Precipitation and Anthropogenic Activities Jointly Green the China–Mongolia–Russia Economic Corridor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.2.1. MODIS EVI Data
2.2.2. ERA5 Reanalysis Data
2.2.3. Land Use/Cover Change Data and DEM Data
2.3. Statistical Methods
2.3.1. Partial Correlation Coefficient
2.3.2. Multiple Correlation Coefficient
2.3.3. Ordinary Least Square Method
2.3.4. Linear Mixed-Effects Models
2.3.5. Analysis of Variance (ANOVA)
2.3.6. Relative Contribution Analysis
2.4. Extraction of Vegetation Coverage
2.5. Desertification Classification
3. Results
3.1. Vegetation Change
3.2. Climate and Land Cover Change
3.2.1. Climate Change
3.2.2. Land Cover Change
3.3. Attribution of Vegetation Change
3.3.1. Climatic Impact on Vegetation Change
Vegetation Distribution
Vegetation Variation
- A.
- Partial correlation coefficients
- B.
- Multiple correlation coefficients
3.3.2. FVC Change Driving Type Classification
3.3.3. Relative Contribution to Significant Vegetation Change
4. Discussion
4.1. Impact of Anthropogenic Activities on Vegetation Improvement
4.1.1. Greening in TPNC
4.1.2. Greening in Inner Mongolia
4.2. Unsustainable Human-Induced Greening
4.3. Prevention and Control of Desertification
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and Its Drivers. Nat. Clim. Chang. 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Chen, Y.; Feng, X.; Tian, H.; Wu, X.; Gao, Z.; Feng, Y.; Piao, S.; Lv, N.; Pan, N.; Fu, B. Accelerated Increase in Vegetation Carbon Sequestration in China after 2010: A Turning Point Resulting from Climate and Human Interaction. Glob. Chang. Biol. 2021, 27, 5848–5864. [Google Scholar] [CrossRef] [PubMed]
- Song, X.P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global Land Change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Gong, P.; Wang, J.; Wang, X.; Ning, G.; Xu, B. Production of Global Daily Seamless Data Cubes and Quantification of Global Land Cover Change from 1985 to 2020—IMap World 1.0. Remote Sens. Environ. 2021, 258, 112364. [Google Scholar] [CrossRef]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India Lead in Greening of the World through Land-Use Management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, Drivers and Feedbacks of Global Greening. Nat. Rev. Earth Environ. 2020, 1, 14–27. [Google Scholar] [CrossRef]
- Piao, S.; Huang, M.; Liu, Z.; Wang, X.; Ciais, P.; Canadell, J.G.; Wang, K.; Bastos, A.; Friedlingstein, P.; Houghton, R.A.; et al. Lower Land-Use Emissions Responsible for Increased Net Land Carbon Sink during the Slow Warming Period. Nat. Geosci. 2018, 11, 739–743. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.W.; Haas, R.W.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. In Greenbelt, MD: NASA/GSFC Type III, Final Report; Texas A&M University: College Station, TX, USA, 1974. [Google Scholar]
- Overpeck, J.T.; Rind, D.; Goldberg, R. Climate-Induced Changes in Forest Disturbance and Vegetation. Nature 1990, 343, 51–53. [Google Scholar] [CrossRef]
- Theurillat, J.P.; Guisan, A. Potential Impact of Climate Change on Vegetation in the European Alps: A Review. Clim. Chang. 2001, 50, 77–109. [Google Scholar] [CrossRef]
- Fan, X.; Liu, Y.; Tao, J.; Wang, Y.; Zhou, H. MODIS Detection of Vegetation Changes and Investigation of Causal Factors in Poyang Lake Basin, China for 2001–2015. Ecol. Indic. 2018, 91, 511–522. [Google Scholar] [CrossRef]
- Ichii, K.; Kawabata, A.; Yamaguchi, Y. Global Correlation Analysis for NDVI and Climatic Variables and NDVI Trends: 1982–1990. Int. J. Remote Sens. 2002, 23, 3873–3878. [Google Scholar] [CrossRef]
- Piao, S.; Cui, M.; Chen, A.; Wang, X.; Ciais, P.; Liu, J.; Tang, Y. Altitude and Temperature Dependence of Change in the Spring Vegetation Green-up Date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agric. For. Meteorol. 2011, 151, 1599–1608. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, Y.; Zhang, L.; Wang, Z. The Relative Roles of Climate Variations and Human Activities in Vegetation Change in North China. Phys. Chem. Earth Parts A/B/C 2015, 87–88, 67–78. [Google Scholar] [CrossRef]
- Gao, Q.; Schwartz, M.; Zhu, W.; Wan, Y.; Qin, X.; Ma, X.; Liu, S.; Williamson, M.; Peters, C.; Li, Y. Changes in Global Grassland Productivity during 1982 to 2011 Attributable to Climatic Factors. Remote Sens. 2016, 8, 384. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.; Fang, J.; Ji, W.; Guo, Q.; Ke, J.; Tao, S. Variation in a Satellite-Based Vegetation Index in Relation to Climate in China. J. Veg. Sci. 2004, 15, 219–226. [Google Scholar] [CrossRef]
- Dong, S.; Yang, Y.; Li, F.; Cheng, H.; Li, J.; Bilgaev, A.; Li, Z.; Li, Y. An Evaluation of the Economic, Social, and Ecological Risks of China-Mongolia-Russia High-Speed Railway Construction and Policy Suggestions. J. Geogr. Sci. 2018, 28, 900–918. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Liu, L.; Liu, Y.; Gao, J.; Dai, E.; Feng, A.; Wang, W. The Belt and Road: Geographical Pattern and Regional Risks. J. Geogr. Sci. 2019, 29, 483–495. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Jiao, K.; Wu, S. Investigating the Spatially Heterogeneous Relationships between Climate Factors and NDVI in China during 1982 to 2013. J. Geogr. Sci. 2019, 29, 1597–1609. [Google Scholar] [CrossRef] [Green Version]
- Miao, L.; Sun, Z.; Ren, Y.; Schierhorn, F.; Müller, D. Grassland Greening on the Mongolian Plateau despite Higher Grazing Intensity. Land Degrad. Dev. 2021, 32, 792–802. [Google Scholar] [CrossRef]
- Boori, M.S.; Choudhary, K.; Kupriyanov, A. Detecting Vegetation Drought Dynamics in European Russia. Geocarto. Int. 2020. [Google Scholar] [CrossRef]
- Sodnomov, B.V.; Ayurzhanaev, A.A.; Tsydypov, B.Z.; Zharnikova, M.A.; Batomunkuev, V.S.; Zh Garmaev, E. Vegetation Cover Dynamics of Russia and Mongolia Border Territories. IOP Conf. Ser. Earth Environ. Sci. 2019, 320, 012028. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Wang, Z.X.; Liu, C.; Huete, A. From AVHRR-NDVI to MODIS-EVI: Advances in Vegetation Index Research. Acta Ecol. Sin. 2003, 23, 979–987. [Google Scholar]
- Guo, N. Vegetation Index and Its Advances. Arid Meteorol. 2003, 21, 71–75. [Google Scholar]
- Kaufman, Y.J.; Tanre, D. Atmospherically Resistant Vegetation Index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Liu, H.; Huete, A. A Feedback Based Modification of the NDVI to Minimize Canopy Background and Atmospheric Noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar] [CrossRef]
- Chen, P.Y.; Fedosejevs, G.; Tiscareno-Lopez, M.; Arnold, J.G. Assessment of MODIS-EVI, MODIS-NDVI and VEGETATION-NDVI Composite Data Using Agricultural Measurements: An Example at Corn Fields in Western Mexico. Environ. Monit. Assess. 2006, 119, 69–82. [Google Scholar] [CrossRef]
- Adegoke, J.O.; Carleton, A.M. Relations between Soil Moisture and Satellite Vegetation Indices in the U.S. Corn Belt. J. Hydrometeorol. 2002, 3, 395–404. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.H.; Li, X.B.; Shi, P.J. Variation in NDVI Driven by Climate Factors across China, 1983–1992. Acta Phytoecol. Sin. 2001, 25, 716–720. [Google Scholar]
- Piao, S.; Nan, H.; Huntingford, C.; Ciais, P.; Friedlingstein, P.; Sitch, S.; Peng, S.; Ahlström, A.; Canadell, J.G.; Cong, N.; et al. Evidence for a Weakening Relationship between Interannual Temperature Variability and Northern Vegetation Activity. Nat. Commun. 2014, 5, 5018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, Y.; Liu, X.; Xin, Q.; Wu, J.; Xu, X.; Pei, F.; Li, X.; Du, G.; Cai, Y.; Lin, K.; et al. Cumulative Effects of Climatic Factors on Terrestrial Vegetation Growth. J. Geophys. Res. Biogeosci. 2019, 124, 789–806. [Google Scholar] [CrossRef]
- Measho, S.; Chen, B.; Trisurat, Y.; Pellikka, P.; Guo, L.; Arunyawat, S.; Tuankrua, V.; Ogbazghi, W.; Yemane, T. Spatio-Temporal Analysis of Vegetation Dynamics as a Response to Climate Variability and Drought Patterns in the Semiarid Region, Eritrea. Remote Sens. 2019, 11, 724. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A.; et al. Global Land Cover Mapping from MODIS: Algorithms and Early Results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W. Development of a Global Land Cover Characteristics Database and IGBP DISCover from 1 km AVHRR Data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Schielzeth, H. Simple Means to Improve the Interpretability of Regression Coefficients. Methods Ecol. Evol. 2010, 1, 103–113. [Google Scholar] [CrossRef]
- Fisher, R.A. The General Sampling Distribution of the Multiple Correlation Coefficient. Proc. R. Soc. Lond. A 1928, 121, 654–673. [Google Scholar] [CrossRef] [Green Version]
- McArdle, B.H. The Structural Relationship: Regression in Biology. Can. J. Zool. 1988, 66, 2329–2339. [Google Scholar] [CrossRef]
- Pinheiro, J.C.; Bates, D.M. Mixed-Effects Models in S and S-PLUS; Statistics and Computing; Springer: New York, NY, USA, 2000; ISBN 978-0-387-98957-0. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. Stat. Comput. 2014, 1406, 133–199. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Development Core Team: Vienna, Austria, 2015. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 3rd ed.; International geophysics series; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2011; ISBN 978-0-12-385022-5. [Google Scholar]
- Nicholls, N. Increased Australian Wheat Yield Due to Recent Climate Trends. Nature 1997, 387, 484–485. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.; Zhou, W.; Zhang, J.; Pan, T. Effects of Climate Change and Crop Management on Changes in Rice Phenology in China from 1981 to 2010. J. Sci. Food Agric. 2021, 101, 6311–6319. [Google Scholar] [CrossRef]
- Dwyer, J.; Schmidt, G. The MODIS Reprojection Tool. In Earth Science Satellite Remote Sensing; Qu, J.J., Gao, W., Kafatos, M., Murphy, R.E., Salomonson, V.V., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 162–177. ISBN 978-3-540-35630-1. [Google Scholar]
- Holben, B.N. Characteristics of Maximum-Value Composite Images from Temporal AVHRR Data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Liang, S.; Li, X.; Wang, J. (Eds.) Chapter 13—Fractional Vegetation Cover. In Advanced Remote Sensing; Academic Press: Boston, MA, USA, 2012; pp. 415–438. ISBN 978-0-12-385954-9. [Google Scholar]
- Carlson, T.N.; Ripley, D.A. On the Relation between NDVI, Fractional Vegetation Cover, and Leaf Area Index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Batjargal, Z. Desertification in Mongolia. RALA Rep. 1997, 200, 107–113. [Google Scholar]
- Guo, X.; Chen, R.; Thomas, D.S.G.; Li, Q.; Xia, Z.; Pan, Z. Divergent Processes and Trends of Desertification in Inner Mongolia and Mongolia. Land Degrad. Dev. 2021, 32, 3684–3697. [Google Scholar] [CrossRef]
- Lee, J.-J.; Kim, C.-H. Roles of Surface Wind, NDVI and Snow Cover in the Recent Changes in Asian Dust Storm Occurrence Frequency. Atmos. Environ. 2012, 59, 366–375. [Google Scholar] [CrossRef]
- Jackson, S.T.; Lyford, M.E. Pollen Dispersal Models in Quaternary Plant Ecology: Assumptions, Parameters, and Prescriptions. Bot. Rev 1999, 65, 39–75. [Google Scholar] [CrossRef]
- Loubet, B.; Cellier, P.; Génermont, S.; Flura, D. An Evaluation of the Wind-Tunnel Technique for Estimating Ammonia Volatilization from Land: Part 2. Influence of the Tunnel on Transfer Processes. J. Agric. Eng. Res. 1999, 72, 83–92. [Google Scholar] [CrossRef]
- Lei, L.; Zhang, K.; Zhang, X.; Wang, Y.; Xia, J.; Piao, S.; Hui, D.; Zhong, M.; Ru, J.; Zhou, Z.; et al. Plant Feedback Aggravates Soil Organic Carbon Loss Associated With Wind Erosion in Northwest China. J. Geophys. Res. Biogeosci. 2019, 124, 825–839. [Google Scholar] [CrossRef]
- Woodruff, N.P.; Siddoway, F.H. A Wind Erosion Equation. Soil Sci. Soc. Am. J. 1965, 29, 602–608. [Google Scholar] [CrossRef]
- Wu, C.; Wang, J.; Ciais, P.; Peñuelas, J.; Zhang, X.; Sonnentag, O.; Tian, F.; Wang, X.; Wang, H.; Liu, R.; et al. Widespread Decline in Winds Delayed Autumn Foliar Senescence over High Latitudes. Proc. Natl. Acad. Sci. USA 2021, 118, e2015821118. [Google Scholar] [CrossRef] [PubMed]
- Schlesinger, W.H.; Reynolds, J.F.; Cunningham, G.L.; Huenneke, L.F.; Jarrell, W.M.; Virginia, R.A.; Whitford, W.G. Biological Feedbacks in Global Desertification. Science 1990, 247, 1043–1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravi, S.; D’Odorico, P.; Breshears, D.D.; Field, J.P.; Goudie, A.S.; Huxman, T.E.; Li, J.; Okin, G.S.; Swap, R.J.; Thomas, A.D.; et al. Aeolian Processes and the Biosphere. Rev. Geophys. 2011, 49, RG3001. [Google Scholar] [CrossRef] [Green Version]
- Lü, Y.; Zhang, L.; Feng, X.; Zeng, Y.; Fu, B.; Yao, X.; Li, J.; Wu, B. Recent Ecological Transitions in China: Greening, Browning and Influential Factors. Sci. Rep. 2015, 5, 8732. [Google Scholar] [CrossRef] [PubMed]
- Jain, H.K. Green Revolution: History, Impact and Future; Studium Press LLC: Houston, TX, USA, 2010; ISBN 978-1-4416-7448-7. [Google Scholar]
- Zhang, Y.; Peng, C.; Li, W.; Tian, L.; Zhu, Q.; Chen, H.; Fang, X.; Zhang, G.; Liu, G.; Mu, X.; et al. Multiple Afforestation Programs Accelerate the Greenness in the ‘Three North’ Region of China from 1982 to 2013. Ecol. Indic. 2016, 61, 404–412. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, B.; Zhang, Z.; Zhang, X.; Dai, S. The Three-North Shelterbelt Program and Dynamic Changes in Vegetation Cover. J. Resour. Ecol. 2014, 5, 53–59. [Google Scholar] [CrossRef]
- Zhao, C.W.; Yan, Y.G.; Guo, W.; Gao, S.Q. Analysis of Vegetation Dynamics and Driving Forces in Ordos: 2000–2019. Ecol. Econ. 2020, 16, 4–17. [Google Scholar]
- Bao, X.; Chen, Q. Desert Eroded Situation and Its Reform Composition in the Kubuqi Region. Res. Soil Water Conserv. 1998, 5, 26–29. [Google Scholar]
- Wu, B.; Ci, L.J. Landscape Change and Desertification Development in the Mu Us Sandland, Northern China. J. Arid Environ. 2002, 50, 429–444. [Google Scholar] [CrossRef]
- Qu, J.; Zu, R.; Zhang, K.; Fang, H. Field Observations on the Protective Effect of Semi-Buried Checkerboard Sand Barriers. Geomorphology 2007, 88, 193–200. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, B.; Xie, G.; Zhai, X.; Sun, H. Vegetation Cover Changes and Sand-Fixing Service Responses in the Beijing–Tianjin Sandstorm Source Control Project Area. Environ. Dev. 2020, 34, 100455. [Google Scholar] [CrossRef]
- Guo, C.Y.; Han, Z.W.; Ai-Min, L.I.; Zhong, S. The Typical Models of Ecological Management and Development and Utilization in the Hobq Desert. J. Northwest Norm. Univ. (Nat. Sci.) 2017, 53, 112–118. [Google Scholar]
- Wang, N.; Xie, J.; Han, J. A Sand Control and Development Model in Sandy Land Based on Mixed Experiments of Arsenic Sandstone and Sand: A Case Study in Mu Us Sandy Land in China. Chin. Geogr. Sci. 2013, 23, 700–707. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Wu, X. New Pattern to Control Mu Us Sandland. Res. Soil Water Conserv. 2009, 16, 176–180. [Google Scholar]
- Cui, Y. Interpretation and Dynamic Analysis in Desertification—A Case Study of Kubuqi Desert. Appl. Mech. Mater. 2013, 295, 2102–2106. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, B.; Li, Y. Mu Us Desert Is about to “Disappear” from Shaanxi. Shaanxi Daily, 23 April 2020. [Google Scholar]
- Ippolito, A.; Sala, S.; Faber, J.H.; Vighi, M. Ecological Vulnerability Analysis: A River Basin Case Study. Sci. Total Environ. 2010, 408, 3880–3890. [Google Scholar] [CrossRef]
- Hong, J.; Yi-Fei, N.I.; Gui-Lin, D.U.; Yun, X.J. Current Situation and Cause Analysis of Grassland Pests on Grassland in China. Pratacult. Sci. 2014, 31, 1374–1379. [Google Scholar]
- Su, J.; Liu, R.T.; Wei-Hong, J.I.; Jiao, T.; Cai, Z.S.; Hua, L.M. Stages and Characteristics of Grassland Rodent Pests Control and Research in China. Pratacult. Sci. 2013, 30, 1116–1123. [Google Scholar]
- Zhong, W.Q.; Zhou, Q.Q.; Sun, C.L. The Basic Characteristics of the Rodent Pests on the Pasture in Inner Mongolia and Its Ecological Strategies of Controlling. Acta Theriol. Sin. 1985, 5, 241–249. [Google Scholar]
- Malevsky-Malevich, S.P.; Molkentin, E.K.; Nadyozhina, E.D.; Shklyarevich, O.B. An Assessment of Potential Change in Wildfire Activity in the Russian Boreal Forest Zone Induced by Climate Warming during the Twenty-First Century. Clim. Chang. 2008, 86, 463–474. [Google Scholar] [CrossRef]
- Han, J.; Dai, H.; Gu, Z. Sandstorms and Desertification in Mongolia, an Example of Future Climate Events: A Review. Environ. Chem. Lett. 2021, 19, 4063–4073. [Google Scholar] [CrossRef] [PubMed]
- Meehl, G.A.; Zwiers, F.; Evans, J.; Knutson, T.; Mearns, L.; Whetton, P. Trends in Extreme Weather and Climate Events: Issues Related to Modeling Extremes in Projections of Future Climate Change. Bull. Am. Meteorol. Soc. 2000, 81, 427–436. [Google Scholar] [CrossRef] [Green Version]
- Luber, G.; McGeehin, M. Climate Change and Extreme Heat Events. Am. J. Prev. Med. 2008, 35, 429–435. [Google Scholar] [CrossRef]
- Qu, Y.; Pan, C.; Guo, H. Factors Affecting the Promotion of Conservation Tillage in Black Soil—The Case of Northeast China. Sustainability 2021, 13, 9563. [Google Scholar] [CrossRef]
- Bryan, B.A.; Gao, L.; Ye, Y.; Sun, X.; Connor, J.D.; Crossman, N.D.; Stafford-Smith, M.; Wu, J.; He, C.; Yu, D.; et al. China’s Response to a National Land-System Sustainability Emergency. Nature 2018, 559, 193–204. [Google Scholar] [CrossRef]
- Huang, S.; Kong, J. Assessing Land Degradation Dynamics and Distinguishing Human-Induced Changes from Climate Factors in the Three-North Shelter Forest Region of China. IJGI 2016, 5, 158. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Keenan, T.F.; Zhou, S. Exacerbated Drought Impacts on Global Ecosystems Due to Structural Overshoot. Nat. Ecol. Evol. 2021, 5, 1490–1498. [Google Scholar] [CrossRef]
- de Beurs, K.M.; Wright, C.K.; Henebry, G.M. Dual Scale Trend Analysis for Evaluating Climatic and Anthropogenic Effects on the Vegetated Land Surface in Russia and Kazakhstan. Environ. Res. Lett. 2009, 4, 045012. [Google Scholar] [CrossRef]
- Chen, T.; Bao, A.; Jiapaer, G.; Guo, H.; Zheng, G.; Jiang, L.; Chang, C.; Tuerhanjiang, L. Disentangling the Relative Impacts of Climate Change and Human Activities on Arid and Semiarid Grasslands in Central Asia during 1982–2015. Sci. Total Environ. 2019, 653, 1311–1325. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Li, P.; Wang, J.; Shun Chan, F.K.; Togtokh, C.; Ochir, A.; Davaasuren, D. Research Progress of Desertification and Its Prevention in Mongolia. Sustainability 2021, 13, 6861. [Google Scholar] [CrossRef]
- Filei, A.A.; Slesarenko, L.A.; Boroditskaya, A.V.; Mishigdorj, O. Analysis of Desertification in Mongolia. Russ. Meteorol. Hydrol. 2018, 43, 599–606. [Google Scholar] [CrossRef]
- Wang, J.; Wei, H.; Cheng, K.; Li, G.; Ochir, A.; Bian, L.; Davaasuren, D.; Chonokhuu, S.; Nasanbat, E. Spatio-Temporal Pattern of Land Degradation along the China-Mongolia Railway (Mongolia). Sustainability 2019, 11, 2705. [Google Scholar] [CrossRef] [Green Version]
- The World Bank. Mongolia—Lessons from Tree Planting Initiatives; The World Bank: Washington, DC, USA, 2010. [Google Scholar]
- Wang, J.; Wei, H.; Song, J.; Wang, H.; Bu, K. Implementation of the Informatization Application Scenario for Prevention and Control of Desertification in the China-Mongolia-Russia Economic Corridor of the Belt and Road Initiative—Taking the China-Mongolia Railway (Mongolia Section) as an Example. In China’s e-Science Blue Book 2020; Chinese Academy of Sciences, Cyberspace Administration of China, Ministry of Education of the PRC, Ministry of Science and Technology of the PRC, China Association for Science and Technology, Chinese Academy of Social Sciences, National Natural Science Foundation of China, Chinese Academy of Agricultural Sciences, Eds.; Springer: Singapore, 2021; pp. 335–357. ISBN 9789811583414. [Google Scholar]
- Suo, X.; Cao, S. China’s Three North Shelter Forest Program: Cost–Benefit Analysis and Policy Implications. Environ. Dev. Sustain. 2021, 23, 14605–14618. [Google Scholar] [CrossRef]
- Zhu, J.; Song, L. A Review of Ecological Mechanisms for Management Practices of Protective Forests. J. For. Res. 2021, 32, 435–448. [Google Scholar] [CrossRef]
Vegetation Cover | 2001 (km2) | 2019 (km2) | Difference (km2) |
---|---|---|---|
Evergreen Needleleaf Forests | 8.5 | 31.0 | 22.5 |
Deciduous Needleleaf Forests | 0.29 × 104 | 0.31 × 104 | 194.7 |
Deciduous Broadleaf Forests | 19.86 × 104 | 20.50 × 104 | 0.64 × 104 |
Mixed Forests | 3.03 × 104 | 3.25 × 104 | 0.22 × 104 |
Croplands | 37.53 × 104 | 38.04 × 104 | 0.51 × 104 |
Grasslands | 10.10 × 104 | 7.99 × 104 | 2.09 × 104 |
Explanatory Variables | Precipitation | Air Temperature | Wind Speed | Intercept |
---|---|---|---|---|
Coefficient | 0.0004 | 0.0005 | −0.0429 | 0.4241 |
Sum of square (SS) | 10,072 | 15 | 336 | Residual |
4794 | ||||
Contribution (p = SS/SST) | 68.3% | 0.1% | 2.1% | 29.6% |
Types | Driving Factors 1 | Proportion | Classification Indicators | ||||||
---|---|---|---|---|---|---|---|---|---|
Partial Correlation Coefficient | Multiple Correlation Coefficient | ||||||||
RE-P | RE-T | RE-W | RE-PT | RE-PW | RE-TW | RE-PTW | |||
I | Precipitation | 19.5% | t > t0.05 | ||||||
II | Temperature | 2.6% | t > t0.05 | ||||||
III | Wind speed | 3.8% | t > t0.05 | ||||||
IV | Precipitation, Temperature | 0.8% | t < t0.05 | F > F0.05 | F < F0.05 or F < FE-PT | F < F0.05 or F < FE-PT | |||
V | Precipitation, Wind speed | 1.0% | F < F0.05 or F < FE-PW | F > F0.05 | F < F0.05 or F < FE-PW | ||||
VI | Temperature, Wind speed | 0.5% | F < F0.05 | F < F0.05 or F < FE-TW | F > F0.05 | ||||
VII | Precipitation, Temperature, Wind speed | <0.1% | F < F0.05 | F > F0.05 | |||||
VIII | Non-climatic factors | 71.7% | F < F0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhang, X.; Xu, X. Precipitation and Anthropogenic Activities Jointly Green the China–Mongolia–Russia Economic Corridor. Remote Sens. 2022, 14, 187. https://doi.org/10.3390/rs14010187
Li X, Zhang X, Xu X. Precipitation and Anthropogenic Activities Jointly Green the China–Mongolia–Russia Economic Corridor. Remote Sensing. 2022; 14(1):187. https://doi.org/10.3390/rs14010187
Chicago/Turabian StyleLi, Xiang, Xueqin Zhang, and Xiaoming Xu. 2022. "Precipitation and Anthropogenic Activities Jointly Green the China–Mongolia–Russia Economic Corridor" Remote Sensing 14, no. 1: 187. https://doi.org/10.3390/rs14010187
APA StyleLi, X., Zhang, X., & Xu, X. (2022). Precipitation and Anthropogenic Activities Jointly Green the China–Mongolia–Russia Economic Corridor. Remote Sensing, 14(1), 187. https://doi.org/10.3390/rs14010187