Diverse-Region Hyperspectral Image Classification via Superpixelwise Graph Convolution Technique
Abstract
:1. Introduction
1.1. Background
1.2. Previous Methods
1.3. Proposed Method
2. Method
2.1. Preliminary Works of Graph Convolution Techniques
2.2. Motivations of the Proposed DRHy Method
2.3. Proposed DRHy Method
2.3.1. Superpixel Segmentation and Dimensionality Reduction
2.3.2. Graph Construction
2.3.3. Spectral-Based Graph Convolution Framework and Pixel Backprojection
2.3.4. Diverse-Region Scheme
Algorithm 1 Proposed DRHy Method. | |
Input: The HSI data, true labels of the labeled data, and locations of the labeled and unlabeled data | |
1: | Perform PCA on the HSI data to obtain the first principal component by solving Equation (1); |
2: | for to V do |
3: | Employ ERS approach on the first principal component to segment superpixel regions by solving Equation (2); |
4: | Reshape the corresponding s-th superpixel cube of the original HSI data into a 2-D matrix ; |
5: | Use linear dimensionality reduction approach to extract main features by solving Equation (3); |
6: | Construct the graph according to the data matrix of each superpixel region via Equations (4)–(8); |
7: | for to Epoch Number do |
8: | Calculate the graph convolution via Equation (11); |
9: | Back-project to the pixel level via Equation (12); |
10: | Optimize the network parameters driven by the loss function in Equation (13); |
11: | ; |
12: | end for |
13: | ; |
14: | end for |
15: | Predict labels and take the majority voting to fuse the results of all the superpixel segmentaions via Equation (15); |
Output: The predicted labels. |
3. Experimental Results
3.1. Datasets
3.2. Classification Results and Discussion
4. Discussion
4.1. Discussion of the Proposed Method for One Region
4.2. Discussion of the Different Labeled Data
4.3. Discussion of Running Time
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fang, L.; Liu, G.; Li, S.; Ghamisi, P.; Benediktsson, I. Hyperspectral image classification with squeeze multibias network. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1291–1301. [Google Scholar] [CrossRef]
- Li, J.; Zhao, X.; Li, Y.; Du, Q.; Xi, B.; Hu, J. Classification of hyperspectral imagery using a new fully convolutional neural network. IEEE Geosci. Remote Sens. Lett. 2018, 15, 292–296. [Google Scholar] [CrossRef]
- Paoletti, M.; Haut, J.; Plaza, J.; Plaza, A. Deep learning classifiers for hyperspectral imaging: A review. ISPRS J. Photogramm. Remote Sens. 2019, 158, 279–317. [Google Scholar] [CrossRef]
- Xi, B.; Li, J.; Li, Y.; Song, R.; Xiao, Y.; Shi, Y.; Du, Q. Multi-Direction Networks with Attentional Spectral Prior for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Xi, B.; Li, J.; Li, Y.; Song, R.; Sun, W.; Du, Q. Multiscale Context-Aware Ensemble Deep KELM for Efficient Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5114–5130. [Google Scholar] [CrossRef]
- Kang, J.; Wang, Z.; Zhu, R.; Xia, J.; Sun, X.; Fernandez-Beltran, R.; Plaza, A. DisOptNet: Distilling Semantic Knowledge From Optical Images for Weather-Independent Building Segmentation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Kang, J.; Wang, Z.; Zhu, R.; Sun, X.; Fernandez-Beltran, R.; Plaza, A. PiCoCo: Pixelwise Contrast and Consistency Learning for Semisupervised Building Footprint Segmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10548–10559. [Google Scholar] [CrossRef]
- Ma, L.; Crawford, M.; Tian, J. Local manifold learning-based k-nearest neighbor for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4099–4109. [Google Scholar] [CrossRef]
- He, Z.; Shen, Y.; Zhang, M.; Wang, Q.; Wang, Y.; Yu, R. Spectral–spatial hyperspectral image classification via SVM and superpixel segmentation. In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Montevideo, Uruguay, 12–15 May 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 422–427. [Google Scholar]
- Haut, J.M.; Paoletti, M.E.; Plaza, J.; Li, J.; Plaza, A. Active learning with convolutional neural networks for hyperspectral image classification using a new bayesian approach. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6440–6461. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Gomez-Chova, L.; Munoz-Mari, J.; Vila-Frances, J.; Calpe-Maravilla, J. Composite kernels for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2006, 3, 93–97. [Google Scholar] [CrossRef]
- Li, W.; Chen, C.; Su, H.; Du, Q. Local binary patterns and extreme learning machine for hyperspectral imagery classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3681–3693. [Google Scholar] [CrossRef]
- Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3973–3985. [Google Scholar] [CrossRef]
- Wang, Y.; Loe, K.; Tan, T.; Wu, J. A dynamic hidden markov random field model for foreground and shadow segmentation. In Proceedings of the WACV, Breckenridge, CO, USA, 5–7 January 2005; pp. 474–480. [Google Scholar]
- Fauvel, M.; Benediktsson, J.A.; Chanussot, J.; Sveinsson, J.R. Spectral and spatial classification of hyperspectral data using svms and morphological profiles. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3804–3814. [Google Scholar] [CrossRef] [Green Version]
- Song, B.; Li, J.; Dalla Mura, M.; Li, P.; Plaza, A.; Bioucas-Dias, J.M.; Benediktsson, J.A.; Chanussot, J. Remotely sensed image classification using sparse representations of morphological attribute profiles. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5122–5136. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Tuia, D.; Mou, L.; Xia, G.-S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Deep learning for hyperspectral image classification: An overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhang, L.; Du, B. Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [Google Scholar] [CrossRef]
- Zhang, S.; Li, S.; Fu, W.; Fang, L. Multiscale Superpixel-Based Sparse Representation for Hyperspectral Image Classification. Remote Sens. 2017, 9, 139. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Dou, S.; Jiang, Z.; Sun, L. A Fast Dense Spectral–Spatial Convolution Network Framework for Hyperspectral Images Classification. Remote Sens. 2018, 10, 1068. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Peng, J.; Sun, W. Spatial–Spectral Squeeze-and-Excitation Residual Network for Hyperspectral Image Classification. Remote Sens. 2019, 11, 884. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhang, L.; Du, B. Spectral-Spatial Hyperspectral Image Classification with Superpixel Pattern and Extreme Learning Machine. Remote Sens. 2019, 11, 1983. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Ye, Y.; Li, X.; Lau, R.Y.K.; Zhang, X.; Huang, X. Hyperspectral image classification with deep learning models. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5408–5423. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 2094–2107. [Google Scholar] [CrossRef]
- Zabalza, J.; Ren, J.; Zheng, J.; Zhao, H.; Qing, C.; Yang, Z.; Du, P.; Marshall, S. Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging. Neurocomputing 2016, 185, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Paul, S.; Kumar, D. Spectral spatial classification of hyperspectral data with mutual information basd segmented stacked autoencoder approach. ISPRS J. Photogramm. Remote Sens. 2018, 138, 265–280. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, X.; Jia, X. Spectral–spatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Top. Appl. Earth Ob. Remote Sens. 2015, 8, 2381–2392. [Google Scholar] [CrossRef]
- Tan, K.; Wu, F.; Du, Q.; Du, P.; Chen, Y. A parallel gaussian-bernoulli restricted boltzmann machine for mining area classification with hyperspectral imagery. IEEE J. Sel. Top. Appl. Earth Obser. Remote Sens. 2019, 12, 627–636. [Google Scholar] [CrossRef]
- Zhou, X.; Li, S.; Tang, F.; Qin, K.; Hu, S.; Liu, S. Deep learning with grouped features for spatial spectral classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 97–101. [Google Scholar] [CrossRef]
- Mou, L.; Ghamisi, P.; Zhu, X.X. Deep recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3639–3655. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Kwon, H. Going deeper with contextual CNN for hyperspectral image classification. IEEE Trans. Image Process. 2017, 26, 4843–4855. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Du, S. Spectral–spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4544–4554. [Google Scholar] [CrossRef]
- Ma, X.; Jie, G.; Wang, H. Hyperspectral image classification via contextual deep learning. EURASIP J. Image Video Process. 2015, 2015, 20. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep convolutional neural networks for hyperspectral image classification. J. Sens. 2015, 2015, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Li, Y.; Zhang, Y.; Shen, Q. Spectral–spatial classification of hyperspectral imagery using a dual-channel convolutional neural network. Remote Sens. Lett. 2017, 8, 438–447. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, H.; Shen, Q. Spectral–spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sens. 2017, 9, 67. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Z.; Li, J.; Luo, Z.; Chapman, M. Spectral–spatial residual network for hyperspectral image classification: A 3-D deep learning framework. IEEE Trans. Geosci. Remote Sens. 2018, 56, 847–858. [Google Scholar] [CrossRef]
- Li, W.; Wu, G.; Zhang, F.; Du, Q. Hyperspectral image classification using deep pixel-pair features. IEEE Trans. Geosci. Remote Sens. 2017, 55, 844–853. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Zhang, L. Efficient superpixel-level multitask joint sparse representation for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5338–5351. [Google Scholar]
- Zhang, G.; Jia, X.; Hu, J. Superpixel-based graphical model for remote sensing image mapping. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5861–5871. [Google Scholar] [CrossRef]
- Jia, S.; Deng, X.; Zhu, J.; Xu, M.; Zhou, J.; Jia, X. Collaborative representation-based multiscale superpixel fusion for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7770–7784. [Google Scholar] [CrossRef]
- Mei, J.; Wang, Y.; Zhang, L.; Zhang, B.; Liu, S.; Zhu, P.; Ren, Y. PSASL: Pixel-level and superpixel-level aware subspace learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4278–4293. [Google Scholar] [CrossRef]
- Cui, B.; Xie, X.; Ma, X.; Ren, G.; Ma, Y. Superpixel-based extended random walker for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3233–3243. [Google Scholar] [CrossRef]
- Sellars, P.; Aviles-Rivero, A.; Schonlieb, C. Superpixel contracted graph-based learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4180–4193. [Google Scholar] [CrossRef] [Green Version]
- Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. In Proceedings of the ICLR, Toulon, France, 24–26 April 2017. [Google Scholar]
- Xi, B.; Li, J.; Li, Y.; Song, R.; Xiao, Y.; Du, Q.; Chanussot, J. Semisupervised Cross-scale Graph Prototypical Network for Hyperspectral Image Classification. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xi, B.; Li, J.; Song, R.; Xiao, Y.; Chanussot, J. SGML: A Symmetric Graph Metric Learning Framework for Efficient Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 609–622. [Google Scholar] [CrossRef]
- Qin, A.; Shang, Z.; Tian, J.; Wang, Y.; Zhang, T.; Tang, Y. Spectral–spatial graph convolutional networks for semisupervised hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2019, 16, 241–245. [Google Scholar] [CrossRef]
- Wan, S.; Gong, C.; Zhong, P.; Du, B.; Zhang, L.; Yang, J. Multi-scale dynamic graph convolutional network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3162–3177. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Han, Z.; Wu, X. Deeper insights into graph convolutional networks for semisupervised learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Xu, K.; Li, C.; Tian, Y.; Sonobe, T.; Kawarabayashi, K.; Jegelka, S. Representation learning on graphs with jumping knowledge networks. arXiv 2018, arXiv:1806.03536. [Google Scholar]
- Drumetz, L.; Meyer, T.; Chanussot, J.; Bertozzi, A.; Jutten, C. Hyperspectral image unmixing with endmemb bundles and group sparsity inducing mixed norms. IEEE Trans. Image Process. 2019, 28, 3435–3450. [Google Scholar] [CrossRef]
- Xu, X.; Li, J.; Wu, C.; Plaza, A. Regional clustering-based spatial preprocessing for hyperspectral unmixing. Remote Sens. Environ. 2018, 204, 333–346. [Google Scholar] [CrossRef]
- Xu, X.; Li, J.; Li, S.; Plaza, A. Generalized morphological component analysis for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2817–2832. [Google Scholar] [CrossRef]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.-Y.; Tuzel, O.; Ramalingam, S.; Chellappa, R. Entropy rate superpixel segmentation. In Proceedings of the CVPR, Colorado Springs, CO, USA, 20–25 June 2011; pp. 2097–2104. [Google Scholar]
- Jiang, J.; Ma, J.; Chen, C.; Wang, Z.; Cai, Z.; Wang, L. SuperPCA: A superpixelwise PCA approach for unsupervised feature extraction of hyperspectral imagery. IEE Trans. Geosci. Remote Sens. 2018, 56, 4581–4593. [Google Scholar] [CrossRef] [Green Version]
- Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral filtering. In Proceedings of the 2016 NIPS, Barcelona, Spain, 5–10 December 2016; pp. 3844–3852. [Google Scholar]
- Micheli, A. Neural network for graphs: A contextual constructive approach. IEEE Trans. Neural Netw. 2009, 20, 498–511. [Google Scholar] [CrossRef]
- Shuman, D.; Narang, S.; Frossard, P.; Ortega, A.; Vandergheynst, P. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 2013, 30, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Sandryhaila, A.; Moura, J. Discrete signal processing on graphs. IEEE Trans. Signal Process. 2013, 61, 1644–1656. [Google Scholar] [CrossRef] [Green Version]
- Shlens, J. A tutorial on principal component analysis. arXiv 2014, arXiv:1404.1100. [Google Scholar]
- Li, S.; Hao, Q.; Kang, X.; Benediktsson, J. Gaussian pyramid based multiscale feature fusion for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2018, 11, 3312–3324. [Google Scholar] [CrossRef]
Class # | Class | Labeled | Unlabeled |
---|---|---|---|
1 | Alfalfa | 23 | 23 |
2 | Corn-notill | 30 | 1398 |
3 | Corn-mintill | 30 | 800 |
4 | Corn | 30 | 207 |
5 | Grass-pasture | 30 | 453 |
6 | Grass-trees | 30 | 700 |
7 | Grass-pasture-mowed | 14 | 14 |
8 | Hay-windrowed | 30 | 448 |
9 | Oats | 10 | 10 |
10 | Soybean-notill | 30 | 942 |
11 | Soybean-mintill | 30 | 2425 |
12 | Soybean-clean | 30 | 563 |
13 | Wheat | 30 | 175 |
14 | Woods | 30 | 1235 |
15 | Buildings-grass-trees-drives | 30 | 356 |
16 | Stone-steel-towers | 30 | 63 |
Class # | Class | Labeled | Unlabeled |
---|---|---|---|
1 | Asphalt | 30 | 6601 |
2 | Meadows | 30 | 18,619 |
3 | Gravel | 30 | 2069 |
4 | Trees | 30 | 3034 |
5 | Painted metal sheets | 30 | 1315 |
6 | Bare soil | 30 | 4999 |
7 | Bitumen | 30 | 1300 |
8 | Self-blocking bricks | 30 | 3652 |
9 | Shadows | 30 | 917 |
Class # | Class | GCN | SGCN | FDSSC | DR-CNN | SSRN | MDGCN | DRHy-ChebyNet |
---|---|---|---|---|---|---|---|---|
1 | Alfalfa | 91.30 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 93.99 |
2 | Corn-notill | 50.93 | 84.76 | 88.56 | 86.27 | 90.13 | 88.91 | 100.00 |
3 | Corn-mintill | 52.38 | 89.75 | 86.50 | 95.00 | 93.50 | 82.38 | 88.25 |
4 | Corn | 95.65 | 100.00 | 76.81 | 95.17 | 93.72 | 100.00 | 99.03 |
5 | Grass-pasture | 67.99 | 90.07 | 96.25 | 89.18 | 89.18 | 90.51 | 96.25 |
6 | Grass-trees | 98.71 | 100.00 | 97.14 | 100.00 | 100.00 | 100.00 | 100.00 |
7 | Grass-pasture-mowed | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
8 | Hay-windrowed | 93.97 | 99.33 | 99.55 | 100.00 | 99.33 | 100.00 | 99.55 |
9 | Oats | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
10 | Soybean-notill | 44.06 | 89.92 | 87.15 | 44.16 | 97.03 | 96.28 | 92.25 |
11 | Soybean-mintill | 61.24 | 79.34 | 97.98 | 75.55 | 80.04 | 90.80 | 94.10 |
12 | Soybean-clean | 52.40 | 93.07 | 58.08 | 81.71 | 91.30 | 98.93 | 84.55 |
13 | Wheat | 98.29 | 99.43 | 99.43 | 98.86 | 98.86 | 98.86 | 99.43 |
14 | Woods | 75.06 | 99.92 | 99.92 | 96.68 | 99.84 | 99.68 | 99.68 |
15 | Buildings-grass-trees-drives | 91.57 | 95.79 | 98.60 | 98.60 | 89.89 | 96.91 | 98.60 |
16 | Stone-steel-towers | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
OA | 66.01 | 89.86 | 92.17 | 84.09 | 91.28 | 93.68 | 94.65 | |
AA | 79.60 | 95.09 | 92.87 | 91.32 | 95.18 | 96.45 | 96.51 | |
Kappa | 61.46 | 88.49 | 91.04 | 81.84 | 90.07 | 92.79 | 94.01 |
Class # | Class | GCN | SGCN | FDSSC | DR-CNN | SSRN | MDGCN | DRHy-ChebyNet |
---|---|---|---|---|---|---|---|---|
1 | Asphalt | 65.94 | 95.92 | 98.45 | 92.30 | 90.65 | 94.55 | 92.82 |
2 | Meadows | 46.67 | 79.04 | 97.79 | 93.58 | 95.45 | 95.67 | 98.95 |
3 | Gravel | 47.03 | 94.59 | 32.91 | 57.42 | 74.53 | 87.82 | 98.55 |
4 | Trees | 73.86 | 97.76 | 85.66 | 88.10 | 98.29 | 85.50 | 80.06 |
5 | Painted metal sheets | 94.22 | 99.92 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
6 | Bare soil | 82.86 | 96.96 | 99.92 | 100.00 | 96.12 | 100.00 | 100.00 |
7 | Bitumen | 87.46 | 93.00 | 98.23 | 99.23 | 99.92 | 100.00 | 100.00 |
8 | Self-blocking bricks | 72.04 | 86.94 | 99.73 | 99.92 | 99.37 | 96.85 | 96.36 |
9 | Shadows | 64.01 | 99.67 | 98.58 | 97.06 | 100.00 | 97.71 | 92.48 |
OA | 61.15 | 88.06 | 94.38 | 92.98 | 94.68 | 95.31 | 96.23 | |
AA | 70.46 | 93.76 | 90.14 | 91.96 | 94.93 | 95.34 | 95.47 | |
Kappa | 52.95 | 84.72 | 92.53 | 90.76 | 92.99 | 93.82 | 95.29 |
Class # | Class | Fusion | |||||
---|---|---|---|---|---|---|---|
1 | Alfalfa | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
2 | Corn-notill | 94.99 | 94.64 | 94.28 | 94.13 | 94.42 | 93.99 |
3 | Corn-mintill | 69.50 | 90.50 | 89.75 | 89.75 | 89.13 | 88.25 |
4 | Corn | 98.55 | 76.81 | 78.74 | 78.74 | 99.03 | 99.03 |
5 | Grass-pasture | 96.47 | 95.81 | 94.70 | 94.70 | 94.70 | 96.25 |
6 | Grass-trees | 97.29 | 97.29 | 100.00 | 97.29 | 95.86 | 100.00 |
7 | Grass-pasture-mowed | 92.86 | 92.86 | 92.86 | 100.00 | 100.00 | 100.00 |
8 | Hay-windrowed | 100.00 | 100.00 | 99.55 | 99.55 | 99.55 | 99.55 |
9 | Oats | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
10 | Soybean-notill | 86.20 | 85.99 | 91.72 | 85.56 | 91.61 | 92.25 |
11 | Soybean-mintill | 84.91 | 86.47 | 91.09 | 91.09 | 73.98 | 94.10 |
12 | Soybean-clean | 71.23 | 86.32 | 58.97 | 86.68 | 77.80 | 84.55 |
13 | Wheat | 99.43 | 99.43 | 99.43 | 99.43 | 99.43 | 99.43 |
14 | Woods | 99.92 | 100.00 | 93.28 | 99.84 | 95.71 | 99.68 |
15 | Buildings-grass-trees-drives | 98.60 | 98.60 | 98.60 | 98.60 | 98.60 | 98.60 |
16 | Stone-steel-towers | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
OA | 88.88 | 91.30 | 91.10 | 92.23 | 88.50 | 94.65 | |
AA | 80.62 | 81.54 | 90.11 | 94.71 | 94.36 | 96.51 | |
Kappa | 87.31 | 90.05 | 89.81 | 91.97 | 87.10 | 94.01 |
Class # | Class | Fusion | |||||
---|---|---|---|---|---|---|---|
1 | Asphalt | 65.47 | 74.59 | 87.21 | 92.99 | 80.23 | 92.82 |
2 | Meadows | 95.84 | 98.95 | 98.95 | 97.84 | 97.95 | 98.95 |
3 | Gravel | 98.55 | 97.73 | 97.73 | 97.73 | 97.58 | 98.55 |
4 | Trees | 61.50 | 74.13 | 69.94 | 64.86 | 73.43 | 80.06 |
5 | Painted metal sheets | 80.53 | 96.43 | 100.00 | 93.16 | 96.20 | 100.00 |
6 | Bare soil | 100.00 | 99.98 | 99.98 | 98.04 | 97.22 | 100.00 |
7 | Bitumen | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
8 | Self-blocking bricks | 99.12 | 95.95 | 99.12 | 89.84 | 89.27 | 96.36 |
9 | Shadows | 87.35 | 87.35 | 88.88 | 89.53 | 92.48 | 92.48 |
OA | 89.05 | 92.90 | 94.87 | 93.81 | 92.49 | 96.23 | |
AA | 87.60 | 91.68 | 93.53 | 91.35 | 91.60 | 95.47 | |
Kappa | 85.62 | 90.58 | 93.33 | 91.77 | 90.03 | 95.29 |
Methods | Running Time (s) | IndianP | PaviaU |
---|---|---|---|
GCN | Training time | 254.76 | 412.79 |
Testing time | 0.02 | 0.08 | |
Training time | 289.32 | 588.95 | |
Testing time | 0.03 | 0.12 | |
MDGCN | Training time | 85.53 | 384.25 |
Testing time | 1.05 | 5.78 | |
DRHy | Training time | 50.96 | 112.58 |
Testing time | 0.08 | 0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Zhou, X.; Xi, B.; Li, J.; Kang, J.; Tang, S.; Chen, Z.; Hong, W. Diverse-Region Hyperspectral Image Classification via Superpixelwise Graph Convolution Technique. Remote Sens. 2022, 14, 2907. https://doi.org/10.3390/rs14122907
Huang Y, Zhou X, Xi B, Li J, Kang J, Tang S, Chen Z, Hong W. Diverse-Region Hyperspectral Image Classification via Superpixelwise Graph Convolution Technique. Remote Sensing. 2022; 14(12):2907. https://doi.org/10.3390/rs14122907
Chicago/Turabian StyleHuang, Yan, Xiao Zhou, Bobo Xi, Jiaojiao Li, Jian Kang, Shiyang Tang, Zhanye Chen, and Wei Hong. 2022. "Diverse-Region Hyperspectral Image Classification via Superpixelwise Graph Convolution Technique" Remote Sensing 14, no. 12: 2907. https://doi.org/10.3390/rs14122907
APA StyleHuang, Y., Zhou, X., Xi, B., Li, J., Kang, J., Tang, S., Chen, Z., & Hong, W. (2022). Diverse-Region Hyperspectral Image Classification via Superpixelwise Graph Convolution Technique. Remote Sensing, 14(12), 2907. https://doi.org/10.3390/rs14122907