of the feature maps. Finally, Block_1’
containing positional relationship information is obtained by adding the input feature map,
thereby improving the network’s attention to specific spatial positional information. The
specific process of HFE is illustrated in pseudocode Algorithm 2.

Algorithm 2: Hierarchical Feature Extraction (HFE).

Input: feature map B = [b1, b2, b3, b4]
Output: hierarchical feature map B’ = [b’1, b’2, b’3, b’4]
Initialize: random initialization of weights for convolution operator (Conv)

1: Conduct average pooling operation for bi along the X and Y axes respectively:
bx ← avg_pool_x (b1), by ← avg_pool_y (b1)

2: Concatenate (Cat) bx and by by channel and combine them with 1 × 1 Conv operator:
bxy ← Conv (cat(bx, by))

3: Split bxy by channel: (b’x, b’y)← bxy
4: Convolution operation is performed on b’x and b’y respectively to obtain respective position

information: b’x ← Conv (b’x), b’y ← Conv (b’y)
5: Expand b’x and b’y respectively, and then multiply them to obtain a feature map with X and

Y position information: b’1 ← b1 * expand (b’x) * expand (b’y)

// Computation for b’1

6: b’2 ← b2

// Computation for b’2

7: Max and average pooling operations are performed on b3 to obtain background information
ba and saliency information bm respectively: ba ← avg_pool (b3), bm←max_pool (b3)

8: Establish the relationships between the channels of ba and bm respectively by 1×1 Conv
operator: b’a ← Conv (ba), b’m ← Conv (bm)

9: By concatenating b’a and b’m and multiplying with b3, the channel relationship of the feature
map is obtained: b’3 ← b3* cat (b’a, b’m)

// Computation for b’3

10: Conduct average pooling operation on b4 to obtain the global information b1 × 1 and the
local information b2 × 2, b3 × 3, b6 × 6

11: Perform convolution operation on b1 × 1, b2 × 2, b3 × 3 and b6 × 6 respectively, and then
concatenate them to obtain bm integrating global and local information:
bm ← cat(Conv(b1 × 1), Conv(b2 × 2), Conv(b3 × 3), Conv(b6 × 6))

12: Multiply b4 and bm to obtain a feature map containing multi-scale information: b’4 ← b4* bm

// Computation for b’4, end.

3.3. Multi-Scale Feature Fusion (MFF)

In order to fuse the high-level semantic information and spatial location information
extracted by different network layers and improve the segmentation accuracy of remote
sensing images in complex scenes, based on FPN [26], this paper designs a MFF module
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(as shown in Figure 3). In this module, the output of the HFE module-Block_i’ (i = 1, 2, 3, 4)
is used as input, firstly, the number of feature channels of the four feature maps is unified,
then the size of the four feature maps is unified and fused, and finally the fused feature
maps are assigned weights to obtain the feature maps with specific attention information
to enhance the network representation of low-level features.
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In order to fuse the high-level semantic information and spatial location information
extracted by different network layers and improve the segmentation accuracy of remote
sensing images in complex scenes, based on FPN [26], this paper designs an MFF module
(as shown in Figure 3). In this module, the output of the HFE module-Block_i’ (i = 1,2,3,4)
is used as input, firstly, the number of feature channels of the four feature maps is unified,
then the size of the four feature maps is unified and fused, and finally the fused feature
maps are assigned weights to obtain the feature maps with specific attention information
to enhance the network representation of low-level features.

In MFF, the number of feature channels of the feature map is unified to be the same as
Block_1’ through operations such as 1*1 convolution, upsampling and residual connection,
and four Feature_i with the same number of feature channels are obtained (i = 1, 2, 3, 4);
and then unify the size of the feature map to the same size as Feature_1 through 3*3
convolution, up-sampling and residual connection and other operations, and connect the
fused feature map Feature_1’ in terms of channels. However, due to the difference of
different levels of feature information extracted by the network, more weight is often given
to high-level semantic information during classification. Therefore, in the classification
task, the network will focus more on the feature expression of Feature_3 and Feature_4,
and even ignore the low-level spatial location information of Feature_1 and Feature_2 (the
experiments in this paper also prove that the information of Feature_1 is ignored), thereby
reducing the segmentation performance. This paper introduces SE [56] for Feature_1’.
When fusing multi-level features, it not only focuses on high-level semantic information,
but also maintains a high degree of attention to the rich location information and texture
information contained in the underlying network and redistributes the weight information
of the feature map to obtain Feature_0. Algorithm 3 shows the specific operations and
detailed process of computing MFF.
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Algorithm 3: Multi-Scale Feature Fusion (MFF).

Input: feature maps: B’ = [b’1, b’2, b’3, b’4]
Output: fused multi-scale feature map: f 0
Initialize: random initialization of weights for convolution operator (Conv), F= []

1: for i = 4 to 1 do
2: if i == 4 then
3: b’i ← Conv(b’i) // Convolution operation on b’i.
4: else
5: b’i ← Conv(b’i) + Up(b’i + 1) // Convolution operation on b’i, up sample on b’i

+ 1.
6: end if
7: end for

// Operations of unifying the number of channels of each feature map.

8: for j = 4 to 1 do
9: if j == 1 then
10: fj ← Conv(b’j)
11: else
12: fj ← Up(Conv(b’j))
13: end if
14: F.append(fj)
15: end for

// Operations of unifying the size of shapes of each feature map.

16: Fuse the feature maps f 1, f 2, f 3 and f 4 by cat operator: f f ← cat(f 1, f 2, f 3, f 4)
17: Use pool operator to initialize the weights of channels of f f, and then use linear operator to

readjust the weights: f m ← Linear(pool (f f))
18: Obtain the feature map f 0 fused by the redistributed weight: f 0 ← f f + f f * f m

4. Experiments and Results

In this section, we focus on the effectiveness of HFENet. Firstly, we verify the role
of HFE and MFF in the self-labeled dataset MZData, and then we verify the advantage
of HFENet with the datasets of MZData, landcover.ai, and WHU building dataset. Next,
we first introduce the datasets used and the parameters involved in the experiments, then
explain the experimental design and analyze the experimental results in detail.

4.1. Experiments Settings
4.1.1. Datasets
MZData

This dataset is a land-use/landcover classification dataset produced by a combination
of manual interpretation and field survey data using fused satellite imagery of Gaofen-
2 (GF-2). The spatial resolution of the image is 1 m, containing three bands of RGB.
The original satellite images coverage area is Mianzhu City, Sichuan Province, China
(Figure 4), located in the northwest of the Sichuan Basin, between 31◦09′N–31◦42′N and
103◦54′E–104◦20′E. The area is 1245.3 km2. The city of Mianzhu contains both mountainous
and plain terrain areas. Among them, the mountainous areas are mainly woodland,
grassland and bare land; while the plain areas contain rich types of ground features, such
as buildings, cropland and roads. In the plain area, there are abundant artificial features
and large-scale differences between the same features, especially roads and buildings,
which have high requirements on the recognition ability of small target objects. The land-
use/landcover classification of this dataset contains eight categories, namely cultivated
land, garden land, forest land, grassland, buildings, roads, water bodies, and bare land. In
addition, in order to deal with the non-study area part introduced in the cropping process,
a new category is added as background with all pixel values of 255, which will not have a
significant impact on the algorithm classification results.
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tainous area, S2 and S3 represent cities and villages in the plain area respectively).

According to the input requirements of the experimental network, the remote sensing
images and interpretation results are sliced into sample images with a resolution of 512*512,
and the sample pairs that are all background or contain clouds are manually removed to
obtain 10,000 sample images; then the sample set is divided into training set, validation set
and test set according to the ratio of 6:2:2 to establish a sample library of land-use/landcover
classification data (as shown in Figure 5).
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LandCover.ai

The LandCover.ai dataset [37] is a dataset for aerial imagery landcover classification.
The dataset covers an area of 216 km2 and contains a total of 41 aerial images, which were
taken in Poland and Central Europe. All image data only have three RGB bands. Among
them, are 33 orthophotos with 25 cm realistic resolution for each pixel and eight orthophotos
with 50 cm realistic resolution for each pixel. The dataset provides a detailed classification
of landcover for the main areas of all images by means of manual interpretation, according
to three feature categories of buildings, woodlands, and water, and one “other” category.
Due to the high spatial resolution of the ground, the image characteristics of different
objects are quite different and easy to distinguish.

According to the data set requirements, the data set is divided into 10,674 images
with a resolution of 512 × 512, and the training set, validation set, and test set are divided
according to the requirements, including 7470 training set images, 1602 validation set
images and 1602 test set images, as shown in Figure 6.
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WHU Building Dataset

This dataset is an aerial image building dataset extracted by Wuhan University [38].
The image contains RGB three channels information, and the original ground resolution is
7.5 cm. By manually interpreting the building vector data of Christchurch, New Zealand, a
data set covering an area of about 450 km2 and 22,000 independent buildings was obtained.
Due to the wide coverage area and the large number of buildings, the size and type of
buildings vary greatly.

The data set contains 8188 images with 512× 512 resolution and is divided into training
set, validation set and test set. Among them, the training set contains 130,500 independent
buildings in 4736 images, the validation set contains 14,500 independent buildings in
1036 images, and the test set contains 42,000 independent buildings in 2416 images, as
shown in Figure 7.
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Figure 7. Some typical sample images of WHU building dataset and their corresponding labels.

4.1.2. Metrics

To quantitatively evaluate the accuracy of segmentation, this paper uses six metrics
to evaluate the effectiveness of the network, which are Pixel Accuracy (PA), mean Pixel
accuracy (mP), mean Intersection over Union (mIoU), Frequency Weighted Intersection
over Union (FWIoU), mean recall (mRecall) and mean F-1 score (mF1). Among them, mIoU
and FWIoU are regional evaluation metrics, and PA, mP, mReCall, and mF1 are pixel-level
evaluation metrics. The calculation formulas are respectively as Formulas (1)–(6).

PA =

∑
c=1

(TPc + TNc)

N
∑

c=1
(TPc + FPc + TNc + FNc)

(1)
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1
N

N

∑
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TPc
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1
N

N

∑
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mF1 =
1
N
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TPc+FPc

+ TPc
TPc+FNc

(4)
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FWIoU =
1
N

N

∑
c=1

(
(TPc + FNc)

(TPc + FPc + TNc + FNc)
× TPc

(TPc + FPc + FNc)
) (6)

4.1.3. Training Details

All the experimental program codes are based on the pytorch deep learning framework.
For all training samples, the mean and standard deviation values of the training set are
used for normalization and the online augmentation with random rotation ([−10◦, 10◦])
and Gaussian noise (σ ∈ [0, 1.5]) are used for increasing the size. In the three experiments,
the validation-based early stopping mechanism through monitoring the loss value, the
optimizer SGD with momentum value of 0.9 and weight attenuation of 0.0001, and the
Cross-entropy loss function are used by all networks [28,29]. The learning rate is initialized
with 0.001 and scheduled by poly. The backbone and number of epochs settings for the three
experimental datasets can be seen in Table 1. For all backbone networks, the pretrained
models on the ImageNet dataset are used as the initial weight files for network training.

Table 1. Backbone and number of epochs settings for different experimental datasets.

MZData Landcover.ai WHU Building Dataset

Backbone
FCN VGG16

Other Networks ResNet101 ResNet50
Number of

Epochs
Total 500 200 100

Early Stopping 100 50 20

4.2. Ablation Studies

To verify the role of both HFE and MFF modules, based on MZData, we designed a
set of ablation experiments. In the experiments, UperNet was used as the basic network.
UperNet + HFE was obtained by replacing the feature extraction part in UperNet with a
HFE module. UperNet + MFF was obtained by replacing the feature fusion part in UperNet
with MFF module. UperNet + HFE + MFF, namely HFENet, was obtained by replacing the
feature extraction part and the feature fusion part in UperNet with a HFE module and a
MFF module. The backbone used for each model was resnet101, the epochs for training
was 500, and the initial learning rate was 0.001.

Based on MZData, the results of evaluation metrics such as mIoU, FWIoU, PA, mP,
mRecall and mF1 were obtained by experimenting with UperNet and different variants of
the network were obtained after replacing its modules (Table 2).

Table 2. The quantitative results of HFE and MMF ablation experiments on the MZData (%).

Method mIoU FWIoU PA mP mRecall mF1

UperNet 79.78 87.98 93.42 88.44 88.19 88.28
UperNet + HFE 82.03 90.46 94.92 92.06 87.79 89.58
UperNet + MFF 80.85 89.27 94.21 90.41 88.11 88.81

HFENet 87.19 93.56 96.60 93.61 92.18 92.87

As can be seen from Table 2, compared with the UperNet network, whether it is the
improvement of introducing HFE for feature extraction or the introduction of MFF for
feature fusion, the results of various evaluation indicators have a certain improvement.
In the experiments, the improvement with HFE alone is better than MFF; the effect of
using two improvements (HFENet) simultaneously is more obvious. In order to verify
the respective roles of the HFE module and the MFF module in the network, through the
quantification of the results, the IoU evaluation index results of each category in the test set
were obtained (Table 3), and the four experimental results were visualized (Figure 8).
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Table 3. The IoU values for each category of HFE and MFF ablation experiments on the MZData (%).

Model Cropland Garden Plot Woodland Grassland Building Road Water Bare Land

UperNet 88.92 76.56 91.88 72.68 75.37 57.88 81.89 73.13
UperNet + MFF 89.96 81.35 94.32 78.83 69.65 53.34 83.88 77.63
UperNet + HFE 91.56 80.95 94.74 81.45 74.09 55.07 84.47 76.26

HFENet 94.66 86.24 96.18 85.43 85.66 65.82 88.35 82.50
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Figure 8. Comparison of the classification results of HFE and MMF combination on MZData.
(a–c) shows the typical case that it is difficult to identify roads in small-scale features. (d) shows
the complex scenes where woodland and grassland are easily confused. (HFENet is equivalent to
UperNet + HFE + MFF).

As can be seen from Table 3, the introduction of HFE or MFF modules alone results in
a significant improvement in the IoU values of confusing features such as cropland, garden
plot, woodland and grassland. Because MFF assigns weights to the fused multi-scale
features, and HFE module mines the relationship between channels in high-level semantic
information, it can improve the expression of specific semantic information and reduce
the impact of interference information on classification. However, for road and building,
which have large scale differences, the IoU values not only do not improve, but also have a
slight decrease. This is due to the lack of extraction of precise image location information
in the case of only MFF; in the case of only HFE, the network prefers the expression of
high-level semantic information in classification, resulting in incomplete representation
of low-level semantic information such as spatial location. Two improvements (HFENet)
are also introduced, and the IoU values are significantly improved relative to UperNet,
both for confusable features and small-scale features. Especially in small-scale features
(such as Road and Building), the IoU value is increased by about 10%. This is caused
by the characteristics of the HFE module and the MFF module. First, the HFE module
can effectively obtain the spatial location information of the images by adopting specific



Remote Sens. 2022, 14, 4244 15 of 24

extraction methods for the characteristics of different feature maps. Then, MFF can assign
weights to different characteristics of the fused feature maps. Combining two modules at
the same time, the network can focus not only on high-level semantic information, but also
on low-level semantic information such as spatial location. From the above comparison
experiments, it can be seen that the HFE and MFF modules are effective in extracting
semantic information at different levels and fusing multi-level and multi-scale features.

It can be seen from Figure 8a–c that in the process of semantic segmentation, UperNet
tends to ignore small-scale features, resulting in discontinuous or even unrecognized
phenomena (shown in the box in Figure 8). The introduction of HFE (UperNet + HFE)
or MFF (UperNet + MFF) alone not only fails to improve the network’s utilization of
low-level semantic information such as spatial location, but the network is more likely to
ignore low-level semantic information; the introduction of both modules at the same time
(HFENet) has significantly improved the recognition results. For long and narrow roads,
UperNet does not recognize them at all, and HFENet can recognize them well, but there is
also a phenomenon that the recognition results are discontinuous. For small buildings, the
HFENet recognition results in finer contours, closer to the ideal situation.

From Figure 8d, it can be seen that UperNet cannot accurately handle the phenomena
such as interlacing between features and dissimilarities in the same spectrum, which has an
impact on the classification accuracy. Both UperNet + HFE and UperNet + MFF improve
the network’s ability to mine advanced semantic information and enhance the recognition
of confusing features such as homospectral dissimilarities. HFENet not only improves
the recognition ability of the network, but also is more accurate for the boundary contour
information of the features.

4.3. Comparing with the State-of-the-Art

In order to prove the advanced nature of the method proposed in this paper, we
conduct a set of comparative experiments on the landcover.ai, MZData and WHU building
dataset for HFENet and the other seven most advanced landcover classification methods,
i.e., U-Net [25], DeepLabv3+ [36], PSPNet [17], FCN [39], UperNet [27], DANet [18], Seg-
Net [61], to analyze the parameters and Flops of each network and the obtained visualiza-
tion and quantitative results. U-Net, DeepLabv3+, and SegNet represent encoder-decoder
networks. FCN stands for fully convolutional network. PSPNet and UpperNet repre-
sent networks for pyramid pooling methods. DANet represents a network of attention
mechanism methods.

4.3.1. Experimental Results on MZData

The network was trained and tested on the MZData, and the results of the six quanti-
tative evaluation metrics were calculated as shown in Table 4.

Table 4. The quantitative results of the state-of-the-art models on the MZData (%).

Model mIoU FWIoU PA mP mRecall mF1

SegNet 77.19 86.22 92.40 88.15 85.18 86.55
FCN 75.63 85.84 91.99 85.44 85.09 85.20

PSPNet 78.47 87.13 92.83 87.43 87.34 87.33
UperNet 79.78 87.98 93.42 88.44 88.19 88.28
DANet 79.65 87.91 93.38 88.13 87.27 89.09

DeepLabv3+ 78.19 87.05 92.84 87.65 86.87 87.21
HFENet (ours) 87.19 93.56 96.60 93.61 92.18 92.87

As can be seen from Table 4, HFENet outperforms other methods in all six evaluation
indicators. Compared with FCN network, mIoU is increased by 10.60 percentage points;
compared with UperNet, mIoU is increased by 7.41 percentage points. To verify whether
HFENet is superior to other methods in identifying small-scale features, we further counted
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the IoU values of different networks for each class in the experimental results, as shown in
Table 5.

Table 5. The IoU values for each category of the state-of-art models on the MZData (%).

Model Cropland Garden Plot Woodland Grassland Building Road Water Bare Land

SegNet 87.61 73.73 90.44 66.30 73.19 56.40 79.91 67.61
FCN 86.60 74.95 91.13 69.64 68.07 43.22 77.73 69.79

PSPNet 88.57 76.39 91.08 69.06 74.06 53.90 82.45 70.97
UperNet 88.92 76.56 91.88 72.68 75.37 57.88 81.89 73.13
DANet 88.98 78.72 91.88 71.45 75.18 55.47 83.20 72.30

DeepLabv3+ 88.42 73.81 91.15 68.76 74.09 57.07 81.60 69.11
HFENet 94.66 86.24 96.18 85.43 85.66 65.82 88.35 82.50

From the results in Table 5, it can be seen that, for the relatively small-scale ground
object categories such as building and road, compared with the other six networks, the
IoU value of HFENet is generally increased by about 10 percentage points. For other easily
confused land object categories, such as cultivated land, grassland, and forest land, the
IoU value of HFENet has also been significantly improved. In order to more intuitively
illustrate the superiority of HFENet compared to other methods, we visually compare the
classification results of different networks, as shown in Figure 9.
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features. (e) shows the complex scenes where woodland and grassland are easily confused.

It can be seen from Figure 9a–c that for narrow roads, the HFENet network can identify
them well, but other networks cannot identify them. In Figure 9d, for small buildings, the
HFENet network identifies very well, but UperNet, DANet, and other networks do not
have complete identification, and FCN does not even identify the building. In Figure 9e, for
the interlaced grassland and woodland, the spectrum of the two ground objects is similar,
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but the texture information is quite different, the classification effect of HFENet is obviously
better than that of other networks. This shows that HFENet is able to capture the low-level
semantic information contained in the underlying network using the HFE module, and
then adjust the weight relationship between the high-level semantic information and the
low-level semantic information through MFF, so that the network can not only separate
the two categories by the low-level semantic information, but also correctly classify them
by mining the high-level semantic information, thus making the goal of classification
more complete.

4.3.2. Experimental Results on WHU Building Dataset

In order to further confirm the advantages of HFENet in multi-scale feature recogni-
tion, we specially chose to train and test our model and the other state-of-the-art models
on the WHU building dataset [38]. The dataset is dominated by buildings, which are
representative multi-scale features. According to the experimental results, we calculate the
six evaluation metrics and the IoU values of the background and buildings relative to each
model respectively, as shown in Table 6.

Table 6. Quantitative results of the state-of-the-art models on the WHU building dataset (%).

Model mIoU FWIoU PA mP mRecall mF1
IoU

Background Building

SegNet 85.06 93.84 96.7 92.16 90.91 91.52 96.36 73.76
U-Net 87.57 94.92 97.31 93.78 92.45 93.10 97.02 78.11
FCN 80.55 91.43 95.08 85.83 91.98 88.55 94.54 66.55

PSPNet 90.95 96.34 98.09 95.75 94.52 95.12 97.88 84.02
UperNet 90.34 96.06 97.92 94.64 94.90 94.77 97.69 83.00
DANet 90.95 96.33 98.09 95.51 94.74 95.12 97.87 84.02

DeepLabv3+ 90.59 96.18 98.01 95.41 94.43 94.91 97.79 83.39
HFENet (ours) 92.12 96.81 98.34 95.93 95.67 95.80 98.15 86.09

It can be seen from Table 6 that HFENet is obviously superior to other models in
terms of the classification of buildings with large scale differences, both in the six overall
metrics and in the IoU of each category. The mIoU value of HFENet reached 92.12%, about
2 percentage points higher than that of DANet, PSPNet, UperNet and Deeplabv3+, about
6 percentage points higher than U-Net and SegNet; about 12 percentage points higher than
FCN. In terms of building category, the IoU values of all models except HFENet are lower
than 85%, and the highest is only 84.02%; the IoU value of HFENnet reached 86.09%, which
is 19.45% higher than that of FCN and 2.07% higher than that of PSPNet or DANet.

To more intuitively illustrate the superiority of HFENet over other models, we visually
compare the classification results of different models, and the results are shown in Figure 10.

In Figure 10a, in addition to HFENet and SegNet, other models have different degrees
of misclassification, that is, some backgrounds are classified into building class; Compared
with SegNet, the outline of HFENet classification is clearer. In Figure 10b,c, for large-scale
buildings, the classification results of HFENet and PSPNet are more complete, while the
classification results of other models are missing and relatively broken. In Figure 10d, for
small-scale buildings, it can be clearly seen that other models cannot correctly classify
buildings except HFENet. In Figure 10e, there is a colorful building being quite different
from other buildings, which increases the difficulty of classification. As a result, only
HFENet can correctly classify this building, while other models fail to do so. From Figure 10
and Table 6, it could be found that HFENet can not only correctly recognize targets in
complex situations, but also improve the ability of multi-scale feature recognition.
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4.3.3. Experimental Results on landcover.ai

To verify the generalization of the method proposed in this paper, we train and test on
the aerial image dataset (landcover.ai), and calculate six evaluation metrics for different
network experimental results, as shown in Table 7.

Table 7. Quantitative results of the state-of-the-art models on the landcover.ai (%).

Model mIoU FWIoU PA mP mRecall mF1

U-Net 87.76 92.15 95.91 95.25 91.57 93.31
Deeplabv3+ 87.56 91.81 95.72 94.30 92.16 93.19

PSPNet 88.66 92.79 96.25 94.66 93.04 93.82
FCN 85.38 91.75 95.66 90.64 92.86 91.71

UperNet 88.76 92.56 96.12 94.00 93.82 93.91
DANet 88.34 92.47 96.07 93.67 93.67 93.65
SegNet 87.02 92.42 96.04 93.39 92.16 92.74

HFENet (ours) 89.69 93.21 96.48 95.21 93.71 94.44

From Table 7, it is obvious that HFENet outperforms other networks in all six metrics.
The highest mIoU value (compared to FCN) increased by 4.31 percentage points, and the
lowest (compared to UperNet) also increased by 0.93 percentage points. In order to further
illustrate the advantages of HFENet in small-scale object recognition, we count the IoU
values of different networks for each class, as shown in Table 8.
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Table 8. The IoU values for each category of the state-of-art models on the landcover.ai (%).

Model Building Water Woodland Other mIoU

U-Net 74.91 92.28 90.47 93.39 87.76
Deeplabv3+ 74.89 92.29 89.90 93.15 87.56

PSPNet 75.79 93.79 91.17 93.91 88.66
FCN 66.38 91.81 90.41 92.94 85.38

UperNet 77.44 93.01 90.83 93.77 88.76
DANet 76.31 92.48 90.94 93.62 88.34
SegNet 69.99 93.67 90.90 93.54 87.02

HFENet (ours) 78.66 94.19 91.62 94.28 89.69

As can be seen from Table 8, for the building class, the IoU values of each network
are below 80%, but HFENet is higher than FCN by 12.28 percentage points and exceeds
UperNet by 1.22 percentage points as well. For all classes except the building class, the IoU
values of each network are higher than 90% except for one (Deeplabv3+ for the woodland
class), and the difference is not significant, but HFENet is higher than all other networks.
In general, the IoU value of HFENet in each class is higher than other networks, and the
mIoU value also has obvious advantages. The reason is that the HFENet design pays
more attention to the underlying information, which improves the recognition accuracy of
small-scale objects.

In order to more intuitively illustrate the superiority of HFENet compared to other
methods, the results of the classification results of different networks are visualized and
compared, and the results are shown in Figure 11.
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Figure 11. Visual comparison of classification results of the state-of-the-art models on the landcover.ai.
(a) shows the case of inaccurate identification of object outlines, (b) shows the case of incomplete large-
scale objects identification under multi-scale environment, (c) shows the case of the phenomenon of
foreign objects in the same spectrum causing false identification. (d,e) shows the typical cases that
small-scale objects are difficult to be identified.

In Figure 11a, for other types of objects, HFENet and PSPNet have better extraction
effects than other networks; U-Net, DeepLabv3+ and SegNet not only have incomplete
recognition, but also have misclassifications; DANet has obvious missed classification. In
Figure 11b, for the more obvious building features, HFENet is able to identify and segment
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them completely; other networks can identify buildings, but most segmentation results
are incomplete, with missing, empty, or even fragmented areas. In Figure 11c, for the two
objects of building and container (other category) classes, due to the small difference in
color and shape, it is easy to cause confusion. HFENet can distinguish them well, but all
other networks identify the container as a building. As can be seen from Figure 11d,e, for
small-scale Other and Building, other networks will appear misidentified or completely
unrecognized, and HFENet can correctly identify small-scale targets, although there are
also minor problems of incomplete or discontinuous identification.

4.3.4. Comparison of Time and Space Complexity of the Models

In order to evaluate the usability of the model more comprehensively, we take the
input image of 3 × 512 × 512 as an example, and calculate the parameter quantity of
HFENet and other state-of-the-art models as the evaluation index of space complexity, and
the number of floating-point operations (flops) as the evaluation index of time complexity.
The results are listed in Table 9.

Table 9. The Parameter and Flops of each model.

Model Backbone Parameter (M) Flops (G)

FCN VGG16 190.0 134.27
SegNet

ResNet50

53.55 47.62
U-Net 30.00 141.31

PSPNet 53.55 184.58
DeepLabv3+ 59.34 40.35

UperNet 107.08 162.78
DANet 47.56 205.18

HFENet (ours) 107.10 162.80
SegNet

ResNet101

72.55 67.09
U-Net 48.99 219.21

PSPNet 70.42 262.48
DeepLabv3+ 69.37 88.85

UperNet 126.07 182.25
DANet 66.55 283.08

HFENet (ours) 126.09 182.27

It can be seen from Table 9 that since HFENet is improved based on UperNet, there is
little difference between the two models in terms of parameter quantity and flops. From the
comparison of parameter quantities alone, among all models, the FCN model with VGG16
as the backbone has the largest parameter quantity; in the network with ResNet50 and
ResNet101 as backbone, the parameter amount of HFENet is the largest, but only 0.02 M
higher than UperNet. From the perspective of flops, whether the model with ResNet50 or
ResNet101 as the backbone, the time complexity of DANet is significantly higher than that
of other models, followed by PSPNet. The time complexity of HFENet is very close to that
of UperNet, and it is similar to that of FCN and U-Net, but it is significantly lower than that
of DANet and PSPNet, and also significantly higher than that of SegNet and DeepLabv3++.

In view of the above, from the perspective of quantitative evaluation results and
visual effects, the HFENet method proposed in this paper has achieved good results on
both datasets. In the case of large differences in the scale of the same object, HFENet
can accurately identify small-scale objects by obtaining low-level semantic information
such as spatial location and achieve the purpose of improving the classification accuracy
of small-scale objects. In the case that the ground objects are interlaced with each other,
and the same-spectrum foreign objects are easily confused, HFENet can use the low-level
semantic information such as texture to distinguish different ground objects, and then
correctly classify different categories by mining high-level semantic information. From
the perspective of algorithm complexity, HFENet has no obvious advantages over other
models in terms of calculation and storage efficiency; however, compared with UperNet, in
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the case of no significant change in time and space complexity, the classification effect of
the model on multi-scale objects is greatly improved, which reflects the significance and
value of the improved method in this paper.

5. Discussion

It is shown through experimental studies that the deep learning remote sensing image
segmentation framework-HFENet, proposed in this paper, outperforms other state-of-
the-art networks on two different datasets. In these experiments, some phenomena are
worth discussing.

In order to solve the problem that UperNet does not make sufficient use of low-level
semantic information and it is difficult to identify small-scale features, this paper redesigns
the network by applying a hierarchical feature extraction strategy (HFE module) to the
backbone network on the basis of UperNet. First, the location attention mechanism is used
to focus on the underlying information to enhance the feature extraction of detailed regions
and small target objects. Then, at the higher layers of the network, the interrelationships
between channels are mined through the channel attention mechanism to improve the
expression of specific high-level semantic information. Finally, the multi-scale information
of features is obtained through the pyramid pooling module at the highest level of the
network to improve the network’s ability to utilize global information. However, it is found
through experiments that the underlying semantic information is not well represented when
only the hierarchical extraction strategy is used for feature extraction. This phenomenon
is mainly due to the fact that, when fusing multi-level features, the network assigns more
weight to high-level semantic information, and thus the network ignores the detailed
regions contained in the underlying layer as well as small target object information. To
address this phenomenon, we enhance the attention to the underlying network features by
using the channel attention mechanism feature fusion method (MFF module) to reduce the
risk of the underlying information being ignored. Through experiments, we found that the
HFENet constructed by using both HFE and MFF modules in the entire model can achieve
better performance for remote sensing image semantic segmentation.

Comparing the experimental results on three different datasets, it is not difficult to
see that compared with other methods, the improvements of HFENet on MZData and
WHU building dataset are significant, and the improvement on landcover.ai is relatively
small. Through analysis, the most obvious improvement of HFENet’s feature classification
effect in MZData is on roads and buildings, and it can be seen from the visualization
results that the improvement is mainly on small-scale features (such as narrow roads
and fragmented buildings). This is because HFENet pays more attention to the location
information extraction for the underlying network and has a high degree of attention
to small-scale objects. For the WHU building dataset, HFENet can completely classify
large-scale buildings and small-scale buildings. Even for some complex cases, it can
classify buildings by low-level semantic information such as outline position. However, in
landcover.ai, only four categories of features are segmented, and most of them belong to
larger scale features, which cannot fully reflect the advantages of HFENet in small-scale
target recognition. Therefore, the framework HFENet proposed in this paper can maintain
the advantages of deep learning network in the recognition of ordinary scale objects in the
task of remote sensing image semantic segmentation and can show better results in the
refined semantic segmentation task.

6. Conclusions

In this paper, we propose a deep learning framework HFENet for semantic segmenta-
tion of remote sensing image landcover classification. This framework is an improvement
of the UperNet framework, which mainly solves the problems that similar features in
remote sensing images are easily confused and small-scale features are difficult to iden-
tify. HFENet is based on hierarchical feature extraction strategy and mainly includes two
modules, HFE and MFF. The effects of HFE and MFF modules are verified by ablation
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studies on the self-labeled dataset MZData. Compared with the state-of-the-art image
semantic segmentation models on MZData, landcover.ai and WHU building dataset, the
results show that HFENet has obvious advantages in distinguishing interlaced features
with similar image features and recognizing small-scale features.

Although the HFENet proposed in this paper provides a new choice for semantic
segmentation of remote sensing images, the model has no advantages in terms of time
complexity and space complexity of the algorithm; In addition, the super parameters
selection of deep learning methods is also a huge challenge. We spent a lot of time in the
experiment to select the super parameters to ensure the performance of the model as much
as possible. How to automatically adjust the parameters to achieve the best effect of the
model is still worth studying.
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