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Abstract: Climate change and anthropogenic activities are widely considered the main factors
affecting vegetation growth. However, their relative contributions are under debate. Within the
non-climatic impact, detailed human activities, particularly government policy adjustments, are less
investigated. In this study, we develop a fractional vegetation coverage (FVC) extraction method
based on MODIS-EVI satellite data to analyze the spatiotemporal variation of vegetation and its
attributions in the China–Mongolia–Russia Economic Corridor (CMREC). The average FVC has
improved, with a general increase of 0.02/10a from 2000 to 2020. We construct a driving factor
identification system for FVC change, based on partial and multiple correlation coefficients, and we
divide the driving forces of FVC changes into seven climate-driven types and one non-climate-driven
type. The results reveal that FVC changes caused by climatic factors account for 28.2% of CMREC.
The most prominent greening (19.5%) is precipitation-driven, and is extensively distributed in
Khentii Aimag, Mongolia; southeast Inner Mongolia; west Jilin Province; and southwest Heilongjiang
Province, China. Moreover, we quantify the relative contribution of climatic and non-climatic
factors to significant FVC change using the first-difference multivariate regression method. The
results indicate that the effects of non-climatic factors on vegetation change outweigh those of
climatic factors in most areas. According to the land cover change and regional policy adjustment,
anthropogenic activities such as afforestation, reclamation, and planting structure adjustment explain
most vegetation improvement in the Northeast Plain; eastern Inner Mongolia; and the Hetao Irrigation
District, China. Meanwhile, both vegetation improvement and degradation disperse concurrently
in the Mongolian and Russian parts of CMREC, where climate change and anthropogenic activities
positively and negatively affect vegetation change, respectively. Despite the greening in most CMREC,
it must be noted that human-induced greening is unsustainable to some degree. The overdevelopment
of black soil area and sandy land, adverse effects of afforestation projects, and natural hazards related
to weather and climate extremes altogether threaten the local ecological security in the long run.
Therefore, governments should develop new desertification countermeasures in accordance with the
laws of nature, and enhance international cooperation to guarantee the ecological safety of CMREC.

Keywords: vegetation coverage; climate change; anthropogenic activities; attribution analysis;
desertification; China–Mongolia–Russia Economic Corridor (CMREC)

1. Introduction

Climate change and anthropogenic activities are widely considered the main factors
affecting vegetation growth [1]. However, the relative contributions of regional climate
change and local human activities to vegetation change are under debate [2]. Moreover,
within the non-climatic impact, detailed human activities, particularly government policy
adjustments, are less investigated. Therefore, in this study we analyze the spatiotemporal
variation of vegetation and its attributions in the CMREC.
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In recent decades, global land cover has changed dramatically due to natural and
human forces [3], giving rise to a series of environmental problems [4]. Nevertheless,
satellite data shows that one-third of the global vegetated area is greening, much larger
than that which is browning [5]. CO2 fertilization effects and climate change explain most
greening trends [1,6]. Beyond that, land-use changes have a marked impact on global
vegetation improvement [5,7]. Furthermore, global warming is projected to increase con-
tinuously until at least the mid-21st century under all emissions scenarios considered
(https://www.ipcc.ch/assessment-report/ar6/ (accessed on 16 December 2021)). In re-
sponse to the threat posed by potential climate extremes and anthropogenic activities, it is
indispensable to explore the dynamics and attribution of terrestrial vegetation.

Normalized Differential Vegetation Index (NDVI) is one widely used vegetation
parameter with good stability and accessibility to identify regional vegetation changes [8].
Climate change is one of the most critical factors affecting vegetation change [9–11]. Within
these climatic factors, precipitation and temperature stand out as the most important.
Previous studies have documented a significant positive correlation between NDVI and
temperature during the growing season, especially at high latitudes [12]. In addition,
warmer temperatures positively impact vegetation activity in cold regions and negatively
impact warm regions [13,14]. Studies have also reported that precipitation is positively
correlated with grassland growth, except for in the Arctic region [15]. In China, the warmer
temperature is responsible for the rise in NDVI at a national scale, while regional NDVI
variations are related to precipitation [16].

As an essential part of the Belt and Road Initiative (BRI), a strategy that seeks to
connect Asia with Africa and Europe via land and maritime networks, the CMREC was
officially ratified to build jointly by the three governments in July 2015. The corridor is
highly compatible with the Northeast Revitalization in China, the Eurasian Economic
Union (EAEU), the Far East Development in Russia, and the Steppe Road in Mongolia [17].
Hence, promoting sustainable development and ecological safety in CMREC will guarantee
the successful implementation of BRI. Presently, however, the ecological disasters caused
by climate change have an increasing influence on CMREC, posing a massive threat to the
safety of the region’s development, specifically for infrastructure such as roads, railways,
and oil and gas pipelines [18]. Therefore, it is of urgency and significance to explore the
vegetation change and its attribution in CMREC.

The vegetation coverage in CMREC has significantly improved over the last few
decades. The NDVI has increased in more than half of the regions in China since 1982 [19].
The vegetation index change in Northeast China was intricate, i.e., growing in crop areas
and declining in forest-dominated regions from 1982 to 2009. Simultaneously, the average
trend of the growing season NDVI value was downward in the Mongolia Plateau during
2000–2004 and upward during 1982–2000 and 2004–2015 [20]. The region covered by
vegetation continued to expand from 2000 to 2007 and reached its maximum in 2017 in
Russia [21]. Furthermore, NDVI increased in more than 78% of the entire border region
between Mongolia and Russia [22].

Nevertheless, CMREC has been suffering from destructive sandstorm disasters due to
the adverse weather conditions of concurrent high temperatures, low humidity, and strong
winds. In particular, a severe sandstorm hit Asia in mid-March 2021, bringing substantial
environmental and economic losses, high casualties, and colossal livestock deaths and
injuries (https://public.wmo.int/en/media/news/severe-sand-and-dust-storm-hits-asia
(accessed on 16 December 2021)). Moreover, CMREC is home to the primary sand sources
of this sandstorm event, including the Gobi Desert in Mongolia and Badain Jaran Desert
in China. Hence, this study focuses on the spatiotemporal variation of vegetation and its
climatic and anthropogenic driving forces in CMREC.

Here, we use MODIS-EVI satellite data instead of NDVI to analyze the vegetation
change in CMREC. Despite its good stability and accessibility [8], NDVI has several flaws.
Firstly, the algorithm of NDVI is based on the normalized ratio of the near-infrared (NIR)
and red bands, making NDVI easy to saturate and resulting in its amplification in the low-
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value region and compression in the humid regions with dense vegetation coverage [23].
Secondly, the atmosphere correction scheme in NDVI only includes corrections for the ozone
and Rayleigh scattering disturbances, with many interference factors—such as water vapor
and aerosol—ignored [24]. In addition, NDVI lacks effective countermeasures against
soil background disturbances, and has shortcomings in the maximum value synthesis
algorithm [25]. Therefore, based on NDVI, the atmospheric resistance vegetation index
(ARVI) [26], and the soil regulated vegetation index (Savi) [27,28], a feedback term is
introduced in the enhanced vegetation index (EVI) to modify the effects of the atmosphere
and soil [29], significantly improving the anti-interference capability [24]. Compared with
NDVI, EVI is less prone to saturation and remains sensitive in high-biomass regions [23,30].
Therefore, based on MODIS-EVI data, we extract FVC, an index describing the proportion
of vertical projection area of vegetation to the total area [31], to discuss the vegetation
change in CMREC.

This study explores the driving forces of vegetation change in CMREC based on
constructing a driving factor identification system of vegetation change. Statistical meth-
ods are favorable to identify the driving forces, and the partial and multiple correlation
coefficients are the most critical indicators [32–34]. For example, scholars have clarified
the driving effect of air temperature and precipitation on terrestrial vegetation change in
China during 1983–1992 with partial and multiple correlation coefficients [32]. Furthermore,
Wen et al. [34] apply a partial correlation coefficient method to detect the differentiation
in global vegetation growth under the scenarios with cumulative climate effects consid-
ered or not. In addition, Piao et al. [33] provide evidence for the weakening relationship
between temperature variability and vegetation productivity in the northern hemisphere.
It is worth mentioning that most of the existing climate–vegetation relationship research
usually selects temperature and precipitation as the main climatic factors affecting vege-
tation change [30,35]. However, wind speed is equally significant considering the severe
desertification and sandstorm disaster and its profound impact on vegetation growth in
CMREC. We, therefore, propose a driving factor identification system of FVC change based
on the three climatic factors: precipitation, temperature, and wind speed. This method
can identify the contribution of natural and anthropogenic activities to FVC changes and
emphatically clarify the comprehensive effects of multiple climatic factors to ensure the
completeness of the identification system.

2. Materials and Methods
2.1. Study Area

The study area is between 97.1◦E to 134.8◦E and 37.4◦N to 58.4◦N, covering a region of
4.3 × 106 km2. CMREC includes twenty administrative regions, including three provinces
and one autonomous region in China, eleven aimags (administrative regions in Mongolia,
equal to provinces) in Mongolia, and four oblasts and one republic in Russia (Figure 1). The
study area has a complex terrain structure, with an elevation drop of more than 3000 m. The
large geomorphic units primarily include the East Sayan Mountains, the Yablonoi Mountains,
the Gobi Altai Mountains, the Great Khingan Mountains, the Lesser Khingan Mountains,
the Changbai Mountains, the Yinshan Mountains, the Mongolian Plateau, and the Northeast
China Plain. There are four climatic zones in CMREC: temperate grassy zone, temperate
desert zone, temperate deciduous broadleaf forest zone, and subarctic coniferous zone.
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Figure 1. Topographic map of CMREC located at the junction of China, Mongolia, and Russia.

2.2. Data Source
2.2.1. MODIS EVI Data

The Terra Moderate Resolution Imaging Spectroradiometer (MODIS) MOD13A3 data
are monthly vegetation data with a spatial resolution of 1 km, providing global vegetation
data including NDVI, EVI, and NIR reflectance from 2000 to the present day (https://
modis.gsfc.nasa.gov/data/ (accessed on 16 December 2021)). Due to the significant spatial
differences in climatic conditions, vegetation distribution is diverse and complex in CMREC.
Therefore, we used EVI to describe vegetation change for its sensitivity in high-biomass
regions and the effective countermeasures against soil and atmosphere disturbances, which
can better adapt to different climate and vegetation types. We selected EVI data in eleven
tiles in eastern Asia (H23V03, H24V03, H24V04, H25V03, H25V04, H25V05, H26V03,
H26V04, H26V05, H27V04, and H27V05) from February 2000 to December 2020, completely
covering CMREC.

2.2.2. ERA5 Reanalysis Data

ERA5 (ECMWF’s Reanalysis 5) is the latest climate Reanalysis data from the European
Centre for Mesoscale Weather Forecasts (ECMWF), providing a detailed record of the
global atmosphere, land surface, and ocean waves since the 1950s [36]. We selected the
ERA5-Land land-surface climate reanalysis datasets (https://cds.climate.copernicus.eu
(accessed on 16 December 2021)). Compared with the previous version, this dataset has
a more extended observation sequence and a higher spatial resolution (0.1◦ × 0.1◦). In
addition, we utilized the monthly mean grid data of temperature, precipitation, and wind
speed from 2000 to 2020 in this paper.

https://modis.gsfc.nasa.gov/data/
https://modis.gsfc.nasa.gov/data/
https://cds.climate.copernicus.eu
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2.2.3. Land Use/Cover Change Data and DEM Data

MCD12Q1 data describe the global land cover characteristics in the resolution of
500 m derived from observations spanning one year’s input of Aqua and Terra data [37].
According to the International Geosphere-Biosphere Programme (IGBP, https://www.
igbp.ch/ (accessed on 16 December 2021)), there are seventeen primary land cover classes,
including eleven natural vegetation classes and three developed land classes, and three
non-vegetated land classes [38]. Among these, there are sixteen classes in CMREC.

Moreover, the Terra Advanced Spaceborne Thermal Emission and Reflection Ra-
diometer (ASTER) Global Digital Elevation Model (GDEM) data (ASTER GDEM V3,
https://lpdaac.usgs.gov/products/astgtmv003/ (accessed on 16 December 2021)) were
also used with a spatial resolution of about 30 m in this study.

2.3. Statistical Methods

The statistical methods used here include correlation analysis and linear statistical
models. Correlation analysis was employed to clarify vegetation variation with climate
changes, while the linear statistical models and variance analysis helped figure out the
trend of all factors and discuss the impact of spatial differences in climatic factors on
vegetation change in CMREC.

2.3.1. Partial Correlation Coefficient

It is difficult for a simple correlation coefficient to accurately describe the relationship
between a single independent and a dependent variable in multivariate correlation analysis.
On the contrary, the partial correlation coefficient could eliminate the interference of other
variables and obtain a more accurate judgment about the correlation between elements.
The calculation of the partial correlation coefficient is as follows [39]:

ryi,12...m =
−R∗yi√
R∗yyR∗ii

(1)

where ryi,12...m is the partial correlation coefficient between dependent variable y and
independent variable i with the other variables fixed. R∗yi, R∗ii and R∗yy are the cofactors
of the correlation coefficient matrix after removing row m + 1 and column i, row i and
column i, and row m + 1 and column m + 1, respectively. We use this method to study the
relationship between FVC and three climatic factors (i.e., precipitation, temperature, and
wind speed) in CMREC over the past decades. Then we distinguish the impact of different
climatic factors on vegetation change. In addition, the t-test method is often used to test the
significance of the partial correlation coefficient. The t-statistic is given below:

t =
ryi,12...m√

1− r2
yi,12...m

∗
√

n−m− 1 (2)

where n is the number of samples and m is that of independent variables. When |t| is
greater than t0.05 (the threshold t value at the level of 0.05), the partial correlation coefficient
is considered statistically significant at the level of 0.05.

2.3.2. Multiple Correlation Coefficient

The multiple correlation coefficient correlates the dependent variable and multiple inde-
pendent variables [40]. Therefore, the multiple correlation coefficient is calculated as follows:

Ry,12...m =

√
1− R∗

R∗yy
(3)

where Ry,12...m is the multiple correlation coefficient between a dependent variable y and m
independent variables; R∗ is the cofactor of this coefficient; the value range of Ry,12...m is

https://www.igbp.ch/
https://www.igbp.ch/
https://lpdaac.usgs.gov/products/astgtmv003/
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[0, 1]. The larger this coefficient is, the closer the relationship between the linear combina-
tion of m factors and y was. We aim to obtain the comprehensive influence of more than
one climatic factor on vegetation change using the multiple correlation coefficient. The
F-test method is usually adopted to test the statistical significance of multiple correlation
coefficients. The F-statistic is calculated using Equation (4):

F =
R2

y,12...m

1− R2
y,12...m

∗ n−m− 1
m

(4)

When F is greater than F0.05 (the threshold F value at the level of 0.05), the multiple
correlation coefficient is statistically significant with a level of 0.05.

2.3.3. Ordinary Least Square Method

The ordinary least square method (OLS) is a mathematical optimization scheme to seek
the best matching result by minimizing the sum of squared errors [41], usually used for
function fitting. Our research uses linear regressions to examine the temporal changes of
annual average FVC and three climatic factors, namely precipitation, temperature, and wind
speed. The statistically significant FVC change always corresponds to the definite vegetation
improvement owing to specific anthropogenic activities or significant climate change.

2.3.4. Linear Mixed-Effects Models

Linear mixed-effects models (LMMS) provide a flexible tool to analyze grouped
data [42]. This variance component model considers both the fixed effect and the random
effect. Utilizing the “Lme4” package [43] in the R environment [44], LMMS, including time
and location as random intercepts, is run to construct the linear relationship between FVC
and climatic factors.

FVC = a + bx1 + cx2 + dx3 + ε (5)

where a is the intercept of the FVC axis; x1, x2, and x3 are the precipitation, temperature,
and wind axis; b, c, d are the corresponding fixed coefficients; ε is the random effects term.

The spatial distribution of vegetation is tightly related to climatic factors. The multi-year
distribution of vegetation and climatic factors can be represented as several two-dimensional
raster matrices. We convert these two-dimensional matrices into one-dimensional sequences.
Then we employ the LMMs to analyze these sequences, taking the FVC sequence as the
dependent variable, the climatic factors as the explanatory variables, and the time and the
placement as the terms of the random effects.

2.3.5. Analysis of Variance (ANOVA)

ANOVA is usually used to determine whether the independent variable has a sig-
nificant effect on the dependent variable by analyzing the contribution of each variation
to the total [45]. In this study, we discuss the contribution of each climatic factor to the
FVC change by comparing the contribution rate ρ, which can be figured out by the ratio of
the sum of square deviations (SS) of a single climatic factor over the total sum of square
(SST) [46].

ρi =
SSi
SST

(6)

The factor with ρ more significant than the others is considered the dominant factor
in the vegetation change. Alternatively, the ANOVA method can also compare the LME
(Linear mixed-effects) fit with an ordinary fit without random effects, which helps to discuss
the influence of random effects on the fitting.

2.3.6. Relative Contribution Analysis

A first-difference multivariate regression method was used to separate the effects
of climate change from the combined effects of climatic and non-climatic factors [47].
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The response of vegetation change to climatic factors can be estimated using a multiple
regression model [48], as shown in Equation (7):

∆FVC = CPre∆Pre + CTem∆Tem + CWin∆Win + int (7)

where ∆FVC is the first-difference FVC value at each position with an interval of one year;
∆Pre, ∆Tem, and ∆Win are the first-difference values of precipitation, temperature and wind
speed, respectively; CPre, CTem and CWin are the regression coefficients, representing the
sensitivity of FVC to climatic factor changes; int is the intercept. According to Equation (7),
the isolated effects of climatic factors on FVC change can be calculated from Equation (8):

TFVC|C = CPreTPre + CTemTTem + CWinTWin (8)

The combined effects of climatic and non-climatic factors on FVC change were as-
sumed to be equivalent to the combination of their net effects, as shown in Equation (9):

TFVC = TFVC|C + TFVC|N (9)

where TFVC|C represents the FVC changes under the isolated effect of climate change. There-
fore, the relative contribution of climate change (RCC) and non-climatic effects (including
anthropogenic activities and random effects) (RCN) to FVC changes at each position can be
determined using Equations (10) and (11):

RCC =

∣∣∣TFVC|C

∣∣∣∣∣∣TFVC|C

∣∣∣+ ∣∣∣TFVC|N

∣∣∣ ∗ 100% (10)

RCN =

∣∣∣TFVC|N

∣∣∣∣∣∣TFVC|C

∣∣∣+ ∣∣∣TFVC|N

∣∣∣ ∗ 100% (11)

2.4. Extraction of Vegetation Coverage

To preprocess the MOD13A3 EVI data in different tiles, we used the MODIS Reprojec-
tion Tool (MRT) to finish the image mosaics and reprojection, and used ArcGIS to clip the
raster image according to the study area [49]. However, the quality of remote vegetation
sensing data is poor because of cloud, atmosphere, and land surface disturbance. Therefore,
we employed the maximum value composite (MVC) method, one of the most commonly
used maximization synthesis methods [50], to control the quality of remote sensing data
(Figure 2a). This method compares multiple EVI images pixel-by-pixel after quality control,
and then displays the maximum value at each pixel in one image, eliminating the distur-
bance of cloud, atmosphere, and sun altitude angle to the vegetation index data. These
annual maximum EVI distributions obtained from the monthly data help calculate the FVC,
an index that reflects vegetation distribution more accurately and intuitively [51]. FVC in a
limited area can be calculated by Equation (12) [52]:

FVC =
EVI − EVIsoil

EVIveg − EVIsoil
(12)

where EVIsoil and EVIveg are the EVI value in bare soil and pure vegetation areas, respec-
tively. The EVIsoil and EVIveg in our research are replaced with the minimum (−0.02) and
the maximum (0.85) EVI value of the region during the past 21 years, respectively.
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It is worth noting that the EVI value of water bodies or outliers due to cloud and
atmosphere disturbance are invalid. Here, we proposed a filter based on the land cover
types and the continuity of the data to extract the valid EVIsoil and EVIsoil (Figure 2b). The
valid EVIveg and EVIsoil must satisfy the following conditions: (1) The land cover is not a
water body, snow, ice, wetland, urban or built-up land; (2) The surrounding EVI data is
horizontal continuous. (3) The EVI value is not the outlier of the time series.

Therefore, we used the flow in Figure 2b to filter out the invalid values, where EVI(i, j, t)
was the EVI value in the position (i, j) at time t; LC(i, j) was the land cover type; EVIave(i, j)
and σ were the mean value and the standard deviation of the EVI time series in the
position (i, j), respectively. We first used the MCD12Q1 land use/cover change (LUCC)
data to ensure that the corresponding position was covered by vegetated area or barren.
Then, the horizontal continuity was tested, screening out EVI with the differences between
its surrounding value less than the constant c. Here, the constant c was selected as 0.01.
Finally, we filtered out the outliers with the difference between EVI(i, j, t) and EVIave(i, j)
greater than 2σ. The maximum/minimum EVI passing all the tests above were considered
valid EVIveg/EVIsoil .
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Roughly equivalent to the normalized EVI, FVC with a range from 0 to 1 eliminated
the interference of EVI values equal to or lower than zero. Meanwhile, we resampled the
FVC distribution using bilinear interpolation, and then produced the FVC distribution with
the same resolution (0.1◦ × 0.1◦) as ERA5 reanalysis data.

2.5. Desertification Classification

The classification indexes of the desertification degree are diversified because of dif-
ferent assessing factors and standards. Among the factors, FVC is an ideal index to assess
desertification. The desertification process is closely related to the surface vegetation con-
dition and directly influences the regional FVC. Considering the unique climate conditions
and vegetation distributions in CMREC, areas that suffered from desertification are mostly
wind-eroded grassland caused by climate change and excessive logging and grazing [53,54].
According to the Land Desertification Monitoring Method GB/T20483 (http://c.gb688.cn/
bzgk/gb/showGb?type=online&hcno=62E00314AFED9EDF6BAC3562FA2AB276 (accessed
on 16 December 2021)), the National Standards of PR China, we divide the desertification
degree in CMREC into five categories: non-desertification, mild desertification, moderate
desertification, severe desertification, and extremely severe desertification, corresponding to
the FVC of more than 70%, 50–70%, 30–50%, 10–30%, and less than 10%, respectively.

3. Results
3.1. Vegetation Change

In the past twenty years, the average EVI increased from southwest to northeast
in CMREC (Figure 3), with the dominant vegetation gradually shifting from desert to
grassland to coniferous forest to deciduous broadleaf forest. The low-EVI value occurred
in the South Omnogovi Aimag, Mongolia, and the Badain Jaran Desert in western Inner
Mongolia, China, with the lowest value of −0.03. In contrast, the high-EVI value is
extensively distributed in the eastern coastal areas of the Three Provinces in Northeast
China (TPNC, including Heilongjiang, Jilin, and Liaoning provinces), with the maximum
EVI value of 0.79.
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From southwest to northeast, the annual average FVC in CMREC increased during
2000–2020 (Figure 4a), which is highly consistent with the EVI distribution (Figure 3) and
responds to the gradually declining severity of desertification (Figure 4b). Therefore, we
divided the whole region into several sections according to the five desertification types.
The areas with extremely severe and severe desertification accounted for 2.3% and 18.5%
of the total area, respectively, mainly located in temperate desert and grassland on the
Mongolian Plateau. Significantly, the most severe desertification was along the bordering
areas between Ejina Banner in Alxa League, Inner Mongolia, and the Gobi Altai Mountains,
Mongolia. Moderate desertification areas made up 20.6% of CMREC, roughly in the
ecological transition zone between grassland and forest. Northeastern Inner Mongolia in
China and most of the Russian part of CMREC were mild desertification areas covered by
subarctic coniferous forests, accounting for 36.4% of the total. Non-desertification regions
were primarily located in the eastern part of CMREC, making up 22.3% of the total, where
dominant vegetation was the temperate deciduous broadleaf forest. The areas of mild
desertification and non-desertification totaled nearly 60% of CMREC, spared from severe
desertification.
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The regional average FVC indicated a significant increase of 0.02/10a (t-test, signif-
icance level = 0.05) from 2000 to 2020 (Figure 5a). The average value for the past two
decades was 0.49, with the minimum value appearing in 2000 (0.42) and the maximum
in 2018 (0.47). Figure 5b shows the spatial distribution of FVC change in CMREC. We
find FVC increased significantly in western TPNC and eastern Inner Mongolia, with a
maximum increase of 0.31/10a. In addition, there were two apparent concentrations of
vegetation degradation for the west of Amur Oblast and the surrounding area of Baikal
Lake. While for the subarctic coniferous region in northern CMREC, the FVC decreased
scattering. Moreover, the large areas of insignificant FVC change occurred in central Inner
Mongolia and southern Mongolia.

3.2. Climate and Land Cover Change
3.2.1. Climate Change

Climate change is one of the dominant factors affecting vegetation change. Therefore,
before the attribution analysis of vegetation change in CMREC, we first figured out the
average distribution of the three climatic factors (precipitation, temperature, and wind
speed) during 2000–2020.

The temperature has generally decreased from south to north (Figure 6a) in CMREC
over the past two decades. The high temperature (>9 ◦C) appeared in the Badain Jaran
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Desert in southwestern Inner Mongolia and southern Liaoning Province in China, with the
low temperature (<−9 ◦C) distributed in the northern Republic of Buryatia. The overall
temperature increased significantly in CMREC, with the most apparent warming up to
0.5 ◦C/10a (Figure 6b).
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The distribution of mean annual precipitation was highly consistent with that of FVC
in CMREC, with the overall rainfall increasing from southwest to northeast (Figure 6c). The
low-precipitation area was located in the desert in southern Mongolia and western Inner
Mongolia, with annual average precipitation of less than 200 mm. In comparison, the areas
with sufficient annual precipitation over 1000 mm appeared on the eastern coastal areas
of TPNC because of its location on the windward slope of the Changbai Mountains with
abundant water vapor brought by the summer monsoon. On the other hand, precipitation
decreased most significantly around Lake Baikal in Russia in the past two decades, with
a minimum of −5.0 mm/a (Figure 6d). Meanwhile, the precipitation increase reached
or exceeded 10.0 mm/a in Jewish Autonomous Oblast in Russia, parts of Heilongjiang
Province, Jilin Province, Inner Mongolia in China, parts of Dornod Aimag and Khentii
Aimag in Mongolia.

Westerly wind dominated the wind field in the study area and gradually shifted from
the southwest wind in the southern CMREC to the northwest wind in the northern CMREC.
Furthermore, the overall wind speed increased from north to south (Figure 6e). The entire
Mongolian Plateau was an area of strong wind, with the maximum wind speed (>2.5 m/s)
appearing north of the Yinshan Mountains to the south of the China–Mongolia border. The
minimum value (<0.5 m/s) appeared in mountainous areas of Eastern Siberia. Wind speed
in most of CMREC increased from 2000 to 2020 (Figure 6f). However, a decrease in wind
speed could predominantly be found in Omnogovi Aimag in Mongolia, the west of Lake
Baikal in Russia, and the west of Inner Mongolia in China.

3.2.2. Land Cover Change

There are about sixteen types of land cover in CMREC (Figure 7a,b). Two major types
were grassland and savanna (including woody savanna), which accounted for 34.8% and
24.9% of the total, respectively (in 2019) (Figure 7b). Forests, including evergreen needleleaf
forests, evergreen broadleaf forests, deciduous broadleaf forests, and mixed forests, were
the third-largest land cover type, making up more than 16.0% of CMREC. Moreover,
barren land (mainly desert) and land used for human activities (including cropland, and
urban/built-up land) accounted for about 10% of the total.



Remote Sens. 2022, 14, 187 12 of 28Remote Sens. 2022, 13, x FOR PEER REVIEW 12 of 29 
 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 6. Average distribution and variation of air temperature (a,b), precipitation (c,d), and wind 
speed (e,f) in CMREC during 2000–2020. 

3.2.2. Land Cover Change 
There are about sixteen types of land cover in CMREC (Figure 7a,b). Two major types 

were grassland and savanna (including woody savanna), which accounted for 34.8% and 
24.9% of the total, respectively (in 2019) (Figure 7b). Forests, including evergreen 
needleleaf forests, evergreen broadleaf forests, deciduous broadleaf forests, and mixed 
forests, were the third-largest land cover type, making up more than 16.0% of CMREC. 
Moreover, barren land (mainly desert) and land used for human activities (including 
cropland, and urban/built-up land) accounted for about 10% of the total. 

Areas with land cover change accounted for 17.3% of CMREC from 2001–2019 (Fig-
ure 7c). The transition of the forest and savanna was the most significant, with the former 
decreasing by 3.85 × 104 km2 and the latter increasing by 6.31 × 104 km2. Moreover, the non-
vegetated regions (soil, sand, and rock) decreased from 54.6 × 104 km2 in 2001 to 50.1 × 104 
km2 in 2019. Meanwhile, the croplands in CMREC increased by 1.41 × 104 km2.  

Figure 6. Average distribution and variation of air temperature (a,b), precipitation (c,d), and wind
speed (e,f) in CMREC during 2000–2020.



Remote Sens. 2022, 14, 187 13 of 28

Remote Sens. 2022, 13, x FOR PEER REVIEW 13 of 29 
 

 

Although the total forest areas decreased in CMREC, forests in China, especially 
TPNC, obviously increased (Table 1). The newly cultivated land in TPNC accounted for 
36.2% of the total in CMREC. 

 
Figure 7. Land cover in 2001 (a) and 2019 (b), and the land cover change (c) from 2001 to 2019 in 
CMREC. 

Table 1. Forest, cropland, and grassland changes in TPNC from 2001 to 2019. 

Vegetation Cover 2001 (km2) 2019 (km2) Difference (km2) 
Evergreen Needleleaf Forests 8.5 31.0 22.5 
Deciduous Needleleaf Forests 0.29 × 104 0.31 × 104 194.7 
Deciduous Broadleaf Forests 19.86 × 104 20.50 × 104 0.64 × 104 

Mixed Forests 3.03 × 104 3.25 × 104 0.22 × 104 
Croplands 37.53 × 104 38.04 × 104 0.51 × 104 
Grasslands 10.10 × 104 7.99 × 104 2.09 × 104 

3.3. Attribution of Vegetation Change 
3.3.1. Climatic Impact on Vegetation Change 

We analyzed the impact of climate on vegetation change from spatiotemporal per-
spectives. First, from the spatial perspective, we utilized the linear mixed-effects models 

Figure 7. Land cover in 2001 (a) and 2019 (b), and the land cover change (c) from 2001 to 2019
in CMREC.

Areas with land cover change accounted for 17.3% of CMREC from 2001–2019 (Figure 7c).
The transition of the forest and savanna was the most significant, with the former decreasing
by 3.85× 104 km2 and the latter increasing by 6.31× 104 km2. Moreover, the non-vegetated
regions (soil, sand, and rock) decreased from 54.6 × 104 km2 in 2001 to 50.1 × 104 km2 in
2019. Meanwhile, the croplands in CMREC increased by 1.41 × 104 km2.

Although the total forest areas decreased in CMREC, forests in China, especially TPNC,
obviously increased (Table 1). The newly cultivated land in TPNC accounted for 36.2% of
the total in CMREC.
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Table 1. Forest, cropland, and grassland changes in TPNC from 2001 to 2019.

Vegetation Cover 2001 (km2) 2019 (km2) Difference (km2)

Evergreen Needleleaf Forests 8.5 31.0 22.5
Deciduous Needleleaf Forests 0.29 × 104 0.31 × 104 194.7
Deciduous Broadleaf Forests 19.86 × 104 20.50 × 104 0.64 × 104

Mixed Forests 3.03 × 104 3.25 × 104 0.22 × 104

Croplands 37.53 × 104 38.04 × 104 0.51 × 104

Grasslands 10.10 × 104 7.99 × 104 2.09 × 104

3.3. Attribution of Vegetation Change
3.3.1. Climatic Impact on Vegetation Change

We analyzed the impact of climate on vegetation change from spatiotemporal per-
spectives. First, from the spatial perspective, we utilized the linear mixed-effects models
(LMMs) to discuss the influence of climatic factors. Second, from the spatial perspective,
we explored the effects of climate change using correlational analysis.

Vegetation Distribution

The vegetation distribution is closely related to climatic factors. We selected the
explanatory variables of precipitation, temperature, and wind speed (Table 2), using LMMs
and ANOVA to explore the influence of the uneven distribution of climatic factors on FVC.
The results show that precipitation was the major contributor, with a p value of 68.3%.
Precipitation was essential for plant growth through the water supply. As a result, with the
moisture conditions gradually shifting from arid to semi-arid to semi-humid and finally to
humid climate from southwest to northeast in CMREC, the dominant vegetation changed
from desert to grassland to coniferous forest and eventually to deciduous broadleaf forest.

Table 2. Result of LMMs analysis in CMREC from 2000 to 2020, where the precipitation, temperature,
and wind speed are explanatory variables; time and location are random intercepts.

Explanatory Variables Precipitation Air Temperature Wind Speed Intercept

Coefficient 0.0004 0.0005 −0.0429 0.4241

Sum of square (SS) 10,072 15 336
Residual

4794

Contribution (p = SS/SST) 68.3% 0.1% 2.1% 29.6%

At the same time, the p value of temperature (0.1%) and wind speed (2.1%) was much
smaller than that of precipitation. These two climatic factors were therefore considered
less essential contributors, which means it is worth noting that the impact of temperature
and wind speed varied remarkably in different regions in CMREC. The climatic warming
promoted vegetation growth in high latitudes and was inhibitory in low and middle
latitudes. While in the mid-to-high latitudes of the northern hemisphere, the sensitivity of
vegetation index to temperature became more robust with the latitude increasing. CMREC
belongs to the northernmost part of the mid-latitudes, where the relationship between
temperature and vegetation growth was relatively weak.

Meanwhile, wind speed changes affect regional vegetation coverage through multiple
perspectives such as plant physiology, soil, microclimate, ecological structure, and carbon
flux [55]. Low wind speed affects the pollination success of the plants that need natural
pollination [56]. In addition, the stability of the boundary layer increases under a calm
wind environment, inhibiting the emission rate of CO2 [57]. However, excessive strong
winds damage the surface of plant leaves, influencing the transpiration process of plants.
In addition, heavy wind enhances wind erosion, dramatically increasing the possibility
of soil organic matter loss [58,59]. Equally significantly, the high-speed near-surface wind
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strengthens the surface turbulence, accelerating soil water evaporation and causing soil
water shortage [60].

Consequently, moderate wind speed is beneficial to vegetation growth, just as re-
searchers indicate that too low or too high winds are unsuitable [61,62]. It was not difficult
to notice that the vegetation distribution was weakly correlated with the wind speed in CM-
REC. The diversity of vegetation cover and the significant wind speed differentiation makes
it hard to explain how wind speed influences vegetation growth by a single mechanism.

Vegetation Variation

We discuss the driving effect of climatic factors on FVC changes by giving the spatial
distribution of the partial and multiple correlation coefficient between climatic factor time
series and FVC sequence in CMREC from 2000 to 2020 (Figures 8 and 9).
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Figure 8. Spatial distribution of partial correlation coefficients between FVC and air temperature (a),
precipitation (b), and wind speed (c) in CMREC from 2000 to 2020.

A. Partial correlation coefficients

The partial correlation coefficients between FVC and precipitation, air temperature,
and wind speed were different. The results with a t-statistic greater than t0.05 were accepted
to pass the significance test, which responded to the absolute value of the partial correlation
coefficient greater than 0.47 in Figure 8. Among the partial correlation coefficients between
FVC and three climatic factors, the correlation between FVC and air temperature or wind
speed was relatively poor, with few grid points passing the significance test at the level
of 0.05 (Figure 8a,c). The partial correlation coefficient between air temperature and FVC
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was between −0.83 to 0.79. The significant regions were located in the central part of the
Omnogovi Aimag, accounting for a minor proportion of the total.
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(d) precipitation & temperature–wind speed in CMREC from 2000 to 2020.

The areas with the significant partial correlation coefficients between wind speed
and FVC were slightly larger than those between FVC and air temperature. Regions with
positive correlation coefficients principally appeared in northern Dornogovi Aimag in
Mongolia, central Inner Mongolia, and eastern Heilongjiang Province in China. By compar-
ison, negative correlation coefficients occurred in the Badain Jaran Desert in western Inner
Mongolia. Thus, despite the insignificant change of FVC and wind speed in southeastern
Inner Mongolia (Figures 5b and 6f), the partial correlation coefficients were significant
between FVC and wind speed.

Precipitation was a more crucial and direct contributor to FVC changes than tempera-
ture and wind speed. The regions with remarkable partial correlation coefficients between
FVC and precipitation were relatively extensive and mainly located in the Mongolian
Plateau (Figure 8b), areas with low (<30%) or medium (30–50%) vegetation coverage. FVC
changes were significantly related to precipitation in more than 60% of Mongolia, with
the partial correlation coefficients around 0.9. Additionally, north-central and southeast-
ern Inner Mongolia were prominent, with partial correlation coefficients between FVC
and precipitation.
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B. Multiple correlation coefficients

We obtained the multiple correlation coefficients under different configurations of
climatic factors (Figure 9), including the correlation coefficients between FVC and two
climatic factors or three factors. The results with an F-statistic greater than F0.05 were ac-
cepted to pass the significance test. That is to say, the multiple correlation coefficient of dual
climatic factors larger than 0.55 (Figure 9a–c) and that of three climatic factors greater than
0.62 were considered significant (Figure 9d). The areas with significant multiple correlation
coefficients between FVC and precipitation & temperature, precipitation & wind speed, and
temperature & wind speed, precipitation & temperature & wind speed accounted for 18.8%,
20.1%, 4.9%, and 16.9% of CMREC, respectively. The distribution patterns of the multiple
correlation coefficients between FVC and precipitation and temperature, precipitation and
wind speed, and precipitation and temperature and wind speed, were roughly similar,
with significant areas primarily gathered in southern and eastern Mongolia, north-central
and eastern Inner Mongolia in China, which is consistent with the regions with signifi-
cant partial correlation coefficients between precipitation and FVC. However, the multiple
correlations between FVC and temperature–wind speed were relatively weaker than others.

3.3.2. FVC Change Driving Type Classification

Based on the correlational analysis of FVC changes in CMREC during 2000–2020, we
classified the driving factors of FVC change into eight categories, including seven climate-
driven types and one non-climate-driven type (Table 3). Areas with significant partial
correlation coefficients between FVC and the single climatic factor were identified as single-
factor driving types (Type I, II, III). Regions with partial correlation coefficients insignificant
and multiple correlation coefficients of dual climatic factors statistically significant were
categorized as dual-factor driving types (Type IV, V, VI). Type VII was three-factor driving,
with multiple correlation coefficients of three climatic factors significant, and that of dual
climatic factors insignificant. Finally, a non-climate driving type (VIII) refers to the regions
with all correlation coefficients insignificant.

Our studies show that areas with FVC changes driven by climatic factors accounted
for approximately 28.2% of CMREC (Figure 10). Among the climate-driven types, Type I
was dominant, with FVC changes driven by precipitation in 19.5% of the total. These areas
are deserts and grasslands in arid or semi-arid regions, mostly distributed in eastern and
southern Mongolia and north-central and eastern Inner Mongolia. In contrast, in humid and
semi-humid regions, FVC changes were primarily driven by non-climatic factors because
of the favorable natural condition for humankind’s survival. The argument is as follows:
plant growth is highly dependent on precipitation in arid or semi-arid areas. Precipitation,
however, is not a limiting factor in vegetation improvement for humid or semi-humid areas
because abundant rainfall could offer more water than needed for essential plant growth.

Compared with precipitation, the driving effect of wind speed or temperature on FVC
changes was relatively weak. Areas with FVC changes driven by wind speed (Type III) only
accounted for 3.8% of the total. Overall, they scattered sparsely, with a slight concentration
in southwestern Heilongjiang Province and the Badain Jaran Desert in western Inner
Mongolia—flat regions with fewer elevation differences. Changes in surface roughness
here involved hardly any factors except for vegetation. Therefore, vegetation was directly
related to wind speed by affecting the near-surface friction, resulting in a significant
correlation between wind speed and vegetation index.

Areas with FVC changes driven by temperature accounted for (Type II) 2.6% of
CMREC and were more scattered in distribution than those dominated by Type I and
Type III, with the largest cluster in Amur Oblast, Russia.
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Table 3. The proportion of different driving types of vegetation change in CMREC and the classification criteria based on the partial and multiple correlation coefficients.

Types Driving Factors 1 Proportion

Classification Indicators

Partial Correlation Coefficient Multiple Correlation Coefficient

RE-P RE-T RE-W RE-PT RE-PW RE-TW RE-PTW

I Precipitation 19.5% t > t0.05
II Temperature 2.6% t > t0.05
III Wind speed 3.8% t > t0.05

IV Precipitation, Temperature 0.8%

t < t0.05

F > F0.05 F < F0.05 or F < FE-PT F < F0.05 or F < FE-PT
V Precipitation, Wind speed 1.0% F < F0.05 or F < FE-PW F > F0.05 F < F0.05 or F < FE-PW
VI Temperature, Wind speed 0.5% F < F0.05 F < F0.05 or F < FE-TW F > F0.05

VII Precipitation, Temperature, Wind speed <0.1% F < F0.05
F > F0.05

VIII Non-climatic factors 71.7% F < F0.05

1 The climatic factors in the same type are in no particular order. RE-P, RE-T, RE-W are the partial correlation coefficient between FVC and precipitation, temperature, wind speed.
RE-PT, RE-PW, RE-TW, and RE-PTW are the multiple correlation coefficients between FVC and precipitation–temperature, temperature–wind speed, precipitation–wind speed, and
precipitation–temperature–wind speed, respectively.
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Figure 10. Spatial distribution of driving types of FVC changes in CMREC during 2000–2020. There
are eight driving types, including seven climate-driven and one non-climate driven.

Compared with the three aforementioned types, areas with FVC changes driven by
several climatic factors accounted for a much smaller proportion, totaling about 2.3%.
Specifically, the areas with FVC changes driven by precipitation and temperature (Type IV),
precipitation and wind speed (Type V), temperature and wind speed (Type VI) made up
0.8%, 1.0%, and 0.5% of the total, respectively. Thus, it was hard to find a large-scale area
with FVC changes driven by multiple climatic factors in CMREC. Meanwhile, the regions
where all climatic factors of precipitation, temperature, and wind speed jointly drove the
FVC changes (Type VII) accounted for less than 0.1% of CMREC.

3.3.3. Relative Contribution to Significant Vegetation Change

For attribution of significant vegetation improvement, we used the first-difference
multivariate regression method to discuss the relative contribution of the climatic or non-
climatic impacts on significant FVC change (Figure 11). TFVC decomposed in this research
passed the t-test, and the differences between TFVC and TFVC|C were determined using the
two-sample t-test. We found that the effects of non-climatic factors on vegetation change
are greater than those of climatic factors for most areas with a significant FVC increase
during the past two decades.

Regions with the maximum climatic contribution were in eastern Inner Mongolia
in China, Khentii Aimag, and Darhan-Uul Aimag in Mongolia (Figure 11a). In contrast,
those with maximum non-climatic contribution were situated in western TPNC and the
Hetao Plain in China (Figure 11b). Meanwhile, areas where climatic effects overweighed
non-climatic effects (RCN > 50%) were mainly located in eastern Inner Mongolia, northern
TPNC in China, northern Mongolia, and scattered areas in Russia (Figure 11c).
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Although non-climatic effects could not absolutely represent the influence of anthro-
pogenic activities due to ignoring the more complex interactions such as synergistic or
non-linear effects, the results of the relative contribution analysis here illustrated the mag-
nitude of the direct effects of climatic factors and displayed the critical regions which might
be deeply disturbed by human activities from 2000 to 2020, providing perspectives for the
follow-up discussion about the impacts of anthropogenic activities on vegetation change
in CMREC.
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4. Discussion

Our study sheds light on the attribution of vegetation improvement in CMREC. Except
for the large-scale areas with FVC changes driven by precipitation, non-climatic factors,
especially government policy adjustments, afforestation and reclamation, agricultural
technological advances, and other anthropogenic activities, were the primary driving
forces in most CMREC [4,5,63]. Given the diversification of anthropogenic effects on
regional vegetation distribution, we consider the comprehensive impacts of climatic and
non-climatic factors when discussing the driving forces for the significant FVC change
in CMREC.

4.1. Impact of Anthropogenic Activities on Vegetation Improvement

The vegetation improvement was most prominent in the Three Provinces in Northeast
China (TPNC) and eastern Inner Mongolia in China for the whole CMREC during 2000–2020
(Figure 12). The increased precipitation explained the obvious greening in southeastern
Inner Mongolia, western Jilin Province, and southwestern Heilongjiang Province in China
(Figures 5b and 6d). While for the rest areas with marked vegetation improvement, the
obvious greening can be boiled down to anthropogenic activities.
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Figure 12. The FVC and land cover change in TPNC (a,b) and the Hetao Irrigation (c,d). This figure
is extracted from Figures 5 and 7, representing vegetation and anthropogenic activities change in
these significantly greening areas.

4.1.1. Greening in TPNC

Northeast China is the largest commodity grain base in China and one of the world’s
three black soil resources (Figure 12a,b). With the global “green revolution” initiated in the
mid-20th century [64], effective agricultural measures such as hybrid cultivars, multiple
cropping, fertilizer use, and farm mechanization have boosted the cropland expansion in
Northeast China. Furthermore, the grain varieties’ structure and the regional planning have
been continuously optimized to achieve high growth in grain output in the region, thereby
increasing the vegetation coverage of cultivated land [65]. Consequently, the center of
grain production in China has gradually shifted from the southwest to the northeast since
2000, resulting in the most significant adjustment of the national grain planting structure
in Northeast China. Hence, the cropland area increased from 37.53 × 104 km2 in 2001 to
38.04 × 104 km2 in 2019 in Northeast China (Table 1).

When we discuss the forest coverage growing, it is unavoidable to mention the Three
North Shelterbelt Program, a pioneering eco-construction work implemented by the Gov-
ernment of China, focusing on returning farmland to forest and grassland, essential for
ecological restoration [66]. As a crucial component of this splendid project, the massive
afforestation activities in TPNC are fruitful with forest area (including evergreen conifer-
ous forest, deciduous coniferous forest, deciduous broadleaf forest, and mixed coniferous
broadleaf forest) increasing by 0.88 × 104 km2 from 2001 to 2019 in TPNC (Table 1).
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Most notably, the growing areas of forests and croplands in TPNC were at the expense
of grassland reduction from 10.10 × 104 km2 in 2001 to 7.99 × 104 km2 in 2019 (Table 1).

4.1.2. Greening in Inner Mongolia

The greening in Inner Mongolia is attributed to both climatic and anthropogenic
factors. Here, we emphasize human-induced vegetation improvement in the irrigation
areas, cities, sandy lands, and deserts.

The vegetation coverage has increased since the 2000s in the Hetao Plain, the traditional
agricultural area and farming-pastoral transition zone in the upper reaches of the Yellow
River (Figure 12c,d). The greening is the most significant in the Hetao Irrigation Area in
southern Inner Mongolia. The local government proposed integrating green development
into the irrigation district plan to deepen irrigation district reform and ecological water
construction over the past two decades, especially since the 13th Five-Year Plan period
(from 2016 to 2020). As a result, advances in crop structure and irrigation technology
have been achieved, with the ecological environment well improved. At the same time,
vegetation in cities with high population densities in the Hetao Plain has improved to a
certain extent because of human activities. For example, in Ordos City, anthropogenic
activities are considered the main reasons for the city’s reversal of desertification, with
remarkable progress in forestry ecological construction (http://lcj.ordos.gov.cn/ (accessed
on 16 December 2021)). Therefore, the vegetation index showed an upward trend of
0.06/10a in the Ordos as a whole [67].

Furthermore, the new desertification control model tailored to local conditions has
been conducted in Inner Mongolia, famous for being home to four deserts and four sandy
lands. We take the Mu Us Sandland and Hobq Desert as an example. Severe soil erosion
and irrational human activities, such as overgrazing and over-reclaiming, exacerbated
the region’s desertification before the 2000s [68,69]. When realizing the seriousness of the
local ecological deterioration, the government carried out vigorous afforestation activities.
On the one hand, creative sand-fixation technology has been developed, with sand-fixing
vegetation and checkerboard sand-barriers widely used in the sand-protecting work [70,71].
These measures effectively improved the surface vegetation growth and played an essential
role in suppressing the sand and dust.

On the other hand, the integrated model combining multiple sand control modes was
applied in these sandy areas, including vegetation-engineering sand-fixing mode, sand
industry mode, and photovoltaic industry mode [72]. Hence, eco-agriculture, sand-fixing
forestry, and clean energy industry were developed on bulldozed sand dunes [73]. These
sand control patterns took both ecological and economic benefits into account [74]. To
date, the sandy areas in the Hobq Desert have sharply decreased from 45.76% to 28.66%,
with the greening area of Mu Us Sandland reaching 93.24% owing to ecological restoration
engineering [75,76]. The sand control experience in the Mu Us Sandland and Hobq Desert
shows that sandland control strategies in the new era require scientific implementation and
adaptation to local conditions.

4.2. Unsustainable Human-Induced Greening

Notwithstanding the greening in most CMREC, large areas of vegetation improvement
boil down to anthropogenic activities, particularly afforestation, returning farmland to
forests, and the planting structure adjustment. Thus, human-induced ecological restoration
is unsustainable.

Firstly, the environment of CMREC is sensitive to climate change and vulnerable to
extreme natural disasters, threatening vegetation growth [77]. The CMREC has long been
plagued by a variety of disasters, such as widespread pest outbreaks [78], rodents [79,80],
wildfires [81], and sandstorms [82]. Global warming has resulted in the growing frequency
and intensity of extreme weather and climate events with abnormal hydrometeorological
conditions [83]. For example, a severe sand and dust storm hit East Asia in the spring
of 2021, leading to civilian casualties and massive losses of yurts, houses, and fences in

http://lcj.ordos.gov.cn/
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Mongolia. This disaster was caused by persistent warming and drying conditions and
a solid Mongolian Cyclone (https://public.wmo.int/en/media/news/severe-sand-and-
dust-storm-hits-asia (accessed on 16 December 2021)). The projected climate in CMREC
will continue warming with intensified extreme climate events [84], posing a threat to the
region’s ecological security, particularly in arid and semi-arid regions, in the long run.

Secondly, as a vital commodity grain base, Northeast China faces the overdevelopment
of the black soil area, resulting in the thinning of the black soil layer, the decline of soil
organic matter, and the aggravation of soil salinization. Such problems, therefore, intensify
soil function degradation and lead to severe soil erosion [85]. According to the China
Soil and Water Conservation Bulletin in 2020, the soil erosion area of black soil in the
northeast is 2.16 × 105 km2, accounting for 19.86% of the total (http://www.mwr.gov.
cn/sj/tjgb/zgstbcgb/202109/t20210930_1545971.html (accessed on 16 December 2021)).
Hence, considering the unsustainability of the greening attributed to rapidly increasing
cropland, the promotion of conservation tillage in black soil regions becomes imperative.

Furthermore, although afforestation projects such as the Three North Shelterbelt
Program have significantly improved the vegetation coverage in northern China, the
comprehensive effects are still nuanced [86]. Adverse outcomes have occurred, chiefly con-
centrated on shelter forest degradation, biodiversity decrease, and ecological migration [87].
Meanwhile, excessive human intervention leads to an ecological structural overshoot, ex-
acerbating the regional drought due to previous anomalously marked increases in plant
productivity [88]. These phenomena remind us to pay attention to the rapid extension of
vegetation coverage in sandy land in Inner Mongolia, China. The water resources in the
sandy areas are insufficient to carry out large-scale oasis development at present, which
endangers the stability of the oasis ecosystem, sustainable agricultural development, and
regional ecological security. Notably, the local governments or officials should be alert
to the increasing forest coverage ratio, avoiding neglecting the potential ecological risk
beneath the energetic landscape spontaneously.

Equally significantly, deserticulture, which is generally considered promising, is also
a threat to the environment to some extent. Surging sandland exploitation is commonly
accompanied by overutilization of water resources, resulting in excessive consumption of
local ecological potential. For example, with some eco-agricultural industry promotion,
Selenium-enriched watermelon has been widely cultivated in the sandland in Northwest
China over the past two decades. However, this massive watermelon cultivation will
accelerate the loss of soil water and fertility with increasing planting ages, exacerbating
regional desertification and drought. As a result, the local governments have to give up
or suspend such high-profit deserticulture (http://www.nxzw.gov.cn/xwzx/zwyw/20
2107/t20210706_2912539.html (accessed on 16 December 2021)). Therefore, according to
the local conditions, entrepreneurs and peasants should cautiously exploit sandy land
resources with scientific guidance, emphasizing future sustainability.

4.3. Prevention and Control of Desertification

Regional desertification is intensifying in CMREC, especially in Mongolia and Russia.
Vegetation restoration and degradation are concurrent due to the combined effects of
climate change and anthropogenic activities [20]. We found that climate change contributed
to vegetation improvement, compared with the adverse effects of human activities on
vegetation growth for Mongolia and Russia. The contribution pattern in the two countries
is consistent with that in Central Asia [89,90]. The increasing precipitation is responsible
for the vegetation restoration. However, since the local government has not issued effective
decrees beneficial to vegetation restoration, vegetation coverage has declined sharply over
the past two decades around the principal cities, the China–Mongolia–Russia Railway [91],
or the Russia and Mongolia border territories [22]. Human factors, including overgrazing,
rapid urbanization, deforestation, and unreasonable mineral mining, explain most land
degradation [92,93]. The Mongolian government has established related policies, such
as the “Green Great Wall” shelterbelt construction plan to enhance forest protection and
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desertification control in the early years [94]. These measurements, however, have not been
achieved as expected, limited by the national economic strength to a large degree.

Simultaneously, there are also some unneglectable problems for the desertification
prevention and control measures in China [95]. Existing desertification control measures
are mainly state-led ecological projects, relying too much on the government. The short-
term vegetation restoration takes “greening” as the main goal and breaks through the
threshold of resource-carrying capacity [96]. Moreover, artificial vegetation sometimes
cannot adapt to local natural conditions for the Three North Shelterbelt Program or the
Returning Farmland to Forest/Grassland Program, with severe vegetation degradation
occurring in some regions [97]. To solve these problems, the Chinese Government initiated
the establishment of a new scheme of afforestation and grassland restoration based on
the regional water resources’ bearing capacity, in accordance with the natural law of
vegetation distribution.

In addition, straddling the borders of three countries, business cooperation and per-
sonnel exchange along the CMREC are frequent with cross-border disasters now and
then, such as wildfire and sandstorms. Therefore, governmental efforts and enhanced
international cooperation should focus on desertification control and regional sustain-
able development, especially in areas with apparent vegetation improvement induced by
anthropogenic activities, to guarantee ecological security in the China–Mongolia–Russia
Economic Corridor.

5. Conclusions

Our work provides new insights into the process and attribution of vegetation improve-
ment at a cross-border scale. We constructed a driving factor identification system of FVC
change to disclose the main driving forces of vegetation change in the China–Mongolia–Russia
Economic Corridor (CMREC) during 2000–2020. This study uses the Linear Mixed Models
to discuss the influence of climatic factors on vegetation distribution and employs the
partial and multiple correlation coefficients to explore the attribution of vegetation change.

We detect the phenomena of vegetation improvement with an average FVC increase
of 0.02/10a in CMREC over the past two decades, which can be explained chiefly by
increasing precipitation and enhanced anthropogenic activities. The areas with climate-
driven FVC changes account for 28.2% of the CMREC, with the most prominent greening
(19.5%) of precipitation-driven distributing mainly in the Khentii Aimag in Mongolia,
southeast Inner Mongolia, west Jilin Province, and southwest Heilongjiang Province in
China. Meanwhile, the significant FVC change in more regions owes to non-climatic factors.
Among these factors, anthropogenic activity is a double-edged sword to vegetation changes,
particularly in most arid or semi-arid regions in CMREC. On the one hand, afforestation and
agricultural development significantly improve the vegetation coverage in TPNC, eastern
inner Mongolia, and the Hetao Irrigation District in China. On the other hand, human
activities (i.e., overgrazing, deforestation, and urbanization) accelerate land degradation
in some regions of CMREC, especially in Mongolia and Russia. Moreover, the ecological
conservation and restoration projects and sandland exploitation which seemingly improve
vegetation coverage are unsustainable in the long run.

Therefore, we must be alert to, and seriously deal with, the increasing greenness
attributed to the overdevelopment of agriculture and deserticulture, with a long-lasting
threat of extreme weather and climate events in a warming CMREC. Consequently, scientific
desertification countermeasures and international cooperation should be strengthened to
keep the vegetation improvement sustainable in CMREC.
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