# Evidence of Ocean Waves Signature in the Space–Time Turbulent Spectra of the Lower Marine Atmosphere Measured by a Scanning LiDAR

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Experimental Campaign

#### 2.1. Test Site

^{®}Scan 100S depicted in Figure 1, from the research laboratory in Hydrodynamics, Energetics and Atmospheric Environment (LHEEA), was deployed to explore micro-scale wind–wave interactions close to the water surface by performing horizontal scans at a height of 18 m above the mean sea level (MSL). The sLiDAR was installed 100 m from the coastline in the peninsula of Le Croisic (France), on the balcony of a seafront villa with a clear view to the North Atlantic ocean from 135° to 260°. The location of Le Croisic is shown in Figure 2a, with the wind rose obtained for 2008–2017 from [59], giving the prevailing wind direction (WD) of south-west and north-east. The test site is mostly a suburban area, composed of low-rise buildings and parks with a south-western rocky coastline, aligned with an 110°–290° axis for nearly 10 km, as pictured in Figure 2b. Directly to the north-east of the sLiDAR’s position (47°17${}^{\prime}$8.6${}^{\u2033}$ N, −2°31${}^{\prime}$1.5${}^{\prime \prime}$ E), the Penn-Avel park is a densely forested area with tall vegetation of approximately 10 m in height. The local ground is around 8 m above the MSL with a mean slope of 8% down to the water in the south-west direction.

#### 2.2. sLiDAR Technology and Experimental Setup

#### 2.2.1. Technology and Challenges

#### 2.2.2. Calibration and Configuration

#### 2.3. Environmental Description and Test-Case Selection

#### 2.3.1. Meteocean Conditions

#### 2.3.2. Test Cases

## 3. Data Treatment and Analyses

#### 3.1. Energy Density Functions

#### 3.2. Two-Dimensional Fourier Transform

## 4. Results

#### 4.1. Radial Wind Speed Fluctuations

#### 4.2. One-Dimensional Turbulent Spectra

#### 4.3. Two-Dimensional Turbulent Spectrum

#### 4.3.1. Resultant Single-Sided Spectrum

#### 4.3.2. Opposing Directions and the Four-Quadrant Spectrum

#### 4.4. Rising Wind and Diminishing Sea-State

## 5. Discussion

#### 5.1. Deviations from the Taylor and Random Sweeping Hypotheses

#### 5.2. Coherence and Correlation in a Space–Time Perspective

## 6. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Abbreviations

1D | One-dimensional |

2D | Two-dimensional |

ABL | Atmospheric Boundary Layer |

CNR | Carrier-to-noise-ratio |

EDF | Energy Density Function |

ESDU | Engineering Sciences Data Unit |

f-LOS | fixed LOS |

FT | Fourier Transform |

FFT | Fast FT |

LiDAR | Light Detection and Ranging System |

LHEEA | Laboratory in Hydrodynamics, Energetics and Atmospheric Environment |

LOS | Line of Sight |

MABL | Marine ABL |

MSL | Mean Sea Level |

PPI | Plan Position Indicator |

RWS | Radial Wind Speed |

sLiDAR | scanning LiDAR |

SST | Sea Surface Temperature |

TI | Turbulence Intensity |

TKE | Turbulent Kinetic Energy |

UTC | Universal Time Coordinated |

WA | Wave Age |

WBL | Wave Boundary Layer |

WC | Wave-Coherent |

WD | Wind Direction |

WI | Wave-Induced |

WS | Wind Speed |

WWIII | WAVEWATCH III |

## Appendix A. Data Quality and Filter

#### Appendix A.1. Carrier-To-Noise Ratio

**Figure A1.**Cumulative distributions of Carrier-to-Noise-Ratio (CNR) occurrences below the threshold. Cases 01 and 02a depicted with full or limited f-LOS range.

#### Appendix A.2. Spike Detection and Removal

**Figure A2.**The full blue line exemplifies a time-series of ${u}_{R}(x,t)$. For spike detection, the full orange line is the low-frequency estimate ${u}_{\alpha}(x,t)$. For reconstruction, the yellow dotted line is the high-frequency estimate ${u}_{\beta}(x,t)$. The spike value is identified by a purple dot, then replaced by the green dot below.

#### Appendix A.3. Signal Reconstruction

## References

- Thomson, W. Hydrokinetic Solutions and Observations. Philos. Mag.
**1871**, 42, 326–378. [Google Scholar] [CrossRef] - Jeffreys, H. On the formation of water waves by wind. Proc. R. Soc. Lond.
**1925**, 107, 189–206. [Google Scholar] - Miles, J.W. On The Generation Of Surface Waves By Shear Flows, Part I. J. Fluid Mech.
**1957**, 3, 185–204. [Google Scholar] [CrossRef] - Phillips, O.M. On The Generation Of Waves By Turbulent Wind. J. Fluid Mech.
**1957**, 2, 417–445. [Google Scholar] [CrossRef] - Belcher, S.E.; Hunt, J.C.R. Turbulent Shear Flow Over Slowly Moving Waves. J. Fluid Mech.
**1993**, 251, 109–148. [Google Scholar] [CrossRef] - Edson, J.B.; Zappa, C.J.; Ware, J.A.; McGillis, W.R.; Hare, J.E. Scalar flux profile relationships over the open ocean. J. Geophys. Res. Ocean.
**2004**, 109, C08S09. [Google Scholar] [CrossRef] [Green Version] - Hristov, T. Mechanistic, empirical and numerical perspectives on wind-waves interaction. Procedia IUTAM
**2018**, 26, 102–111. [Google Scholar] [CrossRef] - Tamura, H.; Drennan, W.M.; Collins, C.O.; Graber, H.C. Turbulent Airflow and Wave-Induced Stress Over the Ocean. Bound.-Layer Meteorol.
**2018**, 169, 47–66. [Google Scholar] [CrossRef] - Patton, E.G.; Sullivan, P.P.; Kosović, B.; Dudhia, J.; Mahrt, L.; Žagar, M.; Marić, T. On the Influence of Swell Propagation Angle on Surface Drag. J. Appl. Meteorol. Climatol.
**2019**, 58, 1039–1059. [Google Scholar] [CrossRef] [Green Version] - Porchetta, S.; Temel, O.; Muñoz Esparza, D.; Reuder, J.; Monbaliu, J.; van Beeck, J.; van Lipzig, N. A new roughness length parameterization accounting for wind–wave (mis)alignment. Atmos. Chem. Phys.
**2019**, 19, 6681–6700. [Google Scholar] [CrossRef] [Green Version] - Sullivan, P.P.; McWilliams, J.C.; Moeng, C.H. Simulation of turbulent flow over idealized water waves. J. Fluid Mech.
**2000**, 404, 47–85. [Google Scholar] [CrossRef] [Green Version] - Yang, D.; Shen, L. Direct-simulation-based study of turbulent flow over various waving boundaries. J. Fluid Mech.
**2010**, 650, 131–180. [Google Scholar] [CrossRef] [Green Version] - Yang, D.; Meneveau, C.; Shen, L. Effect of downwind swells on offshore wind energy harvesting—A large-eddy simulation study. Renew. Energy
**2014**, 70, 11–23. [Google Scholar] [CrossRef] - Sullivan, P.P.; McWilliams, J.C.; Patton, E.G. Large-Eddy Simulation of Marine Atmospheric Boundary Layers above a Spectrum of Moving Waves. J. Atmos. Sci.
**2014**, 71, 4001–4027. [Google Scholar] [CrossRef] [Green Version] - Hao, X.; Shen, L. Wind-wave coupling study using LES of wind and phase-resolved simulation of nonlinear waves. J. Fluid Mech.
**2019**, 874, 391–425. [Google Scholar] [CrossRef] - Obukhov, A.M. Turbulence in an Atmosphere with a Non-Uniform Temperature. Bound.-Layer Meteorol.
**1946**, 2, 7–29. [Google Scholar] [CrossRef] - Monin, A.S.; Obukhov, A.M. Basic Laws of Turbulent Mixing in the Surface Layer of the Atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR
**1954**, 24, 163–187. [Google Scholar] - Businger, J.A.; Wyngaard, J.C.; Izumi, Y.; Bradley, E.F. Flux-Profile Relationships in the Atmospheric Surface Layer. J. Atmos. Sci.
**1971**, 28, 181–189. [Google Scholar] [CrossRef] - Sjöblom, A.; Smedman, A.S. The turbulent kinetic energy budget in the marine atmospheric surface layer. J. Geophys. Res. Ocean.
**2002**, 107, 6-1–6-18. [Google Scholar] [CrossRef] - Donelan, M.A.; Dobson, F.W.; Smith, S.D.; Anderson, R.J. On the Dependence of Sea Surface Roughness on Wave Development. J. Phys. Oceanogr.
**1993**, 23, 2143–2149. [Google Scholar] [CrossRef] [Green Version] - Cifuentes-Lorenzen, A.; Edson, J.B.; Zappa, C.J. Air–Sea Interaction in the Southern Ocean: Exploring the Height of the Wave Boundary Layer at the Air–Sea Interface. Bound.-Layer Meteorol.
**2018**, 169, 461–482. [Google Scholar] [CrossRef] - Hristov, T.; Ruiz-Plancarte, J. Dynamic Balances in a Wavy Boundary Layer. J. Phys. Oceanogr.
**2014**, 44, 3185–3194. [Google Scholar] [CrossRef] - Pierson, W.J.; Marks, W. The power spectrum analysis of ocean-wave records. Eos Trans. Am. Geophys. Union
**1952**, 33, 834–844. [Google Scholar] [CrossRef] - Kitaigorodskii, S.A. On the Theory of the Equilibrium Range in the Spectrum of Wind-Generated Gravity Waves. J. Phys. Oceanogr.
**1983**, 13, 816–827. [Google Scholar] [CrossRef] [Green Version] - Ōkubo, A. Oceanic diffusion diagrams. Deep Sea Res. Oceanogr. Abstr.
**1971**, 18, 789–802. [Google Scholar] [CrossRef] - Golitsyn, G. Coefficient of Horizontal Eddy Diffusion of a Tracer on the Water Surface as a Function of the Wave Age. Izv. Atmos. Ocean. Phys.
**2011**, 47, 393–398. [Google Scholar] [CrossRef] - Hristov, T.S.; Miller, S.D.; Friehe, C.A. Dynamical coupling of wind and ocean waves through wave-induced air flow. Nature
**2003**, 422, 55–58. [Google Scholar] [CrossRef] - Kolmogorov, A. The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds’ Numbers. Akad. Nauk. SSSR Dokl.
**1941**, 30, 301–305. [Google Scholar] - Harris, D.L. The Wave-Driven Wind. J. Atmos. Sci.
**1966**, 23, 688–693. [Google Scholar] [CrossRef] [Green Version] - Hanley, K.E.; Belcher, S.E. Wave-Driven Wind Jets in the Marine Atmospheric Boundary Layer. J. Atmos. Sci.
**2008**, 65, 2646–2660. [Google Scholar] [CrossRef] [Green Version] - Cathelain, M. Development of a Deterministic Numerical Model for the Study of the Coupling between an Atmospheric Flow and a Sea State. Ph.D. Thesis, Ecole Centrale de Nantes (ECN), Nantes, France, 2017. [Google Scholar]
- Edson, J.B.; Jampana, V.; Weller, R.A.; Bigorre, S.P.; Plueddemann, A.J.; Fairall, C.W.; Miller, S.D.; Mahrt, L.; Vickers, D.; Hersbach, H. On the Exchange of Momentum over the Open Ocean. J. Phys. Oceanogr.
**2013**, 43, 1589–1610. [Google Scholar] [CrossRef] [Green Version] - Mastenbroek, C. Wind-Wave Interaction. Ph.D. Thesis, TU Delft, Delft, The Netherlands, 1996. [Google Scholar]
- Edson, J.B.; Fairall, C.W. Similarity Relationships in the Marine Atmospheric Surface Layer for Terms in the TKE and Scalar Variance Budgets. J. Atmos. Sci.
**1998**, 55, 2311–2328. [Google Scholar] [CrossRef] - Yousefi, K.; Veron, F. Boundary layer formulations in orthogonal curvilinear coordinates for flow over wind-generated surface waves. J. Fluid Mech.
**2020**, 888, A11. [Google Scholar] [CrossRef] - Benilov, A.Y.; Kouznetsov, O.A.; Panin, G.N. On the analysis of wind wave-induced disturbances in the atmospheric turbulent surface layer. Bound.-Layer Meteorol.
**1974**, 6, 269–285. [Google Scholar] [CrossRef] - Snyder, R.L.; Dobson, F.W.; Elliott, J.A.; Long, R.B. Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech.
**1981**, 102, 1–59. [Google Scholar] [CrossRef] - Grare, L.; Lenain, L.; Melville, W.K. Wave-Coherent Airflow and Critical Layers over Ocean Waves. J. Phys. Oceanogr.
**2013**, 43, 2156–2172. [Google Scholar] [CrossRef] - Taylor, G.I. The Spectrum of Turbulence. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci.
**1938**, 164, 476–490. [Google Scholar] [CrossRef] [Green Version] - Wilczek, M.; Narita, Y. Wave-number–frequency spectrum for turbulence from a random sweeping hypothesis with mean flow. Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
**2012**, 86, 066308. [Google Scholar] [CrossRef] [Green Version] - Craik, A.D. The origins of water wave theory. Annu. Rev. Fluid Mech.
**2004**, 36, 1–28. [Google Scholar] [CrossRef] - Janssen, P. The Interaction of Ocean Waves and Wind; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Desmars, N. Real-Time Reconstruction and Prediction of Ocean Wave Fields from Remote Optical Measurements. Ph.D. Thesis, École Centrale de Nantes, Nantes, France, 2020. [Google Scholar]
- Leckler, F.; Ardhuin, F.; Peureux, C.; Benetazzo, A.; Bergamasco, F.; Dulov, V. Analysis and Interpretation of Frequency–Wavenumber Spectra of Young Wind Waves. J. Phys. Oceanogr.
**2015**, 45, 2484–2496. [Google Scholar] [CrossRef] - Plant, W.J. Short wind waves on the ocean: Wavenumber-frequency spectra. J. Geophys. Res. Ocean.
**2015**, 120, 2147–2158. [Google Scholar] [CrossRef] [Green Version] - Cheng, Y.; Sayde, C.; Li, Q.; Basara, J.; Selker, J.; Tanner, E.; Gentine, P. Failure of Taylor’s hypothesis in the atmospheric surface layer and its correction for eddy-covariance measurements. Geophys. Res. Lett.
**2017**, 44, 4287–4295. [Google Scholar] [CrossRef] - Kraichnan, R.H. Kolmogorov’s Hypotheses and Eulerian Turbulence Theory. Phys. Fluids
**1964**, 7, 1723–1734. [Google Scholar] [CrossRef] - He, G.W.; Zhang, J.B. Elliptic model for space-time correlations in turbulent shear flows. Phys. Rev. E
**2006**, 73, 055303. [Google Scholar] [CrossRef] [Green Version] - Narita, Y. Spectral moments for the analysis of frequency shift, broadening, and wavevector anisotropy in a turbulent flow. Earth Planets Space
**2017**, 69, 73–83. [Google Scholar] [CrossRef] [Green Version] - Peña, A.; Mann, J. Turbulence Measurements with Dual-Doppler Scanning Lidars. Remote Sens.
**2019**, 11, 2444. [Google Scholar] [CrossRef] [Green Version] - Chan, P.W. Generation of an Eddy Dissipation Rate Map at the Hong Kong International Airport Based on Doppler Lidar Data. J. Atmos. Ocean. Technol.
**2011**, 28, 37–49. [Google Scholar] [CrossRef] - Nijhuis, A.C.P.O.; Thobois, L.P.; Barbaresco, F.; Haan, S.D.; Dolfi-Bouteyre, A.; Kovalev, D.; Krasnov, O.A.; Vanhoenacker-Janvier, D.; Wilson, R.; Yarovoy, A.G. Wind Hazard and Turbulence Monitoring at Airports with Lidar, Radar, and Mode-S Downlinks: The UFO Project. Bull. Am. Meteorol. Soc.
**2018**, 99, 2275–2293. [Google Scholar] [CrossRef] [Green Version] - Lothon, M.; Lenschow, D.H.; Mayor, S.D. Doppler Lidar Measurements of Vertical Velocity Spectra in the Convective Planetary Boundary Layer. Bound.-Layer Meteorol.
**2009**, 132, 205–226. [Google Scholar] [CrossRef] - Barlow, J.F.; Dunbar, T.M.; Nemitz, E.G.; Wood, C.R.; Gallagher, M.W.; Davies, F.; O’Connor, E.; Harrison, R.M. Boundary layer dynamics over London, UK, as observed using Doppler lidar during REPARTEE-II. Atmos. Chem. Phys.
**2011**, 11, 2111–2125. [Google Scholar] [CrossRef] [Green Version] - Smalikho, I.N.; Banakh, V.A.; Pichugina, Y.L.; Brewer, W.A.; Banta, R.M.; Lundquist, J.K.; Kelley, N.D. Lidar Investigation of Atmosphere Effect on a Wind Turbine Wake. J. Atmos. Ocean. Technol.
**2013**, 30, 2554–2570. [Google Scholar] [CrossRef] - Pichugina, Y.L.; Brewer, W.A.; Banta, R.M.; Choukulkar, A.; Clack, C.T.M.; Marquis, M.C.; McCarty, B.J.; Weickmann, A.M.; Sandberg, S.P.; Marchbanks, R.D.; et al. Properties of the offshore low level jet and rotor layer wind shear as measured by scanning Doppler Lidar. Wind Energy
**2017**, 20, 987–1002. [Google Scholar] [CrossRef] - Désert, T.; Knapp, G.; Aubrun, S. Quantification and Correction of Wave-Induced Turbulence Intensity Bias for a Floating LIDAR System. Remote Sens.
**2021**, 13, 2973. [Google Scholar] [CrossRef] - Bastine, D.; Wächter, M.; Peinke, J.; Trabucchi, D.; Kühn, M. Characterizing Wake Turbulence with Staring Lidar Measurements. J. Phys. Conf. Ser.
**2015**, 625, 012006. [Google Scholar] [CrossRef] - Global Wind Atlas (Version 3.1). Technical University of Denmark (DTU). 2021. Available online: https://globalwindatlas.info (accessed on 29 May 2022).
- Shimada, S.; Goit, J.P.; Ohsawa, T.; Kogaki, T.; Nakamura, S. Coastal wind measurements using a single scanning LiDAR. Remote Sens.
**2020**, 12, 1347. [Google Scholar] [CrossRef] [Green Version] - Stull, R.B. An Introduction to Boundary Layer Meteorology; Cambridge University Press: Cambridge, UK, 1989; p. 177. [Google Scholar]
- Spiegel, E.A.; Veronis, G. On the Boussinesq Approximation for a Compressible Fluid. Astrophys. J.
**1960**, 131, 442. [Google Scholar] [CrossRef] - Sekimoto, A.; Kawahara, G.; Sekiyama, K.; Uhlmann, M.; Pinelli, A. Turbulence- and buoyancy-driven secondary flow in a horizontal square duct heated from below. Phys. Fluids
**2011**, 23, 075103. [Google Scholar] [CrossRef] - Lazure, P.; Dumas, F. An external–internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS). Adv. Water Resour.
**2008**, 31, 233–250. [Google Scholar] [CrossRef] - Boudière, E.; Maisondieu, C.; Ardhuin, F.; Accensi, M.; Pineau-Guillou, L.; Lepesqueur, J. A suitable metocean hindcast database for the design of Marine energy converters. Int. J. Mar. Energy
**2013**, 3–4, e40–e52. [Google Scholar] [CrossRef] [Green Version] - Perignon, Y. Assessing accuracy in the estimation of spectral content in wave energy resource on the French Atlantic test site SEMREV. Renew. Energy
**2017**, 114, 145–153. [Google Scholar] [CrossRef] - Accensi, M.; Alday, M.; Maisondieu, C.; Raillard, N.; Darbynian, D.; Old, C.; Sellar, B.; Thilleul, O.; Perignon, Y.; Payne, G.S.; et al. ResourceCODE framework: A high-resolution wave parameter dataset for the European Shelf and analysis toolbox. In Proceedings of the 14th European Wave and Tidal Energy Conference, Plymouth, UK, 5–9 September 2021; pp. 2182-1–2182-9. [Google Scholar]
- Gryning, S.E.; Floors, R.; Peña, A.; Batchvarova, E.; Brümmer, B. Weibull Wind-Speed Distribution Parameters Derived from a Combination of Wind-Lidar and Tall-Mast Measurements Over Land, Coastal and Marine Sites. Bound.-Layer Meteorol.
**2016**, 159, 329–348. [Google Scholar] [CrossRef] [Green Version] - Gryning, S.E.; Floors, R. Carrier-to-Noise-Threshold Filtering on Off-Shore Wind Lidar Measurements. Sensors
**2019**, 19, 592. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Beck, H.; Kühn, M. Dynamic Data Filtering of Long-Range Doppler LiDAR Wind Speed Measurements. Remote Sens.
**2017**, 9, 561. [Google Scholar] [CrossRef] [Green Version] - Suomi, I.; Gryning, S.E.; O’Connor, E.J.; Vihma, T. Methodology for obtaining wind gusts using Doppler lidar. Q. J. R. Meteorol. Soc.
**2017**, 143, 2061–2072. [Google Scholar] [CrossRef] [Green Version] - Jiménez, J. Coherent structures in wall-bounded turbulence. J. Fluid Mech.
**2018**, 842, P1. [Google Scholar] [CrossRef] [Green Version] - Engineering Sciences Data Unit. Characteristics of atmospheric turbulence near the ground. Part 2: Single point data for strong winds (neutral atmosphere). In ESDU 85020; Engineering Sciences Data Unit: London, UK, 1985. [Google Scholar]
- Yang, D.; Shen, L. Characteristics of coherent vortical structures in turbulent flows over progressive surface waves. Phys. Fluids
**2009**, 21, 125106. [Google Scholar] [CrossRef] - Nappo, C.J.; Hiscox, A.L.; Miller, D.R. A Note on Turbulence Stationarity and Wind Persistence Within the Stable Planetary Boundary Layer. Bound.-Layer Meteorol.
**2010**, 136, 165–174. [Google Scholar] [CrossRef] - Paskin, L.; Perignon, Y.; Conan, B.; Aubrun, S. Numerical study on the Wave Boundary Layer, its interaction with turbulence and consequences on the wind energy resource in the offshore environment. J. Phys. Conf. Ser.
**2020**, 1618, 062046. [Google Scholar] [CrossRef]

**Figure 1.**The sLiDAR on the balcony of a seafront villa at Le Croisic, France. Radial Line-Of-Sight (R, LOS), and vertical (z) axis. Roll ($\psi $), pitch (elevation angle $\theta $), and yaw (azimuth angle $\varphi $) angular movements.

**Figure 2.**sLiDAR position denoted by a red dot and water depth displayed by the colormap. (

**a**) Location of Le Croisic on the French west Atlantic coast. The wind rose for Le Croisic was taken from the Global Wind Atlas [59], covering the period 2008–2017. (

**b**) View of Le Croisic peninsula, with the Plan Position Indicator (PPI) scans for WD determination in the black sector, and staring mode measurements’ lines (f-LOS) for Case 01 (blue) and Cases 02[a–c] (red) in dashed lines. Oceanic conditions were estimated from the HOMERE hind-cast database. The hind-cast grid is depicted by its nodes in yellow dots; probing was performed in the node depicted in magenta.

**Figure 3.**Evolution of wind and sea-state quantities around Cases 01 (left) and 02[a–c] (right). (

**a**,

**b**) Horizontal Wind Speed (WS) and Wind Direction (WD). Wave model (WWIII) hind-cast: (

**c**,

**d**) the significant wave height (${H}_{s}$) and peak period (${T}_{p}$); (

**e**,

**f**) the wave peak direction (${\alpha}_{w}$) and directional spreading (${\beta}_{w}$).

**Horizontal lines**in (

**a**,

**b**,

**e**,

**f**) denote the sLiDAR fLOS-aligned directions ${\varphi}_{L}$ and ${\varphi}_{L}-180$°.

**Vertical lines**denote the initial, middle and final moments of the selected periods.

**Figure 4.**10-min records of the Radial Wind Speed (RWS) from (

**a**) Case 01, and (

**b**) Case 02a. Mean RWS in dash-dotted lines. Peak wave phase and group velocities (${c}_{p}$ and ${c}_{g}$) slopes as dashed and dotted lines, respectively, dashed lines being distant by ${T}_{p}$ (Table 3). An indicative value of 0.5 RWS is provided for comparison in (

**a**).

**Figure 5.**(

**a**,

**c**) Wave-number k and (

**b**,

**d**) frequency f dependent 1D turbulent spectra ${E}_{{u}_{R}^{\prime}{u}_{R}^{\prime}}$; for (

**a**,

**b**) Case 01, and (

**c**,

**d**) Case 02a. Observed 10-min spectra in light grey, and the 3-h average in black full lines. The Engineering Sciences Data Unit (ESDU) reference is given in black dashed lines. Vertical blue lines stand for the wave peak scales ${k}_{p}$ and ${f}_{p}$, and green lines show the filter scales ${k}_{\gamma}$ and ${f}_{\gamma}$, for wave-number and frequency spectra, respectively.

**Figure 6.**Wave-number–angular-frequency 2D turbulent spectra ${E}_{{u}_{R}^{\prime}{u}_{R}^{\prime}}(k,w)$, for (

**a**) Case 01 and (

**b**) Case 02a. The mean RWS velocity is depicted by a black full line, and the wave velocity as dashed lines for $d=[14,22,30]$ m. The wave peak scale (${L}_{p},{T}_{p}$) is denoted by a star. The sLiDAR filter wave-length is given in the green dashed vertical lines.

**Figure 7.**Four-quadrants (${Q}_{\pm \pm}$) of the Energy Density Function (EDF) of ${u}_{R}^{\prime}{u}_{R}^{\prime}$, referred to by negative and positive wave-numbers ${k}_{\pm}$ or angular-frequencies ${w}_{\pm}$. (

**a**) Case 01 with waves and wind aligned in the same direction (Ocean to land) in quadrants ${Q}_{++}$ and ${Q}_{--}$. (

**b**) Case 02a with the wind aligned in the opposite direction (Land to ocean) in quadrants ${Q}_{+-}$ and ${Q}_{-+}$.

**Figure 8.**RWS contours for Case 02b. Mean RWS and peak wave phase velocity slopes as dash-dotted and dashed lines, respectively. Dashed lines are at a distance of ${T}_{p}$.

**Figure 9.**1D frequency dependent spectra for Case 02b. Observations of 10-min spectra in light grey, the 3-h average in black full lines, and the ESDU reference in black dashed lines.

**Figure 10.**Wave-number–angular-frequency 2D turbulent spectra ${E}_{{u}_{R}^{\prime}{u}_{R}^{\prime}}(k,w)$, for diminishing WA scenarios in (

**a**) Case 02b and (

**b**) Case 02c. The lines denote the characteristic scales described for Case 02a in Figure 6b.

**Figure 11.**One quadrant (${Q}_{++}$) of the wave-number–angular-frequency 2D turbulent spectrum ${E}_{{u}_{R}^{\prime}{u}_{R}^{\prime}}(k,w)$ for Case 02c. The lines denote the characteristic scales described in Figure 6.

**Figure 12.**Spectral valley (dashed) and ridges (dotted), observed in the 2D turbulent spectra of Case 01 in Figure 6. Here adapted: axes and color ranges.

**Table 1.**Staring mode scans for Case 01 (f-LOS 01) and Cases 02[a–c] (f-LOS 02); and PPI mode scans for the reconstruction of the wind speed (WS) and wind direction (WD). The elevation angle is $\theta =$ 0° and the gate length ${L}_{\gamma}=$ 25 m.

Scan | ${\mathit{\varphi}}_{\mathit{L}}$ | Rot. Speed | Gate Spacing | First Gate | Last Gate | Acc. Time | Duration |
---|---|---|---|---|---|---|---|

(°) | (°s${}^{-1}$) | (m) | (km) | (km) | (s) | (s) | |

f-LOS 01 | 221.8 | 0 | 10 | 1.00 | 2.00 | 1.00 | 600 |

f-LOS 02 | 221.8 | 0 | 10 | 0.75 | 1.75 | 0.25 | 600 |

PPI | [154–199] | 3 | 25 | 0.50 | 1.75 | 1.00 | 16 |

**Table 2.**Summary of the wind parameters for each test case. Date and time; f-LOS total average radial wind speed (RWS) ${U}_{R}$, wind direction (WD), turbulence intensity (TI), air–sea temperature difference $\Delta T$, and the bulk Richardson number $Ri{}_{b}$.

Case ID | Day | Start Time | ${\mathit{U}}_{\mathit{R}}$ | WD | TI | $\mathit{\Delta}\mathit{T}$ | $\mathbf{Ri}{}_{\mathit{b}}$ |
---|---|---|---|---|---|---|---|

(UTC) | (m s${}^{-1}$) | (°) | (%) | (°C) | (Stability) | ||

01 | 12 November 2020 | 11:10:32 | 4.12 | 212 | 8.6 | 1.4 | 0.04 (Stable) |

02a | 4 November 2020 | 07:10:24 | 4.29 | 60 | 10.0 | −6.2 | −0.17 (Unstable) |

02b | 4 November 2020 | 19:41:19 | 5.31 | 51 | 13.7 | −4.6 | −0.09 (Unstable) |

02c | 5 November 2020 | 04:44:30 | 6.93 | 56 | 12.1 | −7.2 | −0.08 (Unstable) |

**Table 3.**Summary of the sea-state parameters for each test case. Wave age (WA); significant height ${H}_{s}$, wave peak period ${T}_{p}$ and length ${L}_{p}$, phase and group velocities ${c}_{p}$ and ${c}_{g}$, mean wave direction ${\alpha}_{w}$, and directional spreading ${\beta}_{w}$.

Case ID | WA | ${\mathit{H}}_{\mathit{s}}$ | ${\mathit{T}}_{\mathit{p}}$ | ${\mathit{L}}_{\mathit{p}}$ | ${\mathit{c}}_{\mathit{p}}$ | ${\mathit{c}}_{\mathit{g}}$ | ${\mathit{\alpha}}_{\mathit{w}}$ | ${\mathit{\beta}}_{\mathit{w}}$ |
---|---|---|---|---|---|---|---|---|

(m) | (s) | (m) | (m s${}^{-1}$) | (m s${}^{-1}$) | (°) | (°) | ||

01 | 3.0 | 1.3 | 10.1 | 127 | 12.5 | 9.4 | 241 | 26 |

02a | −3.1 | 1.0 | 13.5 | 181 | 13.5 | 11.4 | 247 | 30 |

02b | −2.5 | 0.7 | 13.2 | 177 | 13.4 | 11.3 | 249 | 46 |

02c | −1.9 | 0.6 | 12.5 | 166 | 13.3 | 11.0 | 219 | 71 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Paskin, L.; Conan, B.; Perignon, Y.; Aubrun, S.
Evidence of Ocean Waves Signature in the Space–Time Turbulent Spectra of the Lower Marine Atmosphere Measured by a Scanning LiDAR. *Remote Sens.* **2022**, *14*, 3007.
https://doi.org/10.3390/rs14133007

**AMA Style**

Paskin L, Conan B, Perignon Y, Aubrun S.
Evidence of Ocean Waves Signature in the Space–Time Turbulent Spectra of the Lower Marine Atmosphere Measured by a Scanning LiDAR. *Remote Sensing*. 2022; 14(13):3007.
https://doi.org/10.3390/rs14133007

**Chicago/Turabian Style**

Paskin, Liad, Boris Conan, Yves Perignon, and Sandrine Aubrun.
2022. "Evidence of Ocean Waves Signature in the Space–Time Turbulent Spectra of the Lower Marine Atmosphere Measured by a Scanning LiDAR" *Remote Sensing* 14, no. 13: 3007.
https://doi.org/10.3390/rs14133007