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Abstract: In this paper, a diverse-region hyperspectral image classification (DRHy) method is pro-
posed by considering both irregularly local pixels and globally contextual connections between pixels.
Specifically, the proposed method is operated on non-Euclidean graphs, which are constructed by
superpixel segmentation methods for diverse regions to cluster irregularly local-region pixels. In
addition, the dimensionality reduction method is employed to alleviate the curse of dimensionality
problem with a lower computational burden, generating more representative data with the input
graph features. In this context, it then constructs a superpixelwise Chebyshev polynomial graph
convolution network (ChebyNet) to aggregate global-region superpixels. Benefiting from differ-
ent superpixel numbers of segmentations, we construct different graph structures, and multiple
classification results are obtained, which brings more opportunities to represent the hyperspectral
data correctly. Then, all the diverse-region results are further fused by a majority voting technique
to improve the final performance. Finally, numerical experiments on two benchmark datasets are
provided to demonstrate the superiority of the proposed DRHy-ChebyNet method to the other
state-of-the-art methods.

Keywords: hyperspectral image (HSI) classification; graph convolutional framework; superpixel
segmentation; diverse-region fusion

1. Introduction
1.1. Background

In past decades, the hyperspectral image (HSI) has attracted considerable attention
all over the world due to its unique ability, compared with other sensor data, to provide
hundreds of contiguous spectral bands, which are helpful to recognize the terrain covers,
such as grass, road, building. With the increasing number of hyperspectral sensors and
the exploded big data of HSI datasets, the HSI classification problem rapidly became a hot
topic in remote sensing [1–7].

Many approaches have been proposed for the HSI classification problem for the past
decades. Most studies focused on classifying the land-cover categories in a high-resolution
hyperspectral image. In the beginning, several conventional pattern recognition methods,
such as k-nearest neighbor [8], support vector machine [9], Bayesian-based methods [10],
and kernel-based methods [11], were proposed to classify the HSI land covers by leveraging
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the abundant spectral information. Furthermore, the extreme learning machine [12] and
the sparse coding methods [13] were developed to improve the classification performance.

It is difficult to accurately recognize the land covers solely with the spectral informa-
tion, especially for cases with few known samples. In this context, many researchers have
focused on the extra spatial information of an HSI image since the spatially neighboring
pixels commonly have strong correlations in a local region. Multiple spectral–spatial classifi-
cation methods have been leveraged to combine both spatial and spectral features. In [14], a
Markov random field (MRF) model was employed for sufficient spatial information, which
realized impressive performance. It optimized the maximum of a posterior with the spatial
information as a prior. Furthermore, the morphological profile based methods [15,16] have
been widely employed to effectively integrate useful spectral–spatial features.

1.2. Previous Methods

However, how to accurately extract useful spectral–spatial information depends on the
researchers’ professional experience, which is empirical and thus requires being tested man-
ually. In recent years, due to the intrinsically strong representation ability, deep-learning
techniques [17–24] have been extensively employed among all applications of the remote
sensing area, especially for the HSI classification problem. These deep-learning meth-
ods have greatly improved HSI classifiers automatically via high-level features extracted
through deep neural networks.

In the past five or six years, hundreds of deep-learning attempts were made, and
they can be classified in several categories. The autoencoders (AEs) are easy to implement
and demonstrated to be an effective tool: in [25], a stacked AE was employed for HSI
classification by extracting high-level features. In order to reduce the computational burden
of the stacked AE, a segmented stacked AE was built to separate features into smaller
segments [26].

Next, a segmented stacked AE was developed for a spectral–spatial HSI classification
problem by involving the mutual information (MI) and morphological profiles [27]. Then,
the deep belief network (DBN) was addressed as a stack of unsupervised networks for
the HSI classification. Three DBNs were constructed to extract spectral, spatial, and
spectral–spatial features from HSI data hierarchically [28]. In [29], the restricted Boltzmann
machine (RBM) was employed with a greedy learning algorithm as an optimizer. A group
belief network (GBN) was proposed to consider the grouped spectral–spatial features by
modifying the bottom layer of each RBM [30].

However, both AE and DBM models are restricted by the same requirement, i.e.,
one-dimensional (1-D) input data. The recurrent neural network (RNN) models have been
exploited to combine each HSI pixel in a band-to-band mode and to perform a similarity
check between temporary data and spectral bands. Both the long short-term memory
(LSTM) and the gated recurrent unit (GRU) were first employed for HSI classification
in [31].

In recent years, one of the most popular techniques for HSI classification was the
convolutional neural network (CNN), which typically achieves state-of-the-art performance
for almost all kinds of computer vision tasks [32–35]. In [36], a five-layer 1-D CNN was
proposed to classify HSIs via the spectral information. Similar to previous analysis, spectral
information is not sufficient for accurate classification; hence, the spatial domain should also
be considered in CNN models. In [37], a multi-dimensional CNN model was developed to
automatically extract hierarchical spectral–spatial features. Several 3-D CNN models were
built to extract deep spectral–spatial features directly from raw HSI data [38,39].

Furthermore, a pixel-pair CNN model was proposed to combine any two pixels as
pixel pairs and learn their deep discriminative representations for the HSI classification [40].
Although the existing CNN approaches outperformed other models to some extent, several
intrinsic defections were revealed during the previous experiments. For example, the
conventional CNN models only consider a square neighboring region to extract the spatial
features, failing to capture the geometric margins or construct the connection with the other
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pixels in the whole HSI. In addition, the CNN methods require a long training time for
deep networks with millions of parameters.

To relieve the computational burden and improve the contextual connections in spa-
tial domain, an effective way is to change the pixel-based deep-learning method to an
superpixel-based method. A superpixel in an HSI is a local cluster of similar land-cover
pixels, and it contains the spatial and margin connections among these pixels. In these
years, multiple superpixel-based methods were proposed to extract the spectral–spatial
features via segmentation methods [41–44]. In [45,46], the superpixel methods were mainly
used to generate homogeneous region before constructing a graph on superpixels, realizing
robust classification results.

In order to combine the advantages of superpixel-based and CNN-based methods,
the graph convolutional framework is the solution for HSI classification tasks. The graph
convolutional framework can be simply interpreted as the convolution operation on a
graph [47], which is able to aggregate node neighbors among the global HSI pixels. The
convolution on graph is actually a weighting function over the neighboring nodes of each
node. Then, both the node features and connections of nodes are fully represented in the
hidden layers by convolutions on graph. Therefore, the graph convolutional framework
can not only learn the local boundary of each superpixel landcover but also aggregate the
globally contextual connections of similar superpixels.

Some pioneer researchers have proposed a few graph convolution works for HSI
classification [48,49]. In [50], a spectral–spatial graph convolutional network (S2GCN) was
proposed for semisupervised HSI classification. It used the second-order neighborhood to
approximate the graphical convolution operation and realized good performance. However,
directly using the existing GCN work for HSI classification did not achieve the desired
expectation.

In [51], a multi-scale dynamic graph convolutional network (GCN) was proposed to
combine the classification results with different numbers of neighbors and to dynamically
change the graph adjacency for different layers. However, the dynamic scheme did not
change the node representations but modified their adjacency connections. Furthermore,
deeper GCN may suffer from over-smooth problem, and second-layer GCN has been
demonstrated to be a good choice for the Cora dataset; however, five-layer GCN is the
opposite [52,53]. The adjacency can be updated only twice for a two-layer GCN, and its
improvement is limited based on the same graph structure.

The direct use of GCN on the superpixels may face certain problems. For extracting
spatial features, the basic superpixel segmentation idea is dependent on the spectral signa-
tures of each pixel. Although the same-category pixels have similar spectral characteristics,
one specific segmentation may not be always correct. This is because one pixel of the HSI
dataset may actually contain two or more categories of land covers [54–56], especially for
the low spatial resolution of HSI data.

The constructed GCN model based on this superpixel segmentation would not be
guaranteed accurate for representing the spatial features. Then, for extracting spectral
features, although the rich spectra can provide quite useful information for data analysis,
the high dimensionality of HSI data may lead to the curse of dimensionality problem [57].
It would deteriorate the potential of GCN for representing the true spectral information of
each category.

1.3. Proposed Method

Motivated by the aforementioned concerns of the existing GCN-based and superpixel-
based methods, we propose a novel graph convolution framework based on the diverse-
region hyperspectral data (DRHy) for the semisupervised HSI classification task. Instead
of a fixed input graph for GCN, we employ the superpixel-based segmentation method,
such as the entropy rate superpixel (ERS) method [58], to segment the whole spatial scene
into relatively homogenous regions with different numbers of superpixels.
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Furthermore, to avoid the Hugh phenomenon and extract intrinsic low-dimensional
features simultaneously, we employ the principal component analysis (PCA) in each
homogenous superpixel region, which is inspired by the method in [59]. It is equivalent to
a smoothing preprocessing, which helps to aggregate the locally homogenous region pixels
and also relieve the total computational burden.

In addition, in order to further improve the representative ability of the low-dimensional
data, we concatenate both the intensity and the energy of the low-dimensional data as
the new feature. After all previous processing, the input graph can be built by using the
aggregated features as nodes and constructing their connections. In this context, different
graphs encode different spectral–spatial information and indicate different connections
among all the nodes (homogenous superpixel regions). Therefore, we reproduce the above
steps to generate diverse superpixel regions and then construct diverse graphs based on
these superpixels.

Next, we individually train the corresponding second-layer graph convolutional net-
works for different input graphs to aggregate and smooth similar superpixels. In this paper,
we employ the Chebyshev polynomial graph convolution network (ChebyNet) [60], for the
diverse-region hyperspectral image classification, which is termed as the proposed DRHy-
ChebyNet algorithm. Then, we back-project the learned superpixel classification result
to the original pixels for evaluating the performance. As a result, the final classification
results are obtained via the majority voting decision fusion strategy. More specific steps
and tricks are analyzed in detail in the following sections.

The main contributions of this paper can be summarized as follows: first, the usage
of graph convolution can extend the spatial information connection from the local region
to the whole spatial domain, which is helpful for sufficiently learning spatial features;
second, the constructed graphs based on segmented superpixel of HSI data provide diverse
spatial-spectral information, which is critical to extract the intrinsic spectral–spatial features
for classification; and third, the majority voting fusion technique is helpful to yield a more
persuasive result, especially when the label information is limited.

The rest contents of this paper are organized as follows: Section 2 reviews the prelim-
inary works and introduces the motivations of the proposed DRHy-ChebyNet method;
Section 3 shows the detailed steps of the proposed method with sufficient analysis; and
Section 4 provides multiple experiments on the public datasets to demonstrate the effec-
tiveness of the proposed method.

2. Method

In this section, we review several preliminary works of graph convolutional techniques
and introduce the motivation of the proposed method for HSI classification.

2.1. Preliminary Works of Graph Convolution Techniques

As we know, deep-learning techniques, such as CNN, RNN, AE, and DBN, have
been proved to effectively reveal hidden features of Euclidean data. When facing the
tasks for handling non-Euclidean data, the above deep-learning methods may be restricted.
Recently, there has been increasing interest in extending deep-learning approaches from
Euclidean data to irregular graph data. The generalizations of some common operations
on the Euclidean data have developed rapidly for the past few years. In particular, a graph
convolution can be generalized from a 2-D convolution by taking the weighted average
of one node’s adjacent neighbors, which yields the convolutional graph neural networks
(ConvGNNs).

ConvGNNs are grouped into two categories, spectral-based and spatial-based meth-
ods. Spatial-based methods define graph convolutions by information propagation and
it propagates node information along edges. Furthermore, they resemble the form of
traditional convolution operation on Euclidean data [61]. Spectral-based methods interpret
the convolution operation as noise removal from the perspective of graph signal process-
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ing [62]. The spectral convolutional neural network (Spectral CNN) was proposed to define
the graph convolution in spectral domain with the help of a graph Fourier transform [63].

However, this requires the eigendecomposition of the Laplacian matrix, which brings a
heavy computational burden. Furthermore, any perturbation to a graph results in a change
of eigenvectors and eigenvalues. Then, in [60], a Chebyshev spectral CNN (ChebyNet)
approximates the spectral filter by Chebyshev polynomials of the diagonal matrix of
eigenvalues. It defines the spectral filters in spatial domain and can extract local features
without considering the graph size. Then, a GCN was proposed by Kipf and Welling [47]
as a first-order approximation of the ChebyNet, further decreasing the computational
complexity. The GCN can be considered to bridge the gap between spectral-based and
spatial-based approaches.

2.2. Motivations of the Proposed DRHy Method

A few GCN-based methods, such as the S2GCN [50] and the MDGCN [51], were
proposed for semisupervised HSI classification, and both approaches have their own
advantages and limitations for implementing. The S2GCN approach used the second-
order polynomials to approximate the graphical convolution operation and realized good
performance. However, to directly use the existing GCN work for HSI classification does
not achieve the best expectation.

In [51], a multi-scale dynamic graph convolutional network was proposed to combine
the classification results with different numbers of neighbors and to dynamically change
the graph adjacency for different layers. However, the dynamic scheme actually does not
change the node representations but modify their adjacency connections. Furthermore, it
is noted that deeper GCN may suffer from over-smooth problem. In [52,53], they prefer
the two-layer GCN rather than the five-layer GCN for the Cora dataset. The adjacency
can be updated only once for a two-layer GCN, so its improvement is limited. Based
on the aforementioned problems, here are several motivations that inspire us for the
proposed method:

First, spectral information is critical to determine the classification accuracy and it
should be carefully preprocessed. In previous studies, it has been demonstrated that the
high dimensionality of HSI data leads to the curse of dimensionality problem, which will
reduce the generalization capability of classifiers and surely increase the computational
complexity. Hence, in this paper, we perform the dimensionality reduction method, such
as the PCA method, to improve the efficiency and the performance.

Second, spatial information should be carefully considered, including both globally
and locally spatial information. It is easy to verify that locally spatial information helps
cluster the similar pixels since local homogenous pixels commonly belong to the same land
cover. Herein, globally spatial information indicates the connections between any spatial
region in the whole HSI data, which can be used for the aggregations of homogenous
neighbors that locate far away from each other. Due to limited receptive field of each layer,
the CNN-based methods require deep networks to cover a large receptive field.

Hence, in this paper, we first employ the superpixel-based segmentation methods to
cluster the pixels of homogenous regions, and then leverage GCN-based schemes to further
aggregate all similar superpixels and to learn their intrinsic connections and representations.
Note that the final performance depends mainly on the input graph, which is determined
by the superpixel-based segmentation method. To alleviate this dependency, we re-segment
diverse superpixels for constructing different input graphs to get the classification results.
Then, we fuse these results via majority voting to improve the robustness. More details
please refer to Section 2.3.4.

2.3. Proposed DRHy Method

In this section, a specific method is proposed to extract the features of diverse-region
hyperspectral data by using the ChebyNet, which is termed as DRHy-ChebyNet. The
proposed DRHy method is concatenated in four steps: (a) superpixel segmentation and
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dimensionality reduction, (b) graph construction, (c) graph convolution and pixel backpro-
jection, and (d) diverse region scheme. The illustration of the proposed method is shown in
Figure 1. The details of the above steps are introduced as follows.

2.3.1. Superpixel Segmentation and Dimensionality Reduction

Graph-based segmentation approaches have been widely employed in superpixel
segmentation [59]. However, it commonly has heavy computational burden for implemen-
tation. In this paper, we first employ the PCA to extract the first principal component by
solving the following problem [64]

min
u,v

∥∥∥XR − upvT
p

∥∥∥2

F
s.t. uT

p up = 1, (1)

where XR ∈ RB×T is the reshaped HSI data (from a 3-D image to a 2-D matrix), the su-
perscript T is the transpose operation, B is the number of spectrum bands, T is the total
number of pixels, up ∈ RB is the first principal direction, and vp ∈ RT is the first principal
component. After reshaping the first principal component to its original size, then we em-
ploy the ERS approach to segment the pixels into superpixels. The ERS segmentation is an
undirected graph-based clustering algorithm. Given an input image with the preset number
of superpixels, a graph can be constructed based on the input image. We divide the whole
graph into smaller connected subgraphs by solving the following optimization problem

max
A

Tr{ER(A) + αBA(A)}, s.t. A ⊆ E , (2)

where Tr denotes the trace operation, E is the edge of a graph G,A is the subset of E , α is the
hyperparameter, and ER(·) and BA(·) are the entropy rate and balance term, respectively.
A greedy algorithm was proposed in [59] to solve the above problem efficiently.

Figure 1. Illustration of the proposed DRHy-ChebyNet method.

Suppose that there are S superpixel regions in total, and each region corresponds to
a small irregular HSI cube Xs, where s = 1, 2, · · · , S and. Then, we reshape the cube to a
2-D matrix, Xs ∈ RB×Ks , where Ks is the number of pixels in the s-th superpixel region, and
each column of Xs denotes the spectrum vector of one pixel. In this context, we consider
a linear dimensionality reduction approach, such as PCA, which projects the signal onto
a low-dimensional space in a linear way. The basic idea of the PCA structure can be
formulated as

min
U,V

∥∥∥Xs −UsVT
s

∥∥∥2

F
s.t. UT

s Us = I, (3)
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where I is the identity matrix, Us = [us,1, us,2, · · · , us,d] ∈ RB×d denotes the principal
directions, Vs = [vs,1, vs,2, · · · , vs,Ks ] ∈ RKs×d denotes the principal components, i.e.,
the low-dimensional data. The principal components can be considered as the cluster
indicators that gather the same cluster of data linearly in the low-dimensional domain,
i.e., the PCA provides an embedding for the data lying on a linear manifold. The problem
in Equation (2) can be easily solved via singular value decomposition (SVD). Then, the
matrix Vs is reshaped to the original size of the cube, and each pixel corresponds to its
original location.

PCA works well in many previous studies as a preprocessing tool to extract more
representative features and reduce the dimensionality. In [65], the PCA algorithm can
increase the spectral separability of pixels. Furthermore, in [59], they proved that PCA on
superpixels was better than PCA on the entire data cube. Therefore, we follow this useful
scheme before constructing the graph.

2.3.2. Graph Construction

After superpixel segmentation and dimensionality reduction, multiple small super-
pixel regions are obtained with d principal components left in the spectral domain. As
analyzed before, the construction of the graph is critical to the final performance. To explore
the local and global connections on a graph, the key idea is to obtain the node features and
build their edges. First, the mean spectral signature of each superpixel region is calculated

as the standard feature of this region, which is termed as ys =
1

Ks

Ks
∑

i=1
vs,i. According to the

analysis in [43], an extra energy feature of the same superpixel region can be generated

as es =
1

Ks

Ks
∑

i=1
vs,i � vs,i, where � denotes the Hadamard product. Both the mean and the

energy signatures can be combined to characterize the s-th superpixel, and then the new
feature is

gs =

[
ys
es

]
. (4)

Then, the weight of each pixels in the s-th superpixel region can be measured by its
“distance” to the corresponding feature in this region, which can be calculated as

W(s)
ks = exp

(
−γ

∥∥∥∥[ vs,k
vs,k � vs,k

]
− gs

∥∥∥∥2

2

)
, (5)

where the subscript ks denotes the element at the k-th row and s-th column, and γ is the
hyperparameter, which is empirically set to 0.2 [51]. Note that this is the weight between
any pixel and the corresponding feature in one superpixel, and thus it does not construct a
graph. Furthermore, the entire weight matrix of all the pixels in the HSI data is

W =


W(1)

W(2)

...
W(S)

. (6)

Through this preprocessing, we have the weight of every pixel in the HSI data. Then,
each superpixel can be regarded as one node of the constructed graph, and its node feature
can be defined by the normalized weighted sum of all the pixels, that is,

fs =

Ks
∑

k=1
W(s)

ks

[
vs,k

vs,k � vs,k

]
Ks
∑

k=1
W(s)

ks

. (7)
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Then, the input graph nodes can be confirmed to represent all the superpixel regions
with their corresponding features. As analyzed in [43], superpixel regions reflect the spatial
distributions of local regions and the distance metrics, which represent the similarity of the
superpixels, should be well designed. Any two similar superpixels should be guaranteed a
large adjacency value, while those discrepant superpixels should output a relatively lower
adjacency value. Then, their adjacency matrices can be constructed as

Aij =

 exp
(
− 1

2d
2‖fi−fj‖1

‖fi−fj‖1+‖fi+fj‖1

)
,

if fi ∈ N
(
fj
)

or fj ∈ N(fi)
0, otherwise

(8)

where |·|1 denotes the `1 norm and N(fi) denotes the set of neighbor nodes. Until now,
the input graph GHSI = (VHSI , EHSI) is built with node features f and weight adjacency A.
The distance between pixel, and the standard feature is useful to measure its contribution
to the input. Furthermore, it can be also regarded as a preprocessed filter for aggregating
the similar pixels.

2.3.3. Spectral-Based Graph Convolution Framework and Pixel Backprojection

The implementation of spectral-based graph convolution framework is defined in
the Fourier domain by computing the eigendecomposition of the graph Laplacian. It can
also be formulated as the multiplication of a signal x ∈ RS with a filter gθ = diag(θ)
parameterized by θ

gθ ? x = Ugθ(Λ)UTx, (9)

where U is the eigenvector matrix of the normalized graph Laplacian L = I−D−
1
2 AD−

1
2 =

UΛUT . Here, Λ is the diagonal eigenvalue matrix of L, and D is the degree matrix, which
is defined as Dii = ∑j Aij. This operation results in potentially intense computations and
non-spatially localized filters.

In [47], it was suggested that gθ(Λ) can be approximated by a truncated expansion
in terms of Chebyshev polynomials Tk(x) up to K-th order. Then, the operation can be
reformulated as

gθ ? x ≈
K

∑
k=0

θkTk
(
L̃
)
x (10)

with L̃ = 2
λmax

L − I. Herein, λmax is the largest value of L, θ ∈ RK is now a vector of
Chebyshev coefficients. The Chebyshev polynomials are defined as Tk(x) = 2xTk−1(x)−
Tk−2(x) with T0(x) = 1 and T1(x) = x. Due to the K-th order approximation in the
Laplacian, the filters defined by ChebyNet are K-localized in space, which means filters can
extract local features independently to the graph size. Hence, we only need to perform the
eigendecomposition of the Laplacian once, and this relieves the computational burden.

Then, by considering the feature maps in multiple graph convolution layers, the graph
convolution processing of the ChebyNet can be formulated as

H(l) = σ

(
K

∑
k=0

θ
(l)
k Tk

(
L̃
)
H(l−1)

)
. (11)

Next, the final learned features for all superpixels regions should be back-projected
to the pixel level. In this context, we employ the aforementioned weighted matrix W to
allocate the contribution of each pixel to the final features. It can be formulated in a simply
linear way by a matrix multiplication, that is,

O = WH(L). (12)
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The softmax activation function, defined as softmax(xi) =
1
z exp(xi) with z = ∑i exp(xi),

is applied row-wise. For the semi-supervised multi-class classification, we then evaluate
the cross-entropy error over all labeled samples:

L = − ∑
n∈YL

C

∑
c=1

Ync ln Onc, (13)

where YL is the set of pixel indices that have labels and Y is the label matrix. The weight
matrices of neural networks are trained by gradient descent. We perform batch gradient
descent using the full dataset for every training iteration.

2.3.4. Diverse-Region Scheme

The graph convolution can be regarded as a low-pass filter in frequency domain on
graph [52]. Therefore, the output representations are corresponding to the initial input
graph, which depends on the superpixel segmentation methods. If the superpixel segmen-
tation results are not accurate, the final classification performance would be degraded.

As it is easy to imagine, if we segment few superpixels, the segmentation results may
contain several classes of land covers, which requires further segmentation. However, if we
segment too many superpixels, then the features obtained from the over-segmented regions
may become less distinctive, and it is even harder to infer the true class labels. According
to the analysis in [59], there is no single region size that is able to adequately characterize
the spatial information of HSIs. Therefore, we propose a diverse-region scheme to provide
diverse input graphs and to improve the final performance by combing all the output
representations of different graphs.

Suppose that we segment the HSI data with 2V + 1 kinds of scales, which correspond to
2V + 1 input graphs. Similar to the segmentation scheme in [59], the number of superpixels
of the v-th scale is

Sv =
(√

2
)v

Sb, (14)

where Sb is the basic segmentation number. Specifically, we fuse the final predictions of
different graphs via the majority voting decision as follows

label(n) = arg max
c∈{1,2,··· ,C}

Con(n, c),

Con(n, c) =
2V+1

∑
v=1

Wv
ncInd(labelv(n) = c),

(15)

where labelv(n) denotes the class label of the n-th pixel, Con(·) is the confidence that class c
is predicted for the n-th pixel, and Ind(·) is the indicator function. Herein, Wv indicates the
weighted confidence scores of the v-th segmentation, which was previously calculated via
the distance between the pixel and the standard point. Figure 1 illustrates all the steps of the
proposed DRHy method for HSI classification and the pseudo code is listed in Algorithm 1.



Remote Sens. 2022, 14, 2907 10 of 21

Algorithm 1 Proposed DRHy Method.

Input: The HSI data, true labels of the labeled data, and locations of the labeled and
unlabeled data

1: Perform PCA on the HSI data to obtain the first principal component by solving
Equation (1);

2: for v = −V to V do
3: Employ ERS approach on the first principal component to segment Sv superpixel

regions by solving Equation (2);
4: Reshape the corresponding s-th superpixel cube of the original HSI data into a 2-D

matrix Xs;
5: Use linear dimensionality reduction approach to extract main features by solving

Equation (3);
6: Construct the graph according to the data matrix of each superpixel region via

Equations (4)–(8);
7: for i = 1 to Epoch Number do
8: Calculate the graph convolution Hl via Equation (11);
9: Back-project HL to the pixel level via Equation (12);

10: Optimize the network parameters driven by the loss function in Equation (13);
11: i← i + 1;
12: end for
13: v← v + 1;
14: end for
15: Predict labels and take the majority voting to fuse the results of all the superpixel

segmentaions via Equation (15);
Output: The predicted labels.

3. Experimental Results

In this section, numerous experiments are provided to demonstrate the effectiveness of
the proposed DRHy methods. Specifically, we compare both proposed methods with other
state-of-the-art methods, including the GCN-based and CNN-based methods, on several
public datasets. Three common metrics, the overall accuracy (OA), average accuracy (AA),
and kappa coefficient, are used to quantitatively measure the classification performance.
Furthermore, we tested the influence of the labeled sample number on the final result, and
the computational times are further given for a comparison.

3.1. Datasets

In this section, two public datasets (https://www.ehu.eus/ccwintco/index.php/
Hyperspectral_Remote_Sensing_Scenes, accessed on 17 June 2022) are used to evaluate
the performance of the state-of-the-art methods and the proposed methods.

(1) Indian Pines Dataset: It was recorded by the airborne visible/Infrared Imaging
Spectrometer (AVIRIS) sensor in June 1992. The dataset has 145× 145 pixels in spatial
domain and 220 spectral bands covering 0.4–2.45 µm spectrum. In this paper, 20 low signal-
to-noise ratio (SNR) bands are removed, and a total of 200 bands are used for classification.
It contains 16 different land covers in total, and 10,249 pixels are labeled as the ground
truth. The numbers of labeled and unlabeled samples are listed in Table 1 and the Indian
Pines dataset is illustrated in Figure 2.

https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_ Scenes
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_ Scenes
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Table 1. Numbers of labeled and unlabeled samples for Indian Pine Dataset.

Class # Class Labeled Unlabeled

1 Alfalfa 23 23
2 Corn-notill 30 1398
3 Corn-mintill 30 800
4 Corn 30 207
5 Grass-pasture 30 453
6 Grass-trees 30 700
7 Grass-pasture-mowed 14 14
8 Hay-windrowed 30 448
9 Oats 10 10

10 Soybean-notill 30 942
11 Soybean-mintill 30 2425
12 Soybean-clean 30 563
13 Wheat 30 175
14 Woods 30 1235
15 Buildings-grass-trees-drives 30 356
16 Stone-steel-towers 30 63

Figure 2. Indian Pines dataset. (a) Pseudo-color image. (b) Ground truth.

(2) University of Pavia Dataset: It was collected by the ROSIS sensor under the
HySens project managed by the German Aerospace Agency in 2001. It contains a spatial
coverage of 610× 340 pixels with 115 spectral bands, 12 of which are removed due to their
low SNRs. It has a spectral coverage from 0.43 to 0.86 µm and a spatial resolution of 1.3 m.
Herein, 42,776 labeled pixels of nine classes are used as the ground truth. The numbers of
labeled and unlabeled samples are listed in Table 2, and the University of Pavia dataset is
illustrated in Figure 3.

Table 2. Numbers of labeled and unlabeled samples for the University of Pavia Dataset.

Class # Class Labeled Unlabeled

1 Asphalt 30 6601
2 Meadows 30 18,619
3 Gravel 30 2069
4 Trees 30 3034
5 Painted metal sheets 30 1315
6 Bare soil 30 4999
7 Bitumen 30 1300
8 Self-blocking bricks 30 3652
9 Shadows 30 917
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Figure 3. University of Pavia dataset. (a) RGB image. (b) Ground truth.

3.2. Classification Results and Discussion

In this subsection, in order to compare the proposed DRHy methods with the other
state-of-the-art methods, we use the same training data and the test data for all the methods
by using the same random seeds. In this context, three GCN-based methods, including
the traditional GCN method, the S2GCN method, and the MDGCN method, and three
CNN-based methods, i.e., the spectral–spatial residual network (SSRN) method, the fast
dense spectral–spatial convolutional network (FDSSC) method, and the diverse-region
CNN (DR-CNN) method, are tested as a comparison. The mentioned methods include the
recent graph convolution frameworks, two representative recent works by using 3D CNN
scheme, and one representative research, which employs the diverse-region scheme.

To generate the training data and testing data, we randomly labeled 30 samples of
the classes that have plenty of samples and the half samples of the classes that do not
have enough samples. Furthermore, 90 percent of the labeled samples are used to learn
the potential representation and the rest of them are used as the validation set to tune the
model parameters. The exact numbers of labeled data and unlabeled data of the Indian
Pines Dataset and the University of Pavia Dataset are listed in Tables 1 and 2, respectively.
The classification results of both datasets are analyzed in detail as follows:

(1) Indian Pines Dataset
Before illustrating the results, the experimental settings are introduced first. For the

proposed methods, we segment 50, 71, 100, 141, and 200 superpixel regions for constructing
different input graphs and then fuse their results at the end. The dimensions are reduced
to 30 for all superpixel cube. Furthermore, as analyzed in Section 2.3.3, we use two-layer
graph convolutional networks for both proposed methods with 64 hidden units. For the
DRHy-ChebyNet method, the same learning rate is set to 0.05 with 2000 epochs. All the
adjacency matrices for different graphs are truncated with the threshold 0.9.

The classification maps of the proposed methods and the other five GCN- and CNN-
based methods are compared with the ground truth in Figure 4. Their quantitative results
are listed in Table 3, and the best scores are marked in bold. As can be seen, although the
3D CNN methods extract deep spectral–spatial features directly from raw HSIs, they rely
highly on the number of labeled data and the deep depth of convolutional networks for
learning globally contextual representations. In another words, all CNN-based methods
realized good performance; however, their performance is likely restricted by the few
labeled samples.
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Table 3. Classification results of different methods on the Indian Pines dataset.

Class # Class GCN S2GCN FDSSC DR-CNN SSRN MDGCN DRHy-ChebyNet

1 Alfalfa 91.30 100.00 100.00 100.00 100.00 100.00 93.99
2 Corn-notill 50.93 84.76 88.56 86.27 90.13 88.91 100.00
3 Corn-mintill 52.38 89.75 86.50 95.00 93.50 82.38 88.25
4 Corn 95.65 100.00 76.81 95.17 93.72 100.00 99.03
5 Grass-pasture 67.99 90.07 96.25 89.18 89.18 90.51 96.25
6 Grass-trees 98.71 100.00 97.14 100.00 100.00 100.00 100.00
7 Grass-pasture-mowed 100.00 100.00 100.00 100.00 100.00 100.00 100.00
8 Hay-windrowed 93.97 99.33 99.55 100.00 99.33 100.00 99.55
9 Oats 100.00 100.00 100.00 100.00 100.00 100.00 100.00

10 Soybean-notill 44.06 89.92 87.15 44.16 97.03 96.28 92.25
11 Soybean-mintill 61.24 79.34 97.98 75.55 80.04 90.80 94.10
12 Soybean-clean 52.40 93.07 58.08 81.71 91.30 98.93 84.55
13 Wheat 98.29 99.43 99.43 98.86 98.86 98.86 99.43
14 Woods 75.06 99.92 99.92 96.68 99.84 99.68 99.68
15 Buildings-grass-trees-drives 91.57 95.79 98.60 98.60 89.89 96.91 98.60
16 Stone-steel-towers 100.00 100.00 100.00 100.00 100.00 100.00 100.00

OA 66.01 89.86 92.17 84.09 91.28 93.68 94.65
AA 79.60 95.09 92.87 91.32 95.18 96.45 96.51

Kappa 61.46 88.49 91.04 81.84 90.07 92.79 94.01

In addition, the traditional GCN method performs well for the natural language
processing (NLP) dataset, such as the Cora dataset [47]; however, it may not be suitable for
HSI classification problem without any modifications. The S2GCN method, as a successful
improvement of the traditional GCN method, considers the local connections between
pixel nodes, achieving good performance.

However, it lacks of constructing the global connections with the other nodes, which
are outside the local regions. The MDGCN has better performance compared with the
S2GCN for the full consideration of dynamic graph update and multi-scale neighborhoods
of node connections. However, it uses only one kind of graph constructions with updated
neighborhood connections. Then, its final performance depends on the original construc-
tion of the graph. Furthermore, due to the shallow GCN framework leveraged in the
experiments, the number of updates is limited.

Figure 4. Classification results of different methods on the Indian Pines dataset. (a) Ground truth.
(b) GCN. (c) S2GCN. (d) FDSSC. (e) DR-CNN. (f) SSRN. (g) MDGCN. (h) The proposed DRHy-
ChebyNet method.
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Among all the listed methods, the proposed method achieved excellent performance
in terms of the three quantitative metrics. In particular, we used a truncation operation
on the adjacency matrix for cutting off the non-correlated edges, i.e., the edges with small
similarity weights. This truncation is similar with the dynamic label propagation (DLP) [43],
which has a faster convergence and robust performance. Furthermore, based on our test,
the ChebyNet framework has more robust performance for HSI classification problem.
However, it should be noted that the proposed method wrongly recognize the large regions
of “Soybean-mintill” class (Orange part) into the “Corn-notill” (Dark blue part) in the
center of the scene. Essentially, these two classes of land covers are quite similar in spectral
domain. Hence, it is difficult to distinguish them and not to mention the limited number of
labeled data.

(2) University of Pavia Dataset
The University of Pavia dataset has more samples than the Indian Pines dataset does.

There are 42,776 labeled pixels in total. We segment the whole scene into 30, 42, 60, 85, and
120 superpixel regions for this case. The dimension is reduced to 30 for all superpixel cube.
The other parameters are the same as those in the above subsection. In [51], it mentioned
that the GCN and S2GCN are not scalable to this large dataset because the adjacency
matrix can be dense with 42,776 times 42,776 pixels or nodes in total. That requires a
terrible memory indeed. However, S2GCN restricts the adjacency in a local region and the
truncation can be further applied for constructing the edge weights by abandoning the
small weights. Then, the final adjacency matrix would be a sparse matrix and can be saved
in a low-dimensional dense matrix. Then, both the GCN and S2GCN are scalable for the
University of Pavia dataset.

The classification maps of all the methods are illustrated in Figure 5 and their quanti-
tative results are listed in Table 4. Similar to the results of Indian Pines Dataset, the GCN
method still performs not good enough and the S2GCN method is also restricted by the
lack of globally contextual representations.

Thus, there are multiple prominent misclassifications that can be easily visualized in a
glance. Regarding to the two 3D CNN methods, they perform even better for the University
of Pavia dataset than they did for the Indian Pines dataset. Based on the analysis in the
original reference [39], the overall accuracy can achieve 99.61% if it has enough training
data. Thus, we believe that it is the limitation of few samples that makes it perform not
as well as the expectation. For the MDGCN method, it shows a smooth visualization by
aggregating multi-scale neighbors and realizes high classification accuracy, especially for
accurately classifying the orange Bare Soil region in the center compared with the other
aforementioned methods.

Table 4. Classification results of different methods on the University of Pavia dataset.

Class # Class GCN S2GCN FDSSC DR-CNN SSRN MDGCN DRHy-ChebyNet

1 Asphalt 65.94 95.92 98.45 92.30 90.65 94.55 92.82
2 Meadows 46.67 79.04 97.79 93.58 95.45 95.67 98.95
3 Gravel 47.03 94.59 32.91 57.42 74.53 87.82 98.55
4 Trees 73.86 97.76 85.66 88.10 98.29 85.50 80.06
5 Painted metal sheets 94.22 99.92 100.00 100.00 100.00 100.00 100.00
6 Bare soil 82.86 96.96 99.92 100.00 96.12 100.00 100.00
7 Bitumen 87.46 93.00 98.23 99.23 99.92 100.00 100.00
8 Self-blocking bricks 72.04 86.94 99.73 99.92 99.37 96.85 96.36
9 Shadows 64.01 99.67 98.58 97.06 100.00 97.71 92.48

OA 61.15 88.06 94.38 92.98 94.68 95.31 96.23
AA 70.46 93.76 90.14 91.96 94.93 95.34 95.47

Kappa 52.95 84.72 92.53 90.76 92.99 93.82 95.29
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Figure 5. Classification results of different methods on the University of Pavia dataset. (a) Ground
truth. (b) GCN. (c) S2GCN. (d) FDSSC. (e) DR-CNN. (f) SSRN. (g) MDGCN. (h) The proposed
DRHy-ChebyNet method.

In this context, the proposed method had the best performance among all the methods
by fully considering the locally and globally connections among all pixels and using
the majority voting to fuse the results of different input graphs. The input graph was
constructed based on the superpixel segmentation methods, which determined the upper
bound of the representative ability. Even though the MDGCN updated the adjacency
dynamically and also fused different numbers of neighbor adjacencies, the performance
was still restricted by the representative ability of a single graph.

Based on the final classification results, we demonstrate that the modification of input
graphs was more effective than the modification of the adjacencies of one fixed graph for
the HSI classification problem. Benefiting from the superpixel segmentation method, the
scale of the input graph was small, and thus the computational burden of the ChebyNet
was indeed acceptable. However, if the input graph is quite large, then we would prefer to
choose the trade-off between high accuracy and high efficiency.

4. Discussion
4.1. Discussion of the Proposed Method for One Region

In this section, we evaluate the importance of the diverse-region fusion scheme. Herein,
we take five different segmentation scales, i.e., v is selected from the set −2,−1, 0, 1, 2. The
case that v = 0 corresponds to the basic number of segmentations and we choose Sb = 100
for Indian Pines and Sb = 60 for University of Pavia. Tables 5 and 6 list the OA, AA, and
Kappa coefficients on the Indian Pines dataset and the University of Pavia dataset under
the same configuration as the above subsections. For the Indian Pines dataset, the accuracy
of one single region reaches the best when v = 1, while the accuracy is the best for the
‘v = 0’ region for the University of Pavia dataset. As can be seen, the final fusion technique
has significant improvement on the classification accuracy.
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Table 5. Classification performance for different superpixels on the Indian Pines dataset.

Class # Class v = −2 v = −1 v = 0 v = 1 v = 2 Fusion

1 Alfalfa 100.00 100.00 100.00 100.00 100.00 100.00
2 Corn-notill 94.99 94.64 94.28 94.13 94.42 93.99
3 Corn-mintill 69.50 90.50 89.75 89.75 89.13 88.25
4 Corn 98.55 76.81 78.74 78.74 99.03 99.03
5 Grass-pasture 96.47 95.81 94.70 94.70 94.70 96.25
6 Grass-trees 97.29 97.29 100.00 97.29 95.86 100.00
7 Grass-pasture-mowed 92.86 92.86 92.86 100.00 100.00 100.00
8 Hay-windrowed 100.00 100.00 99.55 99.55 99.55 99.55
9 Oats 100.00 100.00 100.00 100.00 100.00 100.00

10 Soybean-notill 86.20 85.99 91.72 85.56 91.61 92.25
11 Soybean-mintill 84.91 86.47 91.09 91.09 73.98 94.10
12 Soybean-clean 71.23 86.32 58.97 86.68 77.80 84.55
13 Wheat 99.43 99.43 99.43 99.43 99.43 99.43
14 Woods 99.92 100.00 93.28 99.84 95.71 99.68
15 Buildings-grass-trees-drives 98.60 98.60 98.60 98.60 98.60 98.60
16 Stone-steel-towers 100.00 100.00 100.00 100.00 100.00 100.00

OA 88.88 91.30 91.10 92.23 88.50 94.65
AA 80.62 81.54 90.11 94.71 94.36 96.51

Kappa 87.31 90.05 89.81 91.97 87.10 94.01

Table 6. Classification performance for different superpixels on the University of Pavia dataset.

Class # Class v = −2 v = −1 v = 0 v = 1 v = 2 Fusion

1 Asphalt 65.47 74.59 87.21 92.99 80.23 92.82
2 Meadows 95.84 98.95 98.95 97.84 97.95 98.95
3 Gravel 98.55 97.73 97.73 97.73 97.58 98.55
4 Trees 61.50 74.13 69.94 64.86 73.43 80.06
5 Painted metal sheets 80.53 96.43 100.00 93.16 96.20 100.00
6 Bare soil 100.00 99.98 99.98 98.04 97.22 100.00
7 Bitumen 100.00 100.00 100.00 100.00 100.00 100.00
8 Self-blocking bricks 99.12 95.95 99.12 89.84 89.27 96.36
9 Shadows 87.35 87.35 88.88 89.53 92.48 92.48

OA 89.05 92.90 94.87 93.81 92.49 96.23
AA 87.60 91.68 93.53 91.35 91.60 95.47

Kappa 85.62 90.58 93.33 91.77 90.03 95.29

4.2. Discussion of the Different Labeled Data

In this subsection, in order to evaluate the robust performance of the proposed methods
on few labeled samples, we test all the GCN-based methods, i.e., the traditional GCN
method, the S2GCN method, the MDGCN method, and the proposed methods, on different
number of labeled samples for the Indian Pines dataset. Three classes of the Indian Pines
dataset (“Alfalfa”, “Grass-pasture-mowed”, and “Oats”) have small amount of samples;
hence, the final performance is highly dependent on the number of labeled samples. We
randomly select 5, 10, 15, 20, 25, and 30 samples per class, following the same selection rule
mentioned in Section 4.2. For the small number of labeled samples, we do not segment too
many superpixel regions.

Then, the final classification results in terms of three quantitative metrics versus
different numbers of labeled samples are shown in Figures 6 and 7 for the two data,
respectively. The superpixel-based methods can gather the local pixels before classifications,
and the graph convolution can further aggregate global pixels, which reduces the reliance on
the number of samples. If there is at least one labeled sample falling into every superpixel
region, then this labeled sample is helpful to classify all the pixels in one superpixel
region. However, in the worst case, there are too few labeled samples, and thus we cannot
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guarantee that each superpixel contains one labeled sample. This increases the difficulty
of classifications.

Figure 6. Overall accuracies of the GCN-based methods versus different numbers of labeled samples
on the Indian Pines dataset.

Figure 7. Overall accuracies of GCN-based methods versus different numbers of labeled samples on
the University of Pavia dataset.

As can be seen, the proposed DRHy-ChebyNet had the best performance for all
numbers of labeled data except for the worst case, i.e., when the number of labeled samples
was down to 5, where it had comparable performance with the MDGCN. When the
number of labeled samples per class grew to 10, the proposed method had a giant step of
improvement, realizing good classification accuracy. The GCN and S2GCN method do not
use the superpixel to cluster local pixels, and thus their performance is not as good as the
other superpixel-based methods when lacking labeled samples.

4.3. Discussion of Running Time

The CNN-based methods are supervised learning methods, which require large com-
putational time to train the models, while all the GCN-based methods are semi-supervised
learning methods. Therefore, it would be fair to compare the running times of only GCN-
based methods. The running times of all GCN-based methods for the Indian Pines dataset
and University of Pavia dataset are listed in Table 7.

All the simulations were conducted on a portable workstation with a 2.6-GHz CPU
and 64 GB memory. More importantly, we used a Quadro T2000 GPU for accelerating
computations. Essentially, the ChebyNet requires a heavier training burden for each
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epoch than the GCN does. However, as can be seen, the proposed DRHy-ChebyNet is more
efficient than the other methods since it requires less training epochs to realize the optimum.

Empirically, 2000 epochs are enough for the DRHy-ChebyNet, while GCN-based
methods need about 4000 epochs. In this context, both the traditional GCN method and
the S2GCN method are pixelwise methods, and thus their training times are clearly much
larger than any other superpixel methods. Regarding to the testing times, all methods are
comparable, and the GCN and S2GCN methods are more efficient.

Table 7. Running times of training and testing processes of the semi-supervised learning methods.

Methods Running Time (s) IndianP PaviaU

GCN
Training time 254.76 412.79

Testing time 0.02 0.08

S2GCN
Training time 289.32 588.95

Testing time 0.03 0.12

MDGCN
Training time 85.53 384.25

Testing time 1.05 5.78

DRHy
Training time 50.96 112.58

Testing time 0.08 0.24

5. Conclusions

In this paper, we proposed a graph convolution framework based on diverse-region
segmentation for the HSI classification problem, which is named the DRHy method. Specif-
ically, we fully considered several concerns of previous studies as follows:

First, the superpixel segmentation method was leveraged to cluster the pixels in local
irregular regions. Second, the principal component analysis (PCA) method was employed
to relieve the curse of dimensionality problem and to improve the representation ability of
spectral information. Third, we constructed graphs based on the superpixels and employed
ChebyNet to aggregate similar superpixel regions and to efficiently classify each pixel
via semi-classification scheme. Fourth, diverse regions were used to construct diverse
graphs for reproducing different classification results, which were fused to vote for the
final classification performance.

Compared with previous state-of-the-art methods, the proposed method considered
the locally clustered spatial regions, globally contextual connections between similar pixels,
and dimensionality reduction for better spectral representations, realizing excellent perfor-
mance even with only a few labeled samples. Furthermore, as a benefit from the superpixel
framework, the proposed methods are quite efficient compared with the traditional GCN
methods that are based on a tremendous number of pixels. In the future, we would like to
explore deeper GCN features of the HSIs and to construct an end-to-end model without
superpixel preprocessing.
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