On the Geopolitics of Fire, Conflict and Land in the Kurdistan Region of Iraq
Abstract
:1. Introduction
Study Rationale and Objectives
- How has LULC in KR-I changed between 2000 and 2019, and in particular during the latest conflict periods that took place from 2014 onwards?
- How do the dynamics of fires and conflicts correspond across time and space?
- In what LULC contexts do conflicts and fires co-occur?
- What is the role of climate in the prevalence of fires?
2. Background on the Geopolitics of the Region
2.1. The Conflict Context in Iraq: 2000–2019
2.2. The Turkey–PKK Conflict
2.3. Media Reports on Environmental Impacts
3. Materials and Methods
3.1. Study Area
3.2. Data Description
3.3. Methods
- z = anomaly of precipitation/temperature
- χ = precipitation/temperature for year in question
- μ = mean precipitation/temperature for 2000–2019
- σ = standard deviation of precipitation/temperature for 2000–2019.
4. Results
4.1. Changes in LULC 2000–2019
4.2. LULC Changes during the Conflict Period 2014–Onwards
4.3. Spatiotemporal Patterns of Fire and Conflict
4.4. Yearly Precipitation and Land Surface Temperature
4.5. Partial Correlation Analysis
5. Discussion
5.1. LULC Change in KR-I from 2000–2019 and During the Conflict Periods
5.2. Spatiotemporal Patterns of Conflict and Fire Events
5.3. Relationship between Fire, Conflict and Climate
5.4. Limitations and Future Research
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Baumann, M.; Kuemmerle, T. The impacts of warfare and armed conflict on land systems. J. Land Use Sci. 2016, 11, 672–688. [Google Scholar] [CrossRef]
- Hanson, T.; Brooks, T.M.; Da Fonseca, G.A.B.; Hoffmann, M.; Lamoreux, J.F.; Machlis, G.; Mittermeier, C.G.; Mittermeier, R.A.; Pilgrim, J.D. Warfare in biodiversity hotspots. Conserv. Biol. 2009, 23, 578–587. [Google Scholar] [CrossRef] [PubMed]
- Machlis, G.E.; Hanson, T. Warfare ecology. In Warfare Ecology—A New Synthesis for Peace and Security; Springer: Dordrecht, The Netherlands, 2011; pp. 33–40. [Google Scholar]
- Baumann, M.; Radeloff, V.C.; Avedian, V.; Kuemmerle, T. Land-use change in the Caucasus during and after the Nagorno-Karabakh conflict. Reg. Environ. Chang. 2015, 15, 1703–1716. [Google Scholar] [CrossRef]
- Eklund, L.; Persson, A.; Pilesjö, P. Cropland changes in times of conflict, reconstruction, and economic development in Iraqi Kurdistan. Ambio 2016, 45, 78–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eklund, L.; Degerald, M.; Brandt, M.; Prishchepov, A.V.; Pilesjö, P. How conflict affects land use: Agricultural activity in areas seized by the Islamic State. Environ. Res. Lett. 2017, 12, 054004. [Google Scholar] [CrossRef] [Green Version]
- Butsic, V.; Baumann, M.; Shortland, A.; Walker, S.; Kuemmerle, T. Conservation and conflict in the Democratic Republic of Congo: The impacts of warfare, mining, and protected areas on deforestation. Biol. Conserv. 2015, 191, 266–273. [Google Scholar] [CrossRef]
- Stevens, K.; Campbell, L.; Urquhart, G.; Kramer, D.; Qi, J. Examining complexities of forest cover change during armed conflict on Nicaragua’s Atlantic Coast. Biodivers. Conserv. 2011, 20, 2597–2613. [Google Scholar] [CrossRef]
- Burgess, R.; Miguel, E.; Stanton, C. War and deforestation in Sierra Leone. Environ. Res. Lett. 2015, 10, 095014. [Google Scholar] [CrossRef] [Green Version]
- Gorsevski, V.; Kasischke, E.; Dempewolf, J.; Loboda, T.; Grossmann, F. Analysis of the Impacts of armed conflict on the Eastern Afromontane forest region on the South Sudan—Uganda border using multitemporal Landsat imagery. Remote Sens. Environ. 2012, 118, 10–20. [Google Scholar] [CrossRef]
- Sánchez-Cuervo, A.M.; Aide, T.M. Consequences of the armed conflict, forced human displacement, and land abandonment on forest cover change in Colombia: A multi-scaled analysis. Ecosystems 2013, 16, 1052–1070. [Google Scholar] [CrossRef]
- Armenteras, D.; Schneider, L.; Dávalos, L.M. Fires in protected areas reveal unforeseen costs of Colombian peace. Nat. Ecol. Evol. 2019, 3, 20–23. [Google Scholar] [CrossRef] [PubMed]
- Murillo-Sandoval, P.J.; Van Dexter, K.; Van Den Hoek, J.; Wrathall, D.; Kennedy, R. The end of gunpoint conservation: Forest disturbance after the Colombian peace agreement. Environ. Res. Lett. 2020, 15, 034033. [Google Scholar] [CrossRef]
- Maystadt, J.-F.; Mueller, V.; Van Den Hoek, J.; van Weezel, S. Vegetation changes attributable to refugees in Africa coincide with agricultural deforestation. Environ. Res. Lett. 2020, 15, 044008. [Google Scholar] [CrossRef] [PubMed]
- Tonini, F.; Liu, J. Telecoupling toolbox: Spatially explicit tools for studying telecoupled human and natural systems. Ecol. Soc. 2017, 22. [Google Scholar] [CrossRef]
- Tapete, D.; Cigna, F.; Donoghue, D.N.; Philip, G. Mapping changes and damages in areas of conflict: From archive C-band SAR data to new HR X-band imagery, towards the Sentinels. In Proceedings of the 9th International Workshop on Advances in the Science and Applications of SAR Interferometry and Sentinel-1 InSAR, Frascati, Italy, 23–27 March 2015. [Google Scholar]
- Milillo, P.; Tapete, D.; Cigna, F.; Perissin, D.; Salzer, J.; Lundgren, P.; Fielding, E.; Burgmann, R.; Biondi, F.; Milillo, G.; et al. Structural health monitoring of engineered structures using a space-borne synthetic aperture radar multi-temporal approach: From cultural heritage sites to war zones. In Proceedings of the SPIE Remote Sensing: InSAR Image Analysis, Modeling, and Techniques XVI, Edinburgh, UK, 26–29 September 2016. [Google Scholar]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Elvidge, C.; Zhou, Y.; Cao, C.; Warner, T. Remote sensing of night-time light. Int. J. Remote Sens. 2017, 38, 5855–5859. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Schroeder, W.; Justice, C.O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, W.; Oliva, P.; Giglio, L.; Csiszar, I.A. The New VIIRS 375 m active fire detection data product: Algorithm description and initial assessment. Remote Sens. Environ. 2014, 143, 85–96. [Google Scholar] [CrossRef]
- Ganteaume, A.; Camia, A.; Jappiot, M.; San-Miguel-Ayanz, J.; Long-Fournel, M.; Lampin, C. A Review of the Main Driving Factors of Forest Fire Ignition Over Europe. Environ. Manag. 2013, 51, 651–662. [Google Scholar] [CrossRef] [Green Version]
- Levin, N.; Tessler, N.; Smith, A.; McAlpine, C. The Human and Physical Determinants of Wildfires and Burnt Areas in Israel. Environ. Manag. 2016, 58, 549–562. [Google Scholar] [CrossRef]
- Vázquez, A.; Moreno, J. Sensitivity of fire occurrence to meteorological variables in Mediterranean and Atlantic areas of Spain. Landsc. Urban Plan. 1993, 24, 129–142. [Google Scholar] [CrossRef]
- Kleinman, P. The ecological sustainability of slash-and-burn agriculture. Agric. Ecosyst. Environ. 1995, 52, 235–249. [Google Scholar] [CrossRef]
- Yibarbuk, D.; Whitehead, P.J.; Russell-Smith, J.; Jackson, D.; Godjuwa, C.; Fisher, A.; Cooke, P.; Choquenot, D. Fire ecology and Aboriginal land management in central Arnhem Land, northern Australia: A tradition of ecosystem management. J. Biogeogr. 2001, 28, 325–343. [Google Scholar] [CrossRef]
- Levin, N. Human factors explain the majority of MODIS-derived trends in vegetation cover in Israel: A densely populated country in the eastern Mediterranean. Reg. Environ. Chang. 2016, 16, 1197–1211. [Google Scholar] [CrossRef]
- De Vos, H.; Jongerden, J.; Van Etten, J. Images of war: Using satellite images for human rights monitoring in Turkish Kurdistan. Disasters 2008, 32, 449–466. [Google Scholar] [CrossRef] [PubMed]
- van Etten, J.; Jongerden, J.; de Vos, H.J.; Klaasse, A.; van Hoeve, E.C.E. Environmental destruction as a counterinsurgency strategy in the Kurdistan region of Turkey. Geoforum 2008, 39, 1786–1797. [Google Scholar] [CrossRef]
- Dinc, P. Forest fires in Dersim and Şırnak: Conflict and Environmental Destruction. In Ecological Solidarity in the Kurdish Freedom Movement: Thought, Practice, and Challenges; Hunt, S., Ed.; Lexington Books: London, UK, 2021; Forthcoming. [Google Scholar]
- Rasul, A.; Ibrahim, G.R.F.; Hameed, H.M.; Tansey, K. A trend of increasing burned areas in Iraq from 2001 to 2019. Environ. Dev. Sustain. 2020, 23, 5739–5755. [Google Scholar] [CrossRef]
- Gibson, G.R.; Taylor, N.L.; Lamo, N.C.; Lackey, J.K. Effects of Recent Instability on Cultivated Area Along the Euphrates River in Iraq. Prof. Geogr. 2017, 69, 163–176. [Google Scholar] [CrossRef]
- Dennis, R.A.; Mayer, J.; Applegate, G.; Chokkalingam, U.; Colfer, C.J.P.; Kurniawan, I.; Lachowski, H.; Maus, P.; Permana, R.P.; Ruchiat, Y.; et al. Fire, People and Pixels: Linking Social Science and Remote Sensing to Understand Underlying Causes and Impacts of Fires in Indonesia. Hum. Ecol. 2005, 33, 465–504. [Google Scholar] [CrossRef]
- Eklund, L.; Abdi, A.; Islar, M. From Producers to Consumers: The Challenges and Opportunities of Agricultural Development in Iraqi Kurdistan. Land 2017, 6, 44. [Google Scholar] [CrossRef] [Green Version]
- Cordesman, A.H.; Toukan, A. Return of ISIS in Iraq, Syria, and the Middle East; Center for Strategic and International Studies: Washington, DC, USA, 2019. [Google Scholar]
- Oxford Analytica. Arson Campaign Will Raise Food Fears in Iraq and Syria; 2633-304X; Oxford Analytica: Oxford, UK, 2019. [Google Scholar]
- Rahimi, I.; Azeez, S.N.; Ahmed, I.H. Mapping Forest-Fire Potentiality Using Remote Sensing and GIS, Case Study: Kurdistan Region-Iraq. In Environmental Remote Sensing and GIS in Iraq; Al-Quraishi, A.M.F., Negm, A.M., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 499–513. [Google Scholar]
- Abdo, H.G. Impacts of war in Syria on vegetation dynamics and erosion risks in Safita area, Tartous, Syria. Reg. Environ. Chang. 2018, 18, 1707–1719. [Google Scholar] [CrossRef]
- Lewandowsky, S.; Stritzke, W.G.K.; Freund, A.M.; Oberauer, K.; Krueger, J.I. Misinformation, disinformation, and violent conflict: From Iraq and the “War on Terror” to future threats to peace. Am. Pscychol. 2013, 68, 487–501. [Google Scholar] [CrossRef]
- Aboufadel, L. Over 26,000 Iraqi Soldiers Killed in 4 Year War with ISIS. Al-Masdar News. 13 December 2017. Available online: https://www.almasdarnews.com/article/26000-iraqi-soldiers-killed-4-year-war-isis/ (accessed on 1 February 2021).
- Statista. Number of documented civilian deaths in the Iraq war from 2003 to September 2020. In Statista Research Department; Statista: Hamburg, Germany, 2020. [Google Scholar]
- Sundberg, R.; Melander, E. Introducing the UCDP Georeferenced Event Dataset. J. Peace Res. 2013, 50, 523–532. [Google Scholar] [CrossRef]
- Dinc, P. The Kurdish Movement and the Democratic Federation of Northern Syria: An Alternative to the (Nation-)State Model? J. Balk. Near East. Stud. 2020, 22, 47–67. [Google Scholar] [CrossRef]
- International Crisis Group. Turkey’s PKK Conflict: A Visual Explainer. Available online: https://www.crisisgroup.org/content/turkeys-pkk-conflict-visual-explainer (accessed on 1 February 2021).
- Ali, S. Iraq Reveals Causes of Fires Destroying Thousands of Acres of Land. Kurdistan 24. 9 June 2019. Available online: https://www.kurdistan24.net/en/story/19841-Iraq-reveals-causes-of-fires-destroying-thousands-of-acres-of-land (accessed on 1 February 2021).
- Al-Monitor. Islamic State Believed Behind Crop Fires in Iraq’s Disputed Territories. Al-Monitor. 13 May 2020. Available online: https://www.al-monitor.com/originals/2020/05/farm-fires-resume-iraq-disputed-territories-islamic-state.html (accessed on 1 February 2021).
- Abdullah, R. 2.2 Million Acres of Forest Lost to Fire, Deforestation, Budget Cuts: KRG. Rudaw. 17 October 2018. Available online: https://www.rudaw.net/english/kurdistan/171020182 (accessed on 1 February 2021).
- Shilani, H. KRG Ministry: Burning Of Kurdish Farmers’ Crops in Iraq ‘Systematic2019’. Kurdistan 24. 30 May 2020. Available online: https://www.kurdistan24.net/en/story/22512-KRG-ministry:-Burning-of-Kurdish-farmers%27-crops-in-Iraq-%27systematic%27#:~:text=The%20Kurdistan%20Region’s%20Ministry%20of,the%20%22fire%20of%20hatred.%22 (accessed on 1 February 2021).
- Schwartzstein, P. Iraq races to save last of Middle East’s forests from burning. In National Geographic; National Geographic: Washington, DC, USA, 2019; Available online: https://www.nationalgeographic.co.uk/environment-and-conservation/2019/07/iraq-races-save-last-middle-easts-forests-burning (accessed on 1 February 2021).
- Hawramy, F. Fires and Armed Conflict Take Toll on Kurdish Flora, Fauna. Al-Monitor. 5 July 2018. Available online: https://www.al-monitor.com/originals/2018/07/kurdish-forests-under-threat-of-wildfires.html (accessed on 1 February 2021).
- Crisp, W. Last Chance for the Persian Leopard: The Fight to Save Iraqi Kurdistan’s Forests. The Guardian. 20 June 2020. Available online: https://www.theguardian.com/environment/2020/jun/20/landmines-last-line-of-defence-for-kurdistan-endangered-persian-leopard-aoe (accessed on 1 February 2021).
- UNEP. Salvaging Iraq’s remaining wilderness. In UN Environment Programme; UNEP: Nairobi, Kenya, 2018. [Google Scholar]
- Lelieveld, J.; Hadjinicolaou, P.; Kostopoulou, E.; Chenoweth, J.; El Maayar, M.; Giannakopoulos, C.; Hannides, C.; Lange, M.A.; Tanarhte, M.; Tyrlis, E.; et al. Climate change and impacts in the Eastern Mediterranean and the Middle East. Clim. Chang. 2012, 114, 667–687. [Google Scholar] [CrossRef] [Green Version]
- Mosa, W.L. Forest Cover Change and Migration in Iraqi Kurdistan: A Case Study from Zawita Sub-District; Michigan State University: East Lansing, MI, USA, 2016. [Google Scholar]
- Didan, K.; Munoz, A.B.; Solano, R.; Huete, A. MODIS Vegetation Index User’s Guide; MOD13 Series; Vegetation Index and Phenology Lab, The University of Arizona: Tucson, AZ, USA, 2015; pp. 1–38. [Google Scholar]
- Schroeder, W.; Giglio, L. NASA VIIRS Land Science Investigator Processing System (SIPS) Visible Infrared Imaging Radiometer Suite (VIIRS) 375 m & 750 m Active Fire Products: Product User’s Guide Version 1.4; NASA: Washington, DC, USA, 2018.
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Vlassova, L.; Pérez-Cabello, F.; Mimbrero, M.R.; Llovería, R.M.; García-Martín, A. Analysis of the relationship between land surface temperature and wildfire severity in a series of landsat images. Remote Sens. 2014, 6, 6136–6162. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Hammond, R.; McCullagh, P.S. Quantitative techniques in geography: An introduction. In OUP Catalogue; Oxford University Press: Oxford, UK, 1978. [Google Scholar]
- Kim, S. ppcor: An R Package for a Fast Calculation to Semi-partial Correlation Coefficients. Commun. Stat. Appl. Methods 2015, 22, 665–674. [Google Scholar] [CrossRef] [Green Version]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Noori, Z.; Kazemzadeh, M.; Jamali, S.; Abdi, A.M. Four decades of synoptic air temperature data over Iran reveals linear and nonlinear warming. 2021. Forthcoming. [Google Scholar]
- Eklund, L.; Seaquist, J. Meteorological, agricultural and socioeconomic drought in the Duhok Governorate, Iraqi Kurdistan. Nat. Hazards 2015, 76, 421–441. [Google Scholar] [CrossRef]
- Eklund, L.; Theisen, O.M.; Baumann, M.; Forø Tollefsen, A.; Kuemmerle, T.; Østergaard Nielsen, J. Drought, crop failure and recovery in pre-conflict Syria: Deconstructing the prevailing drought-conflict narrative. 2021. Forthcoming. [Google Scholar]
- IOM. Demographic Survey—Kurdistan Region of Iraq; International Organization for Migration: Baghdad, Iraq, 2018. [Google Scholar]
- Rate, A.W.; Sheikh-Abdullah, S.M. The geochemistry of calcareous forest soils in Sulaimani Governorate, Kurdistan Region, Iraq. Geoderma 2017, 289, 54–65. [Google Scholar] [CrossRef]
- Farrell, S.; Fukada, S.; Myers, S.L. With the P.K.K. in Iraq’s Qandil Mountains. In The New York Times. At War: Notes From the Front Lines; 5 January 2011; Available online: https://atwar.blogs.nytimes.com/2011/01/05/with-the-p-k-k-in-iraqs-qandil-mountains/ (accessed on 1 February 2021).
- Abdi, A.M.; Boke-Olén, N.; Jin, H.; Eklundh, L.; Tagesson, T.; Lehsten, V.; Ardö, J. First assessment of the plant phenology index (PPI) for estimating gross primary productivity in African semi-arid ecosystems. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 249–260. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Liu, C.; Zang, F.; Yang, J.; Li, N.; Rong, Z.; Zhao, C. Impacts of Topography on the Land Cover Classification in the Qilian Mountains, Northwest China. Can. J. Remote Sens. 2020, 46, 344–359. [Google Scholar] [CrossRef]
- Wardrop, N.A.; Jochem, W.C.; Bird, T.J.; Chamberlain, H.R.; Clarke, D.; Kerr, D.; Bengtsson, L.; Juran, S.; Seaman, V.; Tatem, A.J. Spatially disaggregated population estimates in the absence of national population and housing census data. Proc. Natl. Acad. Sci. USA 2018, 115, 3529–3537. [Google Scholar] [CrossRef] [Green Version]
- Carmel, Y.; Paz, S.; Jahashan, F.; Shoshany, M. Assessing fire risk using Monte Carlo simulations of fire spread. For. Ecol. Manag. 2009, 257, 370–377. [Google Scholar] [CrossRef]
Baseline Period 1: Long (2000–2013) | Baseline Period 2: Short (2010–2013) | Conflict Period 1: IS-Iraq Conflict (2014–2016) | Conflict Period 2: Turkey-PKK Conflict (2017–2019) |
---|---|---|---|
B1 | B2 | C1 | C2 |
This period is characterized by increased stability in the KR-I, but decreased stability in Iraq as a whole, starting with the U.S.-led invasion in 2003. | A period of decreased violence in Iraq in general, and particularly in the KR-I. | War between IS and the Government of Iraq in locations close to the KR-I. As violence related to this conflict was substantially reduced in 2017, this period ends in 2016. | In 2017, there was an increase in violence related to the Turkey-PKK conflict in the KR-I. The year 2019 marks the end of the study period, not the conflict. |
Response Variable: Sum of Fire Hotspot (Getis-Ord Gi*) | |||||
---|---|---|---|---|---|
Exp # | Explanatory Variable | rpearson | tpearson | p-Value | Control Variables |
1 | Mean annual temperature (n = 1371) | 0.098 | 3.652 | 0.000 | Land cover variability Amplitude of distance to conflict Mean annual rainfall |
2 | Mean annual rainfall (n = 1371) | −0.004 | −0.181 | 0.856 | Land cover variability Amplitude of distance to conflict Mean annual rainfall |
3 | Amplitude of distance to conflict (n = 1371) | 0.371 | 14.77 | 0.000 | Land cover variability Mean annual temperature Mean annual rainfall |
4 | Mean distance to conflict (n = 1371) | −0.17 | −6.385 | 0.000 | Land cover variability Mean annual temperature Mean annual rainfall |
5 | Mean annual temperature + rainfall (n = 914) | −0.018 | −0.567 | 0.571 | Land cover variability Amplitude of distance to conflict |
6 | Mean annual temperature * rainfall (n = 914) | 0.108 | 3.298 | 0.001 | Land cover variability Amplitude of distance to conflict |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eklund, L.; Abdi, A.M.; Shahpurwala, A.; Dinc, P. On the Geopolitics of Fire, Conflict and Land in the Kurdistan Region of Iraq. Remote Sens. 2021, 13, 1575. https://doi.org/10.3390/rs13081575
Eklund L, Abdi AM, Shahpurwala A, Dinc P. On the Geopolitics of Fire, Conflict and Land in the Kurdistan Region of Iraq. Remote Sensing. 2021; 13(8):1575. https://doi.org/10.3390/rs13081575
Chicago/Turabian StyleEklund, Lina, Abdulhakim M. Abdi, Aiman Shahpurwala, and Pinar Dinc. 2021. "On the Geopolitics of Fire, Conflict and Land in the Kurdistan Region of Iraq" Remote Sensing 13, no. 8: 1575. https://doi.org/10.3390/rs13081575
APA StyleEklund, L., Abdi, A. M., Shahpurwala, A., & Dinc, P. (2021). On the Geopolitics of Fire, Conflict and Land in the Kurdistan Region of Iraq. Remote Sensing, 13(8), 1575. https://doi.org/10.3390/rs13081575