Displacement Prediction of the Muyubao Landslide Based on a GPS Time-Series Analysis and Temporal Convolutional Network Model
Abstract
:1. Introduction
2. Methodologies
2.1. Convolutional Neural Network (CNN)
2.2. Temporal Convolutional Network (TCN)
2.2.1. Causal Dilation Convolution Layer
2.2.2. Residual Block
2.3. Total Displacement Decomposition Based on Variational Mode
2.4. Salp Swarm Algorithm
2.5. Hybrid TCN Forecasting Model and Implementation Procedure
3. Case Study
3.1. Topography and Geology of the Muyubao Landslide
3.2. Displacement Characteristics Analysis
4. Model Implementation
4.1. Displacement Decomposition Result
4.2. Data Preparation
4.3. Analysis the Influencing Factors of Periodic Displacement
4.4. Hyper-Parameters and Models Training
5. Results and Discussion
5.1. Prediction Results
5.1.1. Trend Displacement Prediction
5.1.2. Periodic Displacement Prediction
5.1.3. Cumulative Displacement Prediction
5.2. Periodic Displacement Prediction Comparison among Different Models
5.2.1. Comparing the 1D-CNN Model with the TCN Model
5.2.2. Comparison among TCN, LSTM, and SVM
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Froude, M.J.; Petley, D.N. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazard. Earth Syst. 2018, 18, 2161–2181. [Google Scholar] [CrossRef] [Green Version]
- Kirschbaum, D.B.; Adler, R.; Hong, Y.; Hill, S.; Lerner-Lam, A. A global landslide catalog for hazard applications: Method, results, and limitations. Nat. Hazards 2009, 52, 561–575. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.-W.; Liu, D.-Y.; Yuan, Q.-Y.; Liu, B.; Liu, J.-C. A novel distributed optic fiber transduser for landslides monitoring. Opt. Lasers Eng. 2011, 49, 1019–1024. [Google Scholar] [CrossRef]
- Tofani, V.; Raspini, F.; Catani, F.; Casagli, N. Persistent Scatterer Interferometry (PSI) Technique for Landslide Characterization and Monitoring. Remote Sens. 2013, 5, 1045–1065. [Google Scholar] [CrossRef] [Green Version]
- Barra, A.; Solari, L.; Béjar-Pizarro, M.; Monserrat, O.; Bianchini, S.; Herrera, G.; Crosetto, M.; Sarro, R.; González-Alonso, E.; Mateos, R.; et al. A Methodology to Detect and Update Active Deformation Areas Based on Sentinel-1 SAR Images. Remote Sens. 2017, 9, 1002. [Google Scholar] [CrossRef] [Green Version]
- Petley, D.N.; Mantovani, F.; Bulmer, M.H.; Zannoni, A. The use of surface monitoring data for the interpretation of landslide movement patterns. Geomorphology 2005, 66, 133–147. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, H.; Gao, Y.; Li, X. Real-time monitoring and early warning of landslides at relocated Wushan Town, the Three Gorges Reservoir, China. Landslides 2010, 7, 339–349. [Google Scholar] [CrossRef]
- Corominas, J.; Moya, J.; Ledesma, A.; Lloret, A.; Gili, J.A. Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain). Landslides 2005, 2, 83–96. [Google Scholar] [CrossRef]
- Li, X.Z.; Kong, J.M. Application of GA–SVM method with parameter optimization for landslide development prediction. Nat. Hazard. Earth Syst. 2014, 14, 525–533. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yang, H.; Wang, S.; Xu, L.; Peng, J. Monitoring and Stability Analysis of the Deformation in the Woda Landslide Area in Tibet, China by the DS-InSAR Method. Remote Sens. 2022, 14, 532. [Google Scholar] [CrossRef]
- Lu, N.; Wayllace, A.; Oh, S. Infiltration-induced seasonally reactivated instability of a highway embankment near the Eisenhower Tunnel, Colorado, USA. Eng. Geol. 2013, 162, 22–32. [Google Scholar] [CrossRef]
- Huang, D.; Luo, S.-L.; Zhong, Z.; Gu, D.-M.; Song, Y.-X.; Tomás, R. Analysis and modeling of the combined effects of hydrological factors on a reservoir bank slope in the Three Gorges Reservoir area, China. Eng. Geol. 2020, 279, 105858. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, L.; Gui, L.; Du, J.; Yin, K.; Do, H.M. Landslide displacement prediction based on variational mode decomposition and WA-GWO-BP model. Landslides 2019, 17, 567–583. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, C.; Huang, B.; Ren, X.; Liu, C.; Hu, B.; Chen, Z. Landslide displacement prediction based on multi-source data fusion and sensitivity states. Eng. Geol. 2020, 271, 105608. [Google Scholar] [CrossRef]
- Lian, C.; Zeng, Z.; Yao, W.; Tang, H. Displacement prediction model of landslide based on a modified ensemble empirical mode decomposition and extreme learning machine. Nat. Hazards 2012, 66, 759–771. [Google Scholar] [CrossRef]
- Yang, B.; Yin, K.; Lacasse, S.; Liu, Z. Time series analysis and long short-term memory neural network to predict landslide displacement. Landslides 2019, 16, 677–694. [Google Scholar] [CrossRef]
- Chen, W.; Xu, H.; Chen, Z.; Jiang, M. A novel method for time series prediction based on error decomposition and nonlinear combination of forecasters. Neurocomputing 2021, 426, 85–103. [Google Scholar] [CrossRef]
- Tang, J.; Li, Y.; Yang, D.; Ding, M. An Approach for Predicting Global Ionospheric TEC Using Machine Learning. Remote Sens. 2022, 14, 1585. [Google Scholar] [CrossRef]
- Lian, C.; Zeng, Z.; Yao, W.; Tang, H. Extreme learning machine for the displacement prediction of landslide under rainfall and reservoir level. Stoch. Environ. Res. Risk Assess. 2014, 28, 1957–1972. [Google Scholar] [CrossRef]
- Liao, K.; Wu, Y.; Miao, F.; Li, L.; Xue, Y. Using a kernel extreme learning machine with grey wolf optimization to predict the displacement of step-like landslide. Bull. Eng. Geol. Environ. 2019, 79, 673–685. [Google Scholar] [CrossRef]
- Kv, S.; Pillai, G.N.; Peethambaran, B. Prediction of landslide displacement with controlling factors using extreme learning adaptive neuro-fuzzy inference system (ELANFIS). Appl. Soft Comput. 2017, 61, 892–904. [Google Scholar] [CrossRef]
- Ren, F.; Wu, X.; Zhang, K.; Niu, R. Application of wavelet analysis and a particle swarm-optimized support vector machine to predict the displacement of the Shuping landslide in the Three Gorges, China. Environ. Earth Sci. 2014, 73, 4791–4804. [Google Scholar] [CrossRef]
- Wang, J.; Nie, G.; Gao, S.; Wu, S.; Li, H.; Ren, X. Landslide Deformation Prediction Based on a GNSS Time Series Analysis and Recurrent Neural Network Model. Remote Sens. 2021, 13, 1055. [Google Scholar] [CrossRef]
- Liu, Z.-Q.; Guo, D.; Lacasse, S.; Li, J.-H.; Yang, B.-B.; Choi, J.-C. Algorithms for intelligent prediction of landslide displacements. J. Zhejiang Univ.-Sci. A 2020, 21, 412–429. [Google Scholar] [CrossRef]
- Wang, K.; Li, K.; Zhou, L.; Hu, Y.; Cheng, Z.; Liu, J.; Chen, C. Multiple convolutional neural networks for multivariate time series prediction. Neurocomputing 2019, 360, 107–119. [Google Scholar] [CrossRef]
- Basiri, M.E.; Nemati, S.; Abdar, M.; Cambria, E.; Acharya, U.R. ABCDM: An Attention-based Bidirectional CNN-RNN Deep Model for sentiment analysis. Future Gener. Comput. Syst. 2021, 115, 279–294. [Google Scholar] [CrossRef]
- Rossi, A.; Hagenbuchner, M.; Scarselli, F.; Tsoi, A.C. A Study on the effects of recursive convolutional layers in convolutional neural networks. Neurocomputing 2021, 460, 59–70. [Google Scholar] [CrossRef]
- Ossama, A.-H.; Mohamed, A.-R.; Jiang, H.; Li, D.; Gerald, P.; Dong, Y. Convolutional Neural Networks for Speech Recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 2014, 22, 1533–1545. [Google Scholar] [CrossRef] [Green Version]
- Bai, S.; Kolter, J.Z.; Koltum, V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling. arXiv 2018, arXiv:1803.01271. [Google Scholar]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Nasouri Gilvaei, M.; Jafari, H.; Jabbari Ghadi, M.; Li, L. A novel hybrid optimization approach for reactive power dispatch problem considering voltage stability index. Eng. Appl. Artif. Intell. 2020, 96, 103963. [Google Scholar] [CrossRef]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Lawrence, S.; Giles, L.; Tsoi, A.C.; Back, A.D. Face recognition: A Convolutional Neural-Network Approach. IEEE Trans. Neural Netw. 1997, 8, 98–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelletier, C.; Webb, G.; Petitjean, F. Temporal Convolutional Neural Network for the Classification of Satellite Image Time Series. Remote Sens. 2019, 11, 523. [Google Scholar] [CrossRef] [Green Version]
- Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Meena, S.; Tiede, D.; Aryal, J. Evaluation of Different Machine Learning Methods and Deep-Learning Convolutional Neural Networks for Landslide Detection. Remote Sens. 2019, 11, 196. [Google Scholar] [CrossRef] [Green Version]
- He, k.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Zhang, J.; He, J.; Long, J.; Yao, M.; Zhou, W. A New Denoising Method for UHF PD Signals Using Adaptive VMD and SSA-Based Shrinkage Method. Sensors 2019, 19, 1594. [Google Scholar] [CrossRef] [Green Version]
- Qais, M.H.; Hasanien, H.M.; Alghuwainem, S. Enhanced salp swarm algorithm: Application to variable speed wind generators. Eng. Appl. Artif. Intell. 2019, 80, 82–96. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; Faris, H.; Al-Ansari, N. Hybridized Extreme Learning Machine Model with Salp Swarm Algorithm: A Novel Predictive Model for Hydrological Application. Complexity 2020, 2020, 8206245. [Google Scholar] [CrossRef] [Green Version]
- Reshef, D.N.; Reshef, Y.A.; Finucane, H.K.; Grossman, S.R.; McVean, G.; Turnbaugh, P.J.; Lander, E.S.; Mitzenmacher, M.; Sabeti, P.C. Detecting novel associations in large data sets. Science 2011, 334, 1518–1524. [Google Scholar] [CrossRef] [Green Version]
- Luo, S.-L.; Huang, D.; Peng, J.-b.; Tomás, R. Influence of permeability on the stability of dual-structure landslide with different deposit-bedding interface morphology: The case of the three Gorges Reservoir area, China. Eng. Geol. 2022, 296, 106480. [Google Scholar] [CrossRef]
- Zhou, C.; Cao, Y.; Yin, K.; Wang, Y.; Shi, X.; Catani, F.; Ahmed, B. Landslide Characterization Applying Sentinel-1 Images and InSAR Technique: The Muyubao Landslide in the Three Gorges Reservoir Area, China. Remote Sens. 2020, 12, 3385. [Google Scholar] [CrossRef]
- He, X.; Montillet, J.-P.; Fernandes, R.; Bos, M.; Yu, K.; Hua, X.; Jiang, W. Review of current GPS methodologies for producing accurate time series and their error sources. J. Geodyn. 2017, 106, 12–29. [Google Scholar] [CrossRef]
- Medina, V.; Hürlimann, M.; Guo, Z.; Lloret, A.; Vaunat, J. Fast physically-based model for rainfall-induced landslide susceptibility assessment at regional scale. Catena 2021, 201, 105213. [Google Scholar] [CrossRef]
- Papa, M.N.; Medina, V.; Ciervo, F.; Bateman, A. Derivation of critical rainfall thresholds for shallow landslides as a tool for debris flow early warning systems. Hydrol. Earth Syst. Sci. 2013, 17, 4095–4107. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.-F.; Chen, Y.-P.P. Hybrid deep learning and empirical mode decomposition model for time series applications. Expert Syst. Appl. 2019, 120, 128–138. [Google Scholar] [CrossRef]
- Yao, W.; Li, C.; Zuo, Q.; Zhan, H.; Criss, R.E. Spatiotemporal deformation characteristics and triggering factors of Baijiabao landslide in Three Gorges Reservoir region, China. Geomorphology 2019, 343, 34–47. [Google Scholar] [CrossRef]
- He, K.; Wang, S.; Du, W.; Wang, S. Dynamic features and effects of rainfall on landslides in the Three Gorges Reservoir region, China: Using the Xintan landslide and the large Huangya landslide as the examples. Environ. Earth Sci. 2009, 59, 1267–1274. [Google Scholar] [CrossRef]
- Li, W.; Fang, H.; Qin, G.; Tan, X.; Huang, Z.; Zeng, F.; Du, H.; Li, S. Concentration estimation of dissolved oxygen in Pearl River Basin using input variable selection and machine learning techniques. Sci. Total Environ. 2020, 731, 139099. [Google Scholar] [CrossRef]
- Zheng, K.; Wang, X. Feature selection method with joint maximal information entropy between features and class. Pattern Recognit. 2018, 77, 20–29. [Google Scholar] [CrossRef]
- Xu, S.; Niu, R. Displacement prediction of Baijiabao landslide based on empirical mode decomposition and long short-term memory neural network in Three Gorges area, China. Comput. Geosci. 2018, 111, 87–96. [Google Scholar] [CrossRef]
- Zhou, C.; Yin, K.; Cao, Y.; Intrieri, E.; Ahmed, B.; Catani, F. Displacement prediction of step-like landslide by applying a novel kernel extreme learning machine method. Landslides 2018, 15, 2211–2225. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Cao, Y.; Yin, K.; Intrieri, E.; Catani, F.; Wu, L. Characteristic comparison of seepage-driven and buoyancy-driven landslides in Three Gorges Reservoir area, China. Eng. Geol. 2022, 301, 106590. [Google Scholar] [CrossRef]
- Carlà, T.; Intrieri, E.; Di Traglia, F.; Nolesini, T.; Gigli, G.; Casagli, N. Guidelines on the use of inverse velocity method as a tool for setting alarm thresholds and forecasting landslides and structure collapses. Landslides 2016, 14, 517–534. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Peng, D.; Zhang, S.; Zhu, X.; He, C.; Qi, X.; Zhao, K.; Xiu, D.; Ju, N. Successful implementations of a real-time and intelligent early warning system for loess landslides on the Heifangtai terrace, China. Eng. Geol. 2020, 278, 105817. [Google Scholar] [CrossRef]
- Cheng, W.; Wang, Y.; Peng, Z.; Ren, X.; Shuai, Y.; Zang, S.; Liu, H.; Cheng, H.; Wu, J. High-efficiency chaotic time series prediction based on time convolution neural network. Chaos Solitons Fractals 2021, 152, 111304. [Google Scholar] [CrossRef]
Model | Hyperparameter Set |
---|---|
TCN | Epoch = 200, K = [3, 3, 2], Nf = [32, 27, 26], lr = 0.012 |
LSTM | Epoch = 200, Nu = 30, Nl = 2, lr = 0.011 |
SVM | C = 11.635, γ = 0.0951 |
1D-CNN | Epoch = 200, Nk = [34, 25], Kc = [3, 2], lr = 0.008 |
Points | Period | a | b | c | d | e | f | R |
---|---|---|---|---|---|---|---|---|
ZG01 | November 2006 to December 2017 | −1.31 × 10−10 | 3.70 × 10−6 | −8.78 × 10−4 | −7.50 × 10−3 | 23.10 | −1.07 | 0.9996 |
ZG03 | November 2006 to December 2017 | −4.16 × 10−8 | 1.74 × 10−5 | −2.52 × 10−4 | 0.11 | 13.64 | 23.48 | 0.9994 |
ZG06 | November 2006 to December 2017 | −3.84 × 10−8 | 1.52 × 10−5 | −2.08 × 10−4 | 7.74 × 10−2 | 13.74 | 13.66 | 0.9995 |
ZG08 | November 2006 to December 2017 | −1.77 × 10−9 | 2.79 × 10−6 | −6.03 × 10−4 | 4.34 × 10−4 | 15.27 | 14.36 | 0.9994 |
ZG09 | November 2006 to December 2017 | −2.96 × 10−8 | 1.02 × 10−5 | −1.08 × 10−4 | −1.05 × 10−3 | 16.54 | −0.64 | 0.9992 |
ZG11 | November 2006 to December 2017 | −4.04 × 10−9 | 3.21 × 10−6 | −5.99 × 10−4 | 5.51 × 10−4 | 13.21 | 5.44 | 0.9995 |
ZG12 | November 2006 to December 2017 | 2.32 × 10−8 | −4.56 × 10−6 | 1.72 × 10−4 | −3.80 × 10−2 | 17.74 | −1.08 | 0.9996 |
Points | RMSE/mm | MAPE/% | R |
---|---|---|---|
ZG01 | 5.97 | 0.52 | 0.938 |
ZG03 | 6.84 | 1.32 | 0.920 |
ZG06 | 7.35 | 1.02 | 0.832 |
ZG08 | 5.71 | 2.10 | 0.892 |
ZG09 | 5.83 | 0.90 | 0.940 |
ZG11 | 5.89 | 3.52 | 0.955 |
ZG12 | 6.97 | 1.03 | 0.897 |
Points | RMSE/mm | MAPE/% | R |
---|---|---|---|
ZG01 | 16.60 | 0.60 | 0.981 |
ZG03 | 14.32 | 0.94 | 0.907 |
ZG06 | 11.55 | 0.52 | 0.836 |
ZG08 | 16.17 | 0.98 | 0.963 |
ZG09 | 24.54 | 1.33 | 0.897 |
ZG11 | 13.31 | 0.91 | 0.937 |
ZG12 | 14.71 | 0.69 | 0.938 |
Points | Model | RMSE/mm | MAPE/% | R |
---|---|---|---|---|
ZG01 | 1D-CNN | 7.30 | 4.54 | 0.857 |
TCN | 5.97 | 0.52 | 0.938 | |
ZG03 | 1D-CNN | 5.61 | 1.00 | 0.941 |
TCN | 6.84 | 1.32 | 0.920 | |
ZG06 | 1D-CNN | 8.52 | 1.79 | 0.880 |
TCN | 7.35 | 1.02 | 0.832 | |
ZG08 | 1D-CNN | 6.46 | 2.71 | 0.857 |
TCN | 5.71 | 2.10 | 0.892 | |
ZG09 | 1D-CNN | 6.83 | 1.41 | 0.922 |
TCN | 5.83 | 0.90 | 0.940 | |
ZG11 | 1D-CNN | 6.61 | 3.33 | 0.893 |
TCN | 5.89 | 3.52 | 0.955 | |
ZG12 | 1D-CNN | 7.08 | 0.59 | 0.893 |
TCN | 6.97 | 1.03 | 0.897 |
Points | Model | RMSE/mm | MAPE/% | R |
---|---|---|---|---|
ZG01 | SVM | 11.03 | 1.98 | 0.747 |
LSTM | 6.77 | 0.95 | 0.922 | |
TCN | 5.97 | 0.52 | 0.938 | |
ZG03 | SVM | 11.22 | 1.22 | 0.837 |
LSTM | 5.95 | 1.24 | 0.923 | |
TCN | 6.84 | 1.32 | 0.920 | |
ZG06 | SVM | 9.64 | 1.43 | 0.840 |
LSTM | 7.98 | 0.98 | 0.861 | |
TCN | 7.35 | 1.02 | 0.832 | |
ZG08 | SVM | 9.67 | 4.65 | 0.807 |
LSTM | 6.96 | 3.72 | 0.896 | |
TCN | 5.71 | 2.10 | 0.892 | |
ZG09 | SVM | 9.50 | 1.12 | 0.934 |
LSTM | 6.55 | 0.92 | 0.930 | |
TCN | 5.83 | 0.90 | 0.940 | |
ZG11 | SVM | 10.41 | 11.65 | 0.828 |
LSTM | 6.23 | 3.91 | 0.924 | |
TCN | 5.89 | 3.52 | 0.955 | |
ZG12 | SVM | 12.28 | 9.20 | 0.855 |
LSTM | 8.18 | 0.86 | 0.954 | |
TCN | 6.97 | 1.03 | 0.897 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, D.; He, J.; Song, Y.; Guo, Z.; Huang, X.; Guo, Y. Displacement Prediction of the Muyubao Landslide Based on a GPS Time-Series Analysis and Temporal Convolutional Network Model. Remote Sens. 2022, 14, 2656. https://doi.org/10.3390/rs14112656
Huang D, He J, Song Y, Guo Z, Huang X, Guo Y. Displacement Prediction of the Muyubao Landslide Based on a GPS Time-Series Analysis and Temporal Convolutional Network Model. Remote Sensing. 2022; 14(11):2656. https://doi.org/10.3390/rs14112656
Chicago/Turabian StyleHuang, Da, Jun He, Yixiang Song, Zizheng Guo, Xiaocheng Huang, and Yingquan Guo. 2022. "Displacement Prediction of the Muyubao Landslide Based on a GPS Time-Series Analysis and Temporal Convolutional Network Model" Remote Sensing 14, no. 11: 2656. https://doi.org/10.3390/rs14112656
APA StyleHuang, D., He, J., Song, Y., Guo, Z., Huang, X., & Guo, Y. (2022). Displacement Prediction of the Muyubao Landslide Based on a GPS Time-Series Analysis and Temporal Convolutional Network Model. Remote Sensing, 14(11), 2656. https://doi.org/10.3390/rs14112656