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Abstract: On 24 August 2016, the M 6.2 Amatrice earthquake struck central Italy, well-known as
a seismically active region, causing considerable damage to buildings in the town of Amatrice
and the surrounding area. Damage from this earthquake was assessed quantitatively by means
of multitemporal synthetic aperture radar (SAR) coherence and SAR intensity methods using
dual-polarized SAR data obtained from the Sentinel-1 (VV, VH) and ALOS-2 (HH, HV) satellites.
We developed linear discriminant functions based on three items: (1) the differential coherence values;
(2) the differential backscattering intensity values of pre- and post-event images; and (3) a binary
damage map of the optical pre- and post-event imagery. The accuracy of the proposed model was
84% for the Sentinel-1 data and 76% for the ALOS-2 data. The damage proxy maps deduced from the
linear discriminant functions can be useful in the parcel-by-parcel assessment of building damage
and development of spatial models for the allocation of urban search and rescue operations.

Keywords: Amatrice earthquake; synthetic aperture radar; dual-polarization; building damage;
multitemporal analysis

1. Introduction

A powerful earthquake usually starts suddenly and without warning. Ground shaking after
a powerful earthquake is extremely destructive, and can cause affected buildings to collapse.
Conventional inspection conducted on the ground is an accurate way to understand the resulting
damage; however, this method has some drawbacks. For instance, when large areas are affected, it can
be difficult to obtain information on the number of damaged buildings through ground inspection
in the period immediately after an earthquake. People trapped in collapsed buildings can generally
survive for only about 48 h after an earthquake, so a rapid assessment of the damage to buildings is
necessary [1,2]. For a better post-earthquake response, immediate decisions must be taken based on the
severity of damage to the buildings affected; however, blocked roads and insufficient information about
the spatial distribution of damage can hinder rescue operations in the first hours after an earthquake.

In the last decade, increasing use has been made of remote-sensing data to assess the damage
caused by earthquakes, floods, and other disasters [1–4]. In particular, space-borne remote sensors,
including optical or synthetic aperture radar (SAR) devices, permit the inspection of large areas at costs
that are affordable for various institutes and organizations. The re-inspection intervals of such satellites
are becoming increasingly shorter as new missions with different orbital altitudes are launched, and
the use of auxiliary satellites increases. For instance, the two Sentinel satellites (Sentinel-1A and
Sentinel-1B), launched as part of the European Union’s Copernicus program, will be able to gather
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information from the entire surface area of the Earth within a period of six days, demonstrating the
enormous potential of space-borne imaging as a technique for disaster monitoring.

Very-high-resolution (VHR) optical data can give us information about the status of building roofs
and the presence of debris. However, the particular characteristics of urban building materials are
frequently reflected as complexity in optical data remotely sensed over towns and cities [5]. This means
that, although VHR optical data gathered from both nadir-looking and side-looking sensors are useful
for the characterization of various classes of damage (e.g., light destruction, moderate destruction,
heavy destruction, or collapse) or the lack of damage to buildings, such data are not effective in
permitting a rapid response. The different materials produce a wide variation of spectral responses in
VHR optical images, potentially leading to chaotic interpretation and an inability to assess damage in
an area by means of rapid visual inspection. In addition, weather conditions, such as the presence of
clouds (e.g., in equatorial regions) or dust (e.g., in dry regions), can hamper optical imaging.

For SAR systems, on the other hand, the impact of various types of material is limited, and the
spectral responses can show where the extent of damage is high or low [5]. In addition, SAR imaging is
unaffected by weather conditions, and SAR images can be captured during either daytime or nighttime.
Various methods have been proposed for using SAR data to detect damage to buildings [6,7]. Generally,
SAR damage assessment is performed by one of two main methods, the first based on the SAR intensity
and the second on the SAR coherence. In both methods, the geometry of the SAR images (e.g., the
angle of incidence, the track number, or the imaging mode) has to remain constant. The SAR intensity
method involves comparing images recorded before and after the event, and relies on differences in
the backscattering intensity and in intensity correlation coefficients to identify regions with potential
damage. Matsuoka and Yamazaki [8] showed that two sets of data acquired by the European Remote
Sensing (ERS) satellite before and after the Kobe earthquake of 1995 showed a significant decrease in
the backscattering coefficient and a lower correlation coefficient for the intensity in areas of severe
damage. This method has been applied to the assessment of building damage for other earthquakes,
such as the Bam earthquake of 2004 with data from ENVISAT ASAR, and the Haiti earthquake of 2010
with the TerraSAR-X data [9,10]. In the case of the Bam earthquake, the results were obtained only
for groups of neighboring buildings, due to the coarser resolution of the SAR data (>10 m). However,
in the more-recent Haiti earthquake, the use of sub-10 m VHR images from the TerraSAR-X satellite
permitted the assessment of damage to individual buildings [10].

The second method (the SAR coherence method) is also based on pre- and post-event SAR images,
and it relies on the correlation between interferometric phase measurements. Fielding et al. [11]
developed a multitemporal method for mapping building damage in the city of Bam from differences
in interferometric coherence (pre-disaster coherence and co-disaster coherence) of the data from
ENVISAT ASAR. The method has also produced successful results with other earthquakes, such as the
Gorkha earthquake (2015), where data from COSMO–SkyMed and ALOS-2 SAR were used [12].

Both the SAR intensity method and the SAR coherence method have advantages and shortcomings.
In the SAR intensity method, backscattering data for the Earth’s surface are incompletely controlled
by the satellite geometry, wavelengths, and acquisition duration, whereas in the SAR coherence
method, data are highly dependent on the similar factors to give precise interferometric results [13,14].
However, under ideal geometric conditions, the performance of the SAR coherence method is superior
in terms of its ability to classify buildings as damaged or intact [15]. Overall, for larger spatial and
temporal baselines, the SAR coherence method provides additional information to that obtainable
by optical imaging alone; moreover, it also provides a higher accuracy in terms of the assessment of
building damage. On the other hand, for larger spatial baselines, SAR intensity data provide reliable
information on ground changes [6]. An assessment of the results from most previous studies indicates
that regardless of the location of the urban area, a combination of the SAR intensity and SAR coherence
methods can markedly increase the overall accuracy [16–19].

The first multipolarized SAR data were obtained after the launches of the ENVISAT, ALOS-1, and
RADARSAT-2 satellites. However, previous studies generally focused on the use of single-polarized
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data, and the capabilities of various combinations of SAR polarizations in the field of earthquake
engineering have not been sufficiently investigated in relation to the assessment of damage to buildings.
The full-polarization mode has been suggested as a practical method for detecting damage to buildings,
because various items of information can be derived from it [20,21]. A marked improvement of the
detection of urban damage was achieved by examining the polarimetric coherence between RR and LL
circular polarization in fully polarized SAR after the Tohoku earthquake of 2011 [22]. Note, however,
that fully polarized data are more rarely available than single- or dual-polarized data. Dual polarization
is probably a better tool than single polarization for observing damage ratios, because it can improve
the quality of deduced phase and intensity information, despite the noise created by satellite systems,
which inherently limits the capability of dual-polarized SAR images in terms of the segregation of
collapsed buildings.

In this study, we examined ways of using a combination of multitemporal VV + VH (Sentinel-1)
and HH + HV (ALOS-2) SAR images to improve the accuracy of building-damage detection in the
town of Amatrice in central Italy, struck by an earthquake on 24 August 2016. A combination of SAR
intensity and SAR coherence methods was applied by using the absolute value of the mean difference
of coherence (|c|) and the absolute value of the mean difference of the backscattering intensity (

∣∣∣d∣∣∣) for
each dataset. The linear discriminant functions (z) from two independent tests and a dependent binary
damage map were extracted to provide final damage proxy maps (DPMs). The DPMs demonstrate
that in the collapsed buildings, the z values were considerably higher, but their use in identifying
‘slightly damaged’ buildings was limited due to the complex relationships between the SAR data and
existing scales for grading building damage, such as the European Macroseismic Scale 98 (EMS-98).
From the DPMs, some ambiguities regarding the presence of high z values in areas of ‘no damage’
have been addressed. Additionally, a correlation between the DPMs and the topography is presented
for the narrow Amatrice valley.

2. Study Area and SAR Data

The M 6.2 Amatrice earthquake struck central Italy at 13:36 GMT on 24 August 2016, resulting in
299 fatalities and injuries to about 400 people, mostly in Amatrice, a small historic town almost 15 km
from the epicenter. Seismological records from the Italian network showed that the precise location
of the earthquake was near the small town of Accumoli in the Rieti province [23,24]. Damage also
occurred in several other provinces, such as Perugia, Ascoli Piceno, and L’Aquila. The calculated focal
mechanism of the main event was in agreement with the tectonic settings of the region for a normal
faulting. The maximum reported peak ground acceleration (PGA) was 0.42 g at the epicenter (Figure 1),
and this earthquake was one of the largest experienced in the Abruzzo region since the well-known
L’Aquila earthquake of 2009 [23]. After the main shock, the number of recorded aftershocks also
increased until the end of October 2016. The spatial distribution of the aftershocks had a NW–SE trend,
with a 40 km radius, and these were eventually followed by another strong earthquake on 30 October
2016 (M 6.5 at 6:40 GMT) (Figure 1) [24]. The EMS-98, including five damage levels (slight damage,
moderate damage, heavy damage, very heavy damage, and destruction) has been defined for field
classification. Since the identification of level 1 to 4 from satellite imagery is challenging, these levels
have been considered as “unsatisfactory” or “no damage” classes in a binary map. Thus, among the
322 recognized buildings in the town of Amatrice, 113 were shown as having collapsed in a binary
map (0 = ‘no damage’; 1 = ‘collapsed’), derived from a manual inspection of high-resolution pre-event
(21 May 2016) and post-event (25 August 2016) optical images, acquired by DigitalGlobe’s WorldView
satellites (Figure 2). Most of the collapsed buildings were located in the older western part of the
town. Most of the historic and traditional buildings in the town were constructed from bricks and
rubble stones of irregular shape and size, and these tended to disintegrate due to the presence of
insufficient amounts of mortar [24]. In addition, some of those masonry buildings had been modified
in recent years (e.g., by the insertion of terraces or by increasing the number of floors); these modified
buildings could be visually identified because of the presence of buildings materials that differed
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from the original ones. According to the EMS-98 classification, such buildings are the most vulnerable
class of vertical structures (group A) [25]. The Prompt Assessment of Global Earthquake for Response
(PAGER) system for fatality and economic loss impact estimation following significant earthquakes
also estimated that approximately 19,000 people experienced MMI (Modified Mercalli Intensity) VIII,
and 145,000 people experienced MMI VI [26]. The perceived intensity in some parts of the study region
was VIII, which means that severe damage to large numbers of old and traditional buildings is to
be expected.
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The Sentinel-1 (A) is a C-SAR (λ = 5.6 cm) satellite that began operation on 3 April 2014, with a
revisit interval of 12 days, for a wide range of uses. It has four different imaging modes: Stripmap
(SM), Interferometric Wide Swath (IW), Extra-Wide Swath (EW), and Wave (WV). Among these modes,
SM, IW, and EW can be used for damage monitoring. These three modes are available with single
(HH or VV) or dual polarization (HH, HV or VV, VH), whereas WV is only available with single
polarization. The SM mode provides a higher spatial resolution (5 m × 5 m) for emergency events
in limited cases, whereas IW, which has a slightly coarser spatial resolution (5 m × 20 m), is used for
normal purposes, ranging from land management to natural-disaster monitoring. The EW mode of
Sentinel-1 also has a coarser spatial resolution (20 m × 40 m), but it provides a wider width (~400 km)
than IW (~250 km), which can be used for coastal monitoring and ship tracking, but is less useful in
damage monitoring because of its extremely large size. We obtained three level-1 single-look complex
(SLC) images in the IW mode, which contained SAR data and orbit and attitude information in a
slant range geometry. All the images were from descending orbits, with a dual-polarization mode
(VV, VH) for each frame. The angle of incidence for the acquired images was 39.4◦, and the absolute
differences in the angles of incidence (|∆θ|) for the pre-seismic and co-seismic interferometric pairs
were 0.002◦ and 0.009◦, respectively. The temporal gap between the master image (9 August 2016)
and the slave images (4 July 2016 and 2 September 2016) was relatively short, and all images were
obtained during the summer season. Some effects that might decrease the correlation between a
pre-seismic pair and a co-seismic pair, such as the presence of snow or differences in the density and
height of vegetation, can be assumed to have constant values when the temporal gap between the
master and slave images is short. Along with the Sentinel-1 SAR images, three ALOS-2 (PALSAR-2)
images were also acquired from the ALOS-2 satellite, equipped with an L-band (λ = 22.9 cm) SAR
sensor. This satellite was launched by the Japan Aerospace Exploration Agency (JAXA) on 24 May
2014. The revisit interval of this satellite is 14 days, and it has three imaging modes that can be chosen
to maximize the effectiveness of SAR monitoring according to the particular objective. The imaging
modes are as follows: Spotlight (SPT), a high-resolution mode; Stripmap (SM), a medium-resolution
mode, and ScanSAR (WD), a low-resolution mode with a broad coverage. The SPT mode, which
has a fine spatial resolution of between 1 m and 3 m, is not yet widely available. However, the
SM mode, for studying various deformations, including structural damage, is available with three
different beams: SM1 (3 m), SM2 (6 m), or SM3 (10 m). We obtained three SM3 images, two of which
were pre-seismic and one post-seismic. All images were from descending orbits (path 92) with a
dual-polarization mode (HH + HV) for each frame. However, the temporal baselines between the
master image (25 May 2016) and the slave images (16 March 2016 and 31 August 2016) were longer for
both the ALOS-2 interferometric pairs than were those for Sentinel-1. However the normal baselines
were not greatly different, indicating that the spatial decorrelation for both datasets should be similar.
In addition, with an incidence angle of 36.2◦, and rather small |∆θ| values for both pre-seismic and
co-seismic pairs (0.011◦ and 0.009◦, respectively), the images were potentially suitable for coherence
generation. See Table 1 for the relevant SAR data parameters. In this paper, all SAR data (Sentinel-1
or ALOS-2) were obtained before the second main shock on 30 October 2016. The results therefore
show the damage consequences of the Amatrice earthquake of 24 August 2016. Figure 3 shows the
co-seismic tear-shaped interferograms stretched 20 km in the NNW direction for both the Sentinel-1
and ALOS-2 datasets. The number of fringes in the Sentinel-1 interferogram is higher than that in
the ALOS-2 interferogram, due to C-band inherency. However, in both cases the main displacement,
calculated from the interferograms for the town of Accumoli (near to the epicenter), reached about
25 cm in the satellite’s line of sight (LOS) direction.
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Table 1. Detailed SAR information used for this study. θ, B, and T are the incidence angle, normal
baseline, and temporal baseline, respectively.

Sensor Mode Date (yyyy/mm/dd) θ (◦) Polarization Pass Direction B (m) T (Days)

Sentinel-1 (C-band) IW 4 July 2016 39.4 VV/VH D 138 36
Sentinel-1 (C-band) IW 9 August 2016 39.4 VV/VH D 0 0
Sentinel-1 (C-band) IW 2 September 2016 39.4 VV/VH D 38 24
ALOS-2 (L-band) SM3 16 March 2016 36.2 HH/HV D −142 70
ALOS-2 (L-band) SM3 25 May 2016 36.2 HH/HV D 0 0
ALOS-2 (L-band) SM3 31 August 2016 36.2 HH/HV D −88 98

3. Methodology

Mapping of building damage can be performed by ground inspection, by remote sensing, or by an
integrated method. The information gathered on damaged buildings from the field is accurate, because
of the logical fit between the observations and damage grades of the standard codes. However, the level
of damage as assessed from space in terms of earthquake-engineering definitions is bothersome and
complex. Thus, the “detecting damage” in this study is not necessarily the actual damage, it is
just identified as the collapse-to-not collapsed state based on our knowledge from SAR and optical
imagery. This problem is particularly acute for light and moderate grades of damage, because cracks
in walls or joint detachments can be invisible or undetectable in satellite imagery. However, this might
not be too important from the viewpoint of disaster mapping and site reconnaissance, because the
population of highly damaged buildings needs to be evaluated first. Under these circumstances, the
efficiency of remote sensing by using SAR data, especially from different sensors and with different
polarizations, has advantages over ground-based methods. Nevertheless, there is no straightforward
SAR method that meets the needs of users or strategy makers. The existing methods vary from
region to region, due to differences in local parameters such as vegetation, topography, or building
performance [7,8,11,18,22,27]. None of the studies discussed in Section 1 has focused on a combination
of dual-polarized SAR intensity and dual-polarized SAR coherence together with discriminant analysis.
Here, we combine all of these datasets with the aim of developing robust DPMs that provide a rapid
and pragmatic method for damage assessment, even for areas with incomplete building inventories.

3.1. SAR Intensity and SAR Coherence

The intensity values were derived from Sentinel-1 and ALOS-2 SLC images, and were then
converted into backscattering coefficients. Despeckling or reduction of signal-corrected noise was
carried out by applying a multiplicative noise model in 5 × 5 window sizes for all the images [28].
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Because the differential backscattering values were to be integrated with the relative differential
coherence map, all the values had to be normalized. As shown in Figure 4, in the pre-seismic intensity
images from both Sentinel-1 (VV, VH) and ALOS-2 (HH, HV), it can be concluded that strong reflections
in the built-up areas (white pixels within the red boundary) are related to a double-bounce pattern
of SAR backscattering ratios between the Earth’s surface and undamaged buildings in Amatrice.
It is obvious that the number of white pixels is higher in the Sentinel-1 intensity maps (Figure 4a–d).
This frequently happens as a result of the C-band’s lower penetration capability and volumetric
scattering over vegetation canopies.
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The characteristics of the damage were calculated from the absolute value of the difference in
intensity between the master and slave (post-event) images for each sensor, as follows:

|d| =
∣∣∣10· log

(
Iai
)
− 10· log

(
Ibi

)∣∣∣ (1)

∣∣∣d̂i

∣∣∣ = |di| −min (|di|)
max(|di|)−min(|di|)

(2)

∣∣∣d∣∣∣ =
∣∣∣d̂1

∣∣∣+ ∣∣∣d̂2

∣∣∣
2

(3)

Here, |d| is the absolute value of the difference in the backscattering coefficient; Iai and Ibi are the
pixel values for the pre-event and post-event images, respectively;

∣∣∣d̂i

∣∣∣ is the normalized difference

in the backscattering coefficient for two different polarizations of the same sensor; and
∣∣∣d∣∣∣ is the

absolute value of the mean difference in the backscattering coefficient for two different polarizations
(dB). Note that in this step, only the differential backscattering of the pre-event and post-event with
the shortest temporal baseline were taken into account, and the far temporal baselines were ignored.
However, the values of

∣∣∣d∣∣∣ for both Sentinel-1 and ALOS-2 did not match well with the reference
binary map. Generally, higher values should represent damaged buildings, but high values were not
observed in damaged areas exclusively, which means that the shapes of buildings (e.g., flat or gabled
roofs) also affected the backscattering values [5]. With a lack of a building inventory, the number of
buildings misclassified by a method based exclusively on intensity will be high. Therefore, it was
reasonable to proceed through an integrated method that uses both intensity and coherence.
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We calculated the interferometric correlations, which are a measure of the SAR reflection from
the surface. Simply put, the interferometric correlation characterizes the amount of coherency of the
complex phase signal of two SAR images at any given place. The complex correlation (γ) inherently
varies from 0 to 1, and also provides a measure of the quality of the interferograms. It can be defined
as follows:

γ =
E〈ab∗〉√

E〈aa∗〉E〈bb∗〉
(4)

Here, a and b are the relative complex values for the first and second images in the interferometric
analysis, a∗ and b∗ are the complex conjugates of the images used, and E is the expected value.
Areas with high coverages of vegetation usually lose coherence due to short-term effects, such as wind,
or long-term effects, such as the growth of leaves, whereas in urban regions, coherence is maintained.
Consequently, coherence also identifies urban and nonurban regions as a first-order outcome. Here,
we used a multitemporal interferometric coherence-change technique with two pairs: one pair to
generate a coherence map before the earthquake (two pre-event images), and another pair to generate
a co-seismic coherence map (one pre-event image and one post-event image). Decorrelation aspects
due to topographic phases were removed by using the 1-arcsec digital elevation model (DEM) of the
Shuttle Radar Topography Mission (SRTM). Although the small window size reduced the effects of the
phase gradient, it might, nevertheless, also have been the cause of wrong coherence values, especially
in areas with a low correlation [29]. Despite this, we applied the same window size to that which we
used in the previous method and, to execute a fair analysis, we assumed the grid sizes to be equal,
regardless of the different spatial resolutions of the images used. The coherence maps were resampled
and then geocoded by using the DEM so that the pre-event and co-seismic maps could be compared
pixel-by-pixel. Figure 5 shows the pre-event and co-seismic coherence maps for Sentinel-1 (Figure 5a–d)
and ALOS-2 (Figure 5e–h). In the pre-event maps, regardless of their polarization (Figure 5a,c,e,g),
the white pixels homogeneously represent the stability of the built-up area over the town, whereas in
the co-seismic maps (Figure 5b,d,f,h) the stability shows perturbations; in particular, the NW part of
the town showed significant decorrelation. A decrease in coherence (dark pixels) manifests itself as an
indicator of changes that can be used as an indicator for damage assessment. In all the co-seismic maps,
the group of buildings with detected damage runs almost from the northwest to the southeast of the
town. However, it must be noted that a decrease in coherence also can be observed in nonurban areas,
probably as a result of small agricultural changes or changes in vegetation. The generated coherence
maps from different polarizations (i.e., VV, VH for Sentinel-1 and HH, HV for ALOS-2) contributed to
the calculation of the absolute value of the mean difference in coherence as follows:

|c| =
∣∣γpre − γco

∣∣ (5)

|ĉi| =
|ci| −min (|ci|)

max(|ci|)−min(|ci|)
(6)

|c| = |ĉ1|+ |ĉ2|
2

(7)

Here, |c| is the absolute value of the differential coherence, |ĉi| is the normalized difference
coherence, and |c| is the absolute value of the mean difference in coherence from two different
polarizations. This procedure leads to two damage indicators (|cSentinel−1| and |cALOS−2|). In the
individual coherence maps (γi), the number of damaged buildings can be estimated or distinguished by
using a threshold value. As shown in Figure 6, 0.5 was assigned as the threshold value. The pre-event
coherence charts (Figure 6a,c,e,g) are tight, whereas their corresponding co-seismic coherence charts
(Figure 6b,d,f,h) are shifted and stretched toward lower values. However, the numbers of misjudged
buildings in the pre-event VV and HH maps (γVV_Sentinel−1 and γHH_ALOS−2) are lower than in the
pre-event VH and HV maps (γVH_Sentinel−1 and γHV_ALOS−2). The mean coherence pixel values over
the town for the pre-event VV and HH maps are 0.61 and 0.63, respectively. The values for the
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corresponding VH and HV maps are 0.53 and 0.54, respectively, showing that the HH and VV maps are
the optimal coherence maps and are more sensitive indicators. Accordingly, in the weighting process
before the discriminant analysis, VV and HH should earn higher weights than VH and HV. The revised
mean difference coherence value (|cr|) from two different polarizations is defined as follows:

|cr| = 0.6|ĉVV,HH |+ 0.4|ĉVH,HV | (8)
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The value of |cr| is controlled by the phase differences of different SAR acquisitions, which is
related to the changes caused by damage. On the other hand,

∣∣∣d∣∣∣ is controlled by the power of the
scattering coefficient (intensity) between two acquisitions, but the damage signals are contaminated
by other time-related changes. Figure 7 show a comparison of the absolute mean difference intensity
and the absolute mean difference coherence between 0 and 1 classes. Each blue (no damage) or red
(collapsed) circle indicates the mean values of the individual building, and the black solid point is
the corresponding average value with the standard deviation of indices. The damage grade in the
coherence maps is stated more clearly. Thus, their contribution in the DPM is higher than that of
the intensity maps. However, it must be noted that the building footprints are better identified in
the

∣∣∣d∣∣∣ maps. The values of |cr| (black circles) in Figure 7a,c are 0.135 and 0.134, respectively, which



Remote Sens. 2017, 9, 330 10 of 17

are markedly lower than those for the collapsed buildings, which are 0.333 and 0.334, respectively
(Figure 7b,d). Because of the different natures of |cr| and

∣∣∣d∣∣∣, the results from single models are
unsatisfactory. In the next subsection, we develop a new discriminant indicator that uses both

|cr| and
∣∣∣d∣∣∣, and we examine how much the new score can boost the accuracy of assessment of

damaged buildings.
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3.2. Discriminant Analysis and Damage Proxy Maps

A discriminant analysis according to two independent tests (
∣∣∣d∣∣∣ and |cr|) and one binary map

was carried out to differentiate collapsed buildings from other buildings. Note that the binary map of
Amatrice shows two classes: 0 is ‘no damage’ buildings, and 1 is ‘collapsed’ buildings. This map is
provided from high-resolution optical imagery, and does not imply that the ‘no damage’ buildings are
intact buildings. Thus, in the discriminant analysis, 0 means ‘unsatisfactory’ and 1 means ‘satisfactory’.
The number of buildings in the binary map is 322, of which 209 are classed as 0, and 113 are classed
as 1. We predicted new scores based on the sorted binary map for both the Sentinel-1 and ALOS-2 data.
Discriminant analysis is closely related to linear-regression analysis, which characterizes two or more
classes of objects. We regressed independent variables on the dependent variable and we assigned a
value based on the location of the centroids of the buildings. Table 2 shows the details of the regression
analysis. The discriminant score (z) can be calculated as follows:

zi = α
∣∣∣di

∣∣∣+ β|cri| (9)

Here, i is the number of buildings, zi is the predicted value for each individual building, and
α and β are the regression coefficients for

∣∣∣d∣∣∣ and |cr|, respectively. The zi values can be interpreted
as the probabilities of being within the group. Simply put, they are first-order indicators of the
damaged buildings, to define a threshold between the binary groups. Defining a simple threshold
as a median value, as we did in Section 3.1, is too simplistic. Thus, the cutoff between ‘no damage’
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and ‘collapsed’ classes should be calculated. This can be calculated on the basis of the number of ‘no
damage’ and ‘collapsed’ buildings from the binary map and from their corresponding discriminant
score (z), as follows:

t =
n0z0 + n1z1

n0 + n1
(10)

Here, t is the cutoff value, n0 and n1 are the numbers of ‘no damage’ and ‘collapsed’ buildings,
respectively, and z0 and z1 are the averaged discriminant scores for ‘no damage’ and ‘collapsed’
classes, respectively. The calculated cutoff values for Sentinel-1 and ALOS-2 were 0.350 and 0.352,
respectively. Generally the buildings in Group 0 have lower z values than buildings in Group 1.
If zi ≤ t, we classify building i as ‘no damage’ and if zi ≥ t, building i is classified in the ‘collapsed’
group. We can compare the predicted dependent values with the actual binary map to determine the
rate of misclassification. The number of misclassified buildings for the Sentinel-1 and ALOS-2 datasets
were 52 and 77, respectively. In the Sentinel-1 dataset, the total numbers of buildings classified as
‘no damage’ and ‘collapsed’ were 171 and 99, respectively, and the accuracy of classification of the
buildings as ‘no damage’ or ‘collapsed’ was 81% and 87%, respectively. In the ALOS-2 dataset, the
total numbers of buildings classified as ‘no damage’ and ‘collapsed’ were 157 and 88, respectively,
and the accuracy of classification of the buildings as ‘no damage’ or ‘collapsed’ was 74% and 77%,
respectively. Furthermore, the overall accuracy for the Sentinel-1 and ALOS-2 datasets was 84% and
76%, respectively. In addition, it must be mentioned that the accuracy of the single-polarization method
was lower than that of the current procedure. The overall accuracies of discriminant analysis for single
polarizations VV and VH (Sentinel-1) were 77% and 81%, respectively, and for HH and HV (ALOS-2),
they were 75% and 72%, respectively.

Table 2. Regression statistics of independent variables (
∣∣∣d∣∣∣ and |cr| ) and the binary map for Sentinel-1

and ALOS-2 datasets.

Sentinel-1 ALOS-2

Number of buildings 322 Number of buildings 322
R Square 0.433 R Square 0.306

Multiple R 0.658 Multiple R 0.553
Standard error 0.360 Standard error 0.399

Intercept coefficient −0.052 Intercept coefficient −0.012
α −0.383 α −0.641
β 2.209 β 1.866

Cutoff point 0.350 Cutoff point 0.352

By using both the Sentinel-1 and ALOS-2 datasets, the accuracy of classification of the buildings
as ‘collapsed’ was higher than that of the classification of the buildings as ‘no damage’, indicating that
the discriminant analysis according to the binary maps was more successful (Tables 3 and 4). On the
other hand, the results can be interpreted as showing that the ability of the discriminant analysis in
areas with a ‘slightly damaged’ ranking is limited. Despite the finer resolution of the ALOS-2 data, the
Sentinel-1 dataset showed a better performance, which is not surprising, as the latter had a shorter
temporal baseline. Figure 8 shows the distance of each building in Amatrice from the epicenter of the
earthquake, together with the relevant discriminant score. The average value and standard deviations
(solid black circles and error bars) of the ‘no damage’ class in Figure 8b,d are lower than the relevant
actual z values for the binary map (Figure 8a,c). However, this trend is not observed for ‘collapsed’
buildings (red circles). The trends for both actual classes (Figure 8a,c) and for the discriminated classes
(Figure 8b,d) show that the z values slightly decrease for those buildings that are located farther from
the epicenter. This might occur for two main reasons: first, the quality of each individual building and
the corresponding site conditions, which are unknown in this study, or secondly, attenuation of the
earthquake waves in more-distant positions.

Once the relationship between the two tests (
∣∣∣d∣∣∣ and |cr|) is established, the DPMs can be

developed by using the following equations, which are extracted from discriminant analyses:
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zSentinel-1 = −0.052− 0.383·
∣∣∣d∣∣∣+ 2.209·|cr| (11)

zALOS-2 = −0.012− 0.641·
∣∣∣d∣∣∣+ 1.866·|cr| (12)

By using a geographical information system (GIS)-oriented method, z raster maps were created
for Equations (11) and (12). The method permits the calculation of the DPMs for the region on the
basis of the existing raster pixel values of

∣∣∣d∣∣∣ and |cr|. Figure 9 shows the DPMs for Sentinel-1 and
ALOS-2 for Amatrice and its surrounding areas. The red pixels represent suspicious locations where
heavy destruction might have occurred, whereas the blue pixels can be interpreted as undamaged
areas. In the next sections, we discuss the vulnerability of the town and the accuracy of discriminant
analysis for single polarization. We also address some ambiguities in the building classification and
the suspicious areas shown in Figure 9 (Boxes 1 and 2).

Table 3. Accuracy of building classification according to the discriminant analysis and the binary map
for Sentinel-1 and ALOS-2 datasets.

Sentinel-1 ALOS-2

zi ≤ t 171 zi ≤ t 157
zi ≥ t 99 zi ≥ t 88

Misclassified 52 Misclassified 77
Total correct 270 Total correct 245

Total accuracy (%) 84 Total accuracy (%) 76
User’s accuracy (%) 86 User’s accuracy (%) 82

Producer’s accuracy (%) 88 Producer’s accuracy (%) 82

Table 4. Results of the accuracy assessment of different approaches.

Sentinel-1 Total Accuracy (%) ALOS-2 Total Accuracy (%)

Mean differential intensity approach (
∣∣∣d∣∣∣) 50 Mean differential intensity approach (

∣∣∣d∣∣∣) 44
Mean differential coherence approach (|c|) 78 Mean differential coherence approach (|c|) 70

Integrated approach (z) 84 Integrated approach (z) 76
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Figure 8. Comparison of the z discriminant score for each individual building and the corresponding
distance from the epicenter: (a) for actual classes of the Sentinel-1 dataset; (b) for discriminated classes
of the Sentinel-1 dataset; (c) for actual classes of the ALOS-2 dataset; (d) for discriminated classes of the
ALOS-2 dataset. The solid black circles are average values, and the error bars are standard deviations.
The black triangles in (b,d) are the cutoff points, deduced from relative discriminant analyses.
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4. Discussion

The area of land occupied by each of the buildings was extracted from the binary map. Figure 10a
shows that the majority of structures in the town (roughly 57% of all buildings) had areas of less than
300 m2. A comparison of the distribution of all buildings (Figure 10a) and ‘no damage’ buildings
(Figure 10b) revealed that the larger buildings (>500 m2) were mostly still standing, but that smaller
buildings showed extreme damage. The size of the observed collapsed buildings varied from 50 m2

to 500 m2, but most collapses occurred for buildings with an area of less than 100 m2, of which 50%
collapsed (Figure 10c). Many of these buildings were made of brick and stone. According to the EMS-98
building classification, they fell into Class A, which corresponds to the most vulnerable structures.
The physical appearance of some of these buildings had been modified or manipulated over a period
of years. These modifications, such as the cutting of openings in walls or the addition of terraces,
also jeopardized the integrity of the buildings. The high rate of destruction of these smaller buildings
shows that although retrofitting work had been done on some of these buildings, due to improper
methods and poor maintenance jobs, this failed in most cases [24].
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Figure 10. Histograms of the building area in Amatrice: (a) for total buildings; (b) for ‘no damage’
buildings; and (c) for ‘collapsed’ buildings.

As shown in Table 3 and Figure 11, some collapsed buildings were misclassified as ‘no damage’
buildings, and vice versa. We did not find any mismatches for small buildings (<200 m2) from the
Sentinel-1 DPM data, whereas in the ALOS-2 DPM data, a 39% misclassification of small buildings
located in the dense areas was observed. All the buildings misclassified in the Sentinel-1 DPM were
mid-size buildings (200–400 m2), whereas in the ALOS-2 DPM data, 40% of the misclassified buildings
were found, especially in the middle of the town. Due to the coarser resolution, bunches of pixels
with higher or lower z-values contaminate the neighboring individual pixels, which represent intact
buildings. Consequently, misclassifications generally occur for the medium-resolution images in
dense regions. A comparative study using other high-resolution (sub-meter) spotlight SAR data (i.e.,
TerraSAR-X and COSMO–SkyMed) with the current data should disclose new aspects of the damage.
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dataset; (c) Binary map produced from optical imagery.

Figure 12 shows a topographic profile (SRTM 30 m), with the aim of revealing any potential
correlations between the topography and DPMs. Due to the high sensitivity of DPMs over urban
regions, the A–A’ profile was only selected within Amatrice, with a sampling width of 50 m.
The location of the profile is shown in Figure 9. A comparison of the z-values and topography
suggests a reverse correlation, in which the z-value decreases with increasing height from west to
east. This means that the topography can be assumed to have an effect on the DPMs. It is probable
that in higher positions, the rate of erosion is lower and the soil type is coarser. With these conditions,
seismic wave amplification would be smaller, whereas at lower heights, it is likely that weak soils
containing finer grains are abundant. The z-values along the A–A’ profile from the Sentinel-1 and
ALOS-2 DPMs show good agreement; however, there are marked differences between them in some
areas. In the dense urban area, z-values from Sentinel-1 DPM are higher, whereas in the middle of the
town, where vegetation is dominant, the z-values are considerably higher in the ALOS-2 DPM. This is
mainly because of the wavelength characteristics of the C-band and L-band, which have different
permeabilities and permittivities over the various objects [27,30].
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30 m in red) along A–A’ shown in Figure 9.

Like differential coherence and intensity maps, the proposed DPMs in this study are also sensitive
to temporal changes on the Earth. Thus, the increases in z-values do not reflect structural deformations
exclusively. Unlike the former maps, they are not highly chaotic, and the higher values (red pixels)
can be easily identified by simple visual inspections. In both DPMs, we identified two regions with
mutually higher discriminant scores, which are shown by Boxes 1 and 2 in Figure 9. These regions
have a sparse built-up area, opening to flat fields or lawns. The first thought was that there might
be seasonal changes on the outskirts of the town. Figure 13 shows that despite the presence of some
building destruction in these regions, the major changes are related to human activities after the
earthquake. The presence of temporary shelters (containers, and Conex boxes) for homeless people
produced considerable changes in phase, and these were the main cause of decorrelation in the output
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maps. The discriminant functions and corresponding coefficients were adopted for the Amatrice
region to use the Sentinel-1 and ALOS-2 data. The results imply that the classification accuracy would
be improved by applying discriminant functions for the town and its surrounding area. However, they
are region-specific functions which are valid only for the study area. Transferability of the functions
for a larger area may reduce the capability of the DPMs. For other regions, the development of new
functions together with geological information can be applied.
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5. Summary and Conclusions

Overall, this study suggests that the integrated method that we used can differentiate collapsed
buildings from intact buildings with acceptable accuracy. Two different datasets from Sentinel-1 and
ALOS-2 sensors were used to show the capabilities of SAR data in the monitoring of building damage.
We proposed a new integrated method that uses dual-polarized data for either the SAR intensity or
multitemporal SAR interferometry procedures. We also applied additional filters to the SAR intensity
and SAR coherence results before developing the appropriate linear discriminant functions. Then,
three main components were quantitatively considered in the discriminant analysis: first, the revised
absolute mean differential coherence (|cr|); secondly, the absolute mean differential intensity (

∣∣∣d∣∣∣); and
thirdly, the binary map derived from optical imagery. Because the main SAR scattering mechanism
over the built-up areas is double-bounce scattering, the incorporation of SAR intensity and SAR
coherence for VV and HH polarizations resulted in higher values at an orientation angle (ϕ) near 0◦;
moreover, the incorporation of SAR intensity and SAR coherence for VH and HV polarizations also
resulted in higher values with ϕ ≥ 0◦ [31–33]. By incorporating different polarizations, the effect
of ϕ as an important parameter on both the building orientation and the power signature is taken
into account. The accuracy of single polarization VV and VH in the Sentinel-1 data is 77% and 81%.
Similar to Sentinel-1, the accuracy of single polarization HH and HV in the ALOS-2 data is 75% and
72%. The results showed that the incorporation of different polarizations improved the accuracy of
classification for both datasets, but this improvement was more apparent in the Sentinel-1 dataset.
The overall accuracies for the Sentinel-1 and ALOS-2 datasets were 84% and 76%, respectively. Despite
its lower spatial resolution, the Sentinel-1 dataset showed a better performance than the ALOS-2 data.
This might be related to the shorter temporal baseline of the Sentinel-1 dataset compared with that
of the ALOS-2 dataset, which manifests itself in the quality of the coherence maps. However, it must
not be forgotten that for satellites with longer revisit intervals, such as ALOS-2, the designated SAR
wavelength is longer (L-band) in comparison with the missions such as Sentinel-1, which has shorter
revisit intervals and, consequently, a shorter wavelength (C-band). This kind of designation will reduce
the disadvantage of missions with longer repeat cycles, but here the results imply that the temporal
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decorrelation plays an important role on the accuracy of discriminant analysis over built-up areas,
regardless of the wavelengths used. The results also suggest that the building size has no significant
impact on the accuracy of classification of the buildings. However, an increase in spatial resolution
would permit better characterization of the damaged buildings versus undamaged buildings, and
reduce relevant misclassifications. To meet this demand, the availability of ultrahigh-resolution SAR
images (spotlight SAR data), such as those from TerraSAR-X and COSMO–SkyMed, over the study area
must be examined. In addition, the contribution of other side-looking sensors, such as optical imagery
and pictometry, might also allow us to present more-relevant damage states, which are usually related
to the fronts and sides of buildings. These items can be complemented by ground truth information
for future validation works.
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