Surface Freshwater Fluxes in the Arctic and Subarctic Seas during Contrasting Years of High and Low Summer Sea Ice Extent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methods
2.2.1. Arctic Sectors for Time Series Analysis
- Atlantic sector: 90°E–45°W and 65°N–90°N.
- Canadian sector: 45°W–40°W and 65°N–90°N.
- Pacific sector: 140°W–90°E and 65°N–90°N.
2.2.2. Freshwater Flux Estimation
3. Results
3.1. Arctic’s Mean State (2016–2018)
3.2. Interannual Variability Time Series Analysis
3.3. Multiparameter Composite Mean Analysis
3.4. Atlantic Freshwater Pathways
4. Discussion
4.1. Multiparameter Variability in Extreme SIE Years
4.1.1. SST, SSS, SIC
4.1.2. Winds and Currents
4.2. Freshwater Fluxes
4.3. Atlantic Freshwater Pathways
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walsh, J.E.; Overland, J.E.; Groisman, P.Y.; Rudolf, B. Ongoing Climate Change in the Arctic. Ambio 2011, 40 (Suppl. 1), 6–16. [Google Scholar] [CrossRef] [Green Version]
- Serreze, M.C.; Barry, R.G. Processes and Impacts of Arctic Amplification: A Research Synthesis. Glob. Planet. Chang. 2011, 77. [Google Scholar] [CrossRef]
- Madhusoodanan, M.S.; Thompson, B. Decadal Variability of the Arctic Ocean Thermal Structure. Ocean Dyn. 2011, 61. [Google Scholar] [CrossRef]
- Serreze, M.C.; Barrett, A.P.; Stroeve, J.C.; Kindig, D.N.; Holland, M.M. The Emergence of Surface-Based Arctic Amplification. Cryosphere 2009, 3. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Dixon, T.H.; Myers, P.G.; Bonin, J.; Chambers, D.; van den Broeke, M.R. Recent Increases in Arctic Freshwater Flux Affects Labrador Sea Convection and Atlantic Overturning Circulation. Nat. Commun. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Rabe, B.; Karcher, M.; Kauker, F.; Schauer, U.; Toole, J.M.; Krishfield, R.A.; Pisarev, S.; Kikuchi, T.; Su, J. Arctic Ocean Basin Liquid Freshwater Storage Trend 1992–2012. Geophys. Res. Lett. 2014, 41, 961–968. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Wekerle, C.; Danilov, S.; Sidorenko, D.; Koldunov, N.; Sein, D.; Rabe, B.; Jung, T. Recent Sea Ice Decline Did Not Significantly Increase the Total Liquid Freshwater Content of the Arctic Ocean. J. Clim. 2019, 32, 15–32. [Google Scholar] [CrossRef] [Green Version]
- Woodgate, R.A. Revising the Bering Strait Freshwater Flux into the Arctic Ocean. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Tsubouchi, T.; Bacon, S.; Aksenov, Y.; Naveira Garabato, A.C.; Beszczynska-Möller, A.; Hansen, E.; de Steur, L.; Curry, B.; Lee, C.M. The Arctic Ocean Seasonal Cycles of Heat and Freshwater Fluxes: Observation-Based Inverse Estimates. J. Phys. Oceanogr. 2018, 48. [Google Scholar] [CrossRef] [Green Version]
- Timmermans, M.; Marshall, J. Understanding Arctic Ocean Circulation: A Review of Ocean Dynamics in a Changing Climate. J. Geophys. Res. Ocean. 2020, 125. [Google Scholar] [CrossRef]
- McClelland, J.W.; Holmes, R.M.; Dunton, K.H.; Macdonald, R.W. The Arctic Ocean Estuary. Estuaries Coasts 2012, 35. [Google Scholar] [CrossRef] [Green Version]
- Brown, N.J.; Nilsson, J.; Pemberton, P. Arctic Ocean Freshwater Dynamics: Transient Response to Increasing River Runoff and Precipitation. J. Geophys. Res. Ocean. 2019, 124. [Google Scholar] [CrossRef]
- Weatherly, J.W.; Walsh, J.E. The Effects of Precipitation and River Runoff in a Coupled Ice-Ocean Model of the Arctic. Clim. Dyn. 1996, 12. [Google Scholar] [CrossRef]
- Wang, Q.; Wekerle, C.; Danilov, S.; Koldunov, N.; Sidorenko, D.; Sein, D.; Rabe, B.; Jung, T. Arctic Sea Ice Decline Significantly Contributed to the Unprecedented Liquid Freshwater Accumulation in the Beaufort Gyre of the Arctic Ocean. Geophys. Res. Lett. 2018, 45, 4956–4964. [Google Scholar] [CrossRef]
- Haine, T.W.N.; Curry, B.; Gerdes, R.; Hansen, E.; Karcher, M.; Lee, C.; Rudels, B.; Spreen, G.; de Steur, L.; Stewart, K.D.; et al. Arctic Freshwater Export: Status, Mechanisms, and Prospects. Glob. Planet. Chang. 2015, 125. [Google Scholar] [CrossRef] [Green Version]
- Yadav, J.; Kumar, A.; Mohan, R. Dramatic Decline of Arctic Sea Ice Linked to Global Warming. Nat. Hazards 2020, 103. [Google Scholar] [CrossRef]
- Comiso, J.C.; Parkinson, C.L.; Gersten, R.; Stock, L. Accelerated Decline in the Arctic Sea Ice Cover. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Serreze, M.C.; Stroeve, J.; Barrett, A.P.; Boisvert, L.N. Summer Atmospheric Circulation Anomalies over the Arctic Ocean and Their Influences on September Sea Ice Extent: A Cautionary Tale. J. Geophys. Res. 2016, 121, 11463–11485. [Google Scholar] [CrossRef] [Green Version]
- Matthews, J.L.; Peng, G.; Meier, W.N.; Brown, O. Sensitivity of Arctic Sea Ice Extent to Sea Ice Concentration Threshold Choice and Its Implication to Ice Coverage Decadal Trends and Statistical Projections. Remote Sens. 2020, 12, 807. [Google Scholar] [CrossRef] [Green Version]
- Parkinson, C.L.; Cavalieri, D.J. Arctic Sea Ice Variability and Trends, 1979–2006. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Michon, S. Arctic Sea Ice Minimum Second Lowest on Record|NOAA Climate.gov. 2020. Available online: https://www.climate.gov/news-features/featured-images/2020-arctic-sea-ice-minimum-second-lowest-record (accessed on 19 February 2021).
- Francis, J.A.; Wu, B. Why Has No New Record-Minimum Arctic Sea-Ice Extent Occurred since September 2012? Environ. Res. Lett. 2020. [Google Scholar] [CrossRef]
- Liu, Y.; Key, J.R. Less Winter Cloud Aids Summer 2013 Arctic Sea Ice Return from 2012 Minimum. Environ. Res. Lett. 2014, 9. [Google Scholar] [CrossRef]
- Perovich, D.; Meier, W.; Tschudi, M.; Farrell, S.; Gerland, S.; Hendricks, S.; Krumpen, T.; Haas, C. Sea Ice. Available online: https://www.arctic.noaa.gov/Report-Card/Report-Card-2016/ArtMID/5022/ArticleID/286/Sea-Ice (accessed on 19 February 2021).
- Praetorius, S.; Rugenstein, M.; Persad, G.; Caldeira, K. Global and Arctic Climate Sensitivity Enhanced by Changes in North Pacific Heat Flux. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Perovich, D.K.; Richter-Menge, J.A. Loss of Sea Ice in the Arctic. Annu. Rev. Mar. Sci. 2009, 1. [Google Scholar] [CrossRef] [Green Version]
- Fournier, S.; Lee, T.; Wang, X.; Armitage, T.W.K.; Wang, O.; Fukumori, I.; Kwok, R. Sea Surface Salinity as a Proxy for Arctic Ocean Freshwater Changes. J. Geophys. Res. Ocean. 2020, 125. [Google Scholar] [CrossRef]
- Kim, K.Y.; Hamlington, B.D.; Na, H.; Kim, J. Mechanism of Seasonal Arctic Sea Ice Evolution and Arctic Amplification. Cryosphere 2016, 10, 2191–2202. [Google Scholar] [CrossRef] [Green Version]
- Harms, I.H.; Karcher, M.J. Kara Sea Freshwater Dispersion and Export in the Late 1990s. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Kodaira, T.; Waseda, T.; Nose, T.; Inoue, J. Record High Pacific Arctic Seawater Temperatures and Delayed Sea Ice Advance in Response to Episodic Atmospheric Blocking. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef]
- Davis, P.E.D.; Lique, C.; Johnson, H.L.; Guthrie, J.D. Competing Effects of Elevated Vertical Mixing and Increased Freshwater Input on the Stratification and Sea Ice Cover in a Changing Arctic Ocean. J. Phys. Oceanogr. 2016, 46, 1531–1553. [Google Scholar] [CrossRef]
- Giles, K.A.; Laxon, S.W.; Ridout, A.L.; Wingham, D.J.; Bacon, S. Western Arctic Ocean Freshwater Storage Increased by Wind-Driven Spin-up of the Beaufort Gyre. Nat. Geosci. 2012, 5. [Google Scholar] [CrossRef]
- Wang, Z.; Hamilton, J.; Su, J. Variations in Freshwater Pathways from the Arctic Ocean into the North Atlantic Ocean. Prog. Oceanogr. 2017, 155, 54–73. [Google Scholar] [CrossRef]
- Morison, J.; Kwok, R.; Peralta-Ferriz, C.; Alkire, M.; Rigor, I.; Andersen, R.; Steele, M. Changing Arctic Ocean Freshwater Pathways. Nature 2012, 481, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Kwok, R.; Spreen, G.; Pang, S. Arctic Sea Ice Circulation and Drift Speed: Decadal Trends and Ocean Currents. J. Geophys. Res. Ocean. 2013, 118, 2408–2425. [Google Scholar] [CrossRef]
- Wang, Q.; Ricker, R.; Mu, L. Arctic Sea Ice Decline Preconditions Events of Anomalously Low Sea Ice Volume Export through Fram Strait in the Early 21st Century. J. Geophys. Res. Ocean. 2021. [Google Scholar] [CrossRef]
- Stroh, J.N.; Panteleev, G.; Kirillov, S.; Makhotin, M.; Shakhova, N. Sea-Surface Temperature and Salinity Product Comparison against External in Situ Data in the Arctic Ocean. J. Geophys. Res. Ocean. 2015, 120, 7223–7236. [Google Scholar] [CrossRef]
- Lang, R.; Zhou, Y.; Utku, C.; le Vine, D. Accurate Measurements of the Dielectric Constant of Seawater at L Band. Radio Sci. 2016, 51. [Google Scholar] [CrossRef] [Green Version]
- Fournier, S.; Lee, T.; Tang, W.; Steele, M.; Olmedo, E. Evaluation and Intercomparison of SMOS, Aquarius, and SMAP Sea Surface Salinity Products in the Arctic Ocean. Remote Sens. 2019, 11, 43. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Yueh, S.; Yang, D.; Fore, A.; Hayashi, A.; Lee, T.; Fournier, S.; Holt, B. The Potential and Challenges of Using Soil Moisture Active Passive (SMAP) Sea Surface Salinity to Monitor Arctic Ocean Freshwater Changes. Remote Sens. 2018, 10, 869. [Google Scholar] [CrossRef] [Green Version]
- Lind, S.; Ingvaldsen, R.B.; Furevik, T. Arctic Warming Hotspot in the Northern Barents Sea Linked to Declining Sea-Ice Import. Nat. Clim. Chang. 2018, 8, 634–639. [Google Scholar] [CrossRef]
- Kędra, M.; Moritz, C.; Choy, E.S.; David, C.; Degen, R.; Duerksen, S.; Ellingsen, I.; Górska, B.; Grebmeier, J.M.; Kirievskaya, D.; et al. Status and Trends in the Structure of Arctic Benthic Food Webs. Polar Res. 2015, 34. [Google Scholar] [CrossRef]
- Ricker, R.; Hendricks, S.; Girard-Ardhuin, F.; Kaleschke, L.; Lique, C.; Tian-Kunze, X.; Nicolaus, M.; Krumpen, T. Satellite-Observed Drop of Arctic Sea Ice Growth in Winter 2015–2016. Geophys. Res. Lett. 2017, 44, 3236–3245. [Google Scholar] [CrossRef] [Green Version]
- Polyakov, I.V.; Pnyushkov, A.V.; Carmack, E.C. Stability of the Arctic Halocline: A New Indicator of Arctic Climate Change. Environ. Res. Lett. 2018, 13. [Google Scholar] [CrossRef]
- Chao, Y.; Li, Z.; Farrara, J.D.; Hung, P. Blending Sea Surface Temperatures from Multiple Satellites and In Situ Observations for Coastal Oceans. J. Atmos. Ocean. Technol. 2009, 26. [Google Scholar] [CrossRef]
- Prange, M.; Gerdes, R. The Role of Surface Freshwater Flux Boundary Conditions in Arctic Ocean Modelling. Ocean Model. 2006, 13. [Google Scholar] [CrossRef]
- Boutin, J.; Vergely, J.L.; Marchand, S.; D’Amico, F.; Hasson, A.; Kolodziejczyk, N.; Reul, N.; Reverdin, G.; Vialard, J. New SMOS Sea Surface Salinity with Reduced Systematic Errors and Improved Variability. Remote. Sens. Environ. 2018, 214. [Google Scholar] [CrossRef] [Green Version]
- Fore, A.G.; Yueh, S.H.; Tang, W.; Stiles, B.W.; Hayashi, A.K. Combined Active/Passive Retrievals of Ocean Vector Wind and Sea Surface Salinity With SMAP. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7396–7404. [Google Scholar] [CrossRef]
- Wentz, F.J.; Scott, J.; Hoffman, R.; Leidner, M.; Atlas, R.; Ardizzone, J. Remote Sensing Systems Cross-Calibrated Multi-Platform (CCMP) 6-Hourly Ocean Vector Wind Analysis Product on 0.25 Deg Grid, Version 2.0. Remote Sensing Systems, Santa Rosa, CA. 2015. Available online: www.remss.com/measurements/ccmp (accessed on 30 March 2021).
- Zuo, H.; Balmaseda, M.A.; Tietsche, S.; Mogensen, K.; Mayer, M. The ECMWF Operational Ensemble Reanalysis–Analysis System for Ocean and Sea Ice: A Description of the System and Assessment. Ocean Sci. 2019, 15. [Google Scholar] [CrossRef] [Green Version]
- Fetterer, F.; Knowles, K.; Meier, W.N.; Savoie, M.; Windnagel, A.K. Sea Ice Index, Version 3. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center. 2017. Available online: https://doi.org/10.7265/N5K072F8 (accessed on 30 March 2021).
- Peterson, B.J. Trajectory Shifts in the Arctic and Subarctic Freshwater Cycle. Science 2006, 313. [Google Scholar] [CrossRef]
- Aune, M.; Aniceto, S.; Biuw, M.; Daase, M.; Falk-Petersen, S.; Leu, E.; Ottesen, C.; Sagerup, K.; Camus, L. Seasonal ecology in ice-covered Arctic seas-Considerations for spill response decision making. Mar. Environ. Res. 2018, 141. [Google Scholar] [CrossRef]
- Nichols, R.E.; Subrahmanyam, B. Estimation of Surface Freshwater Fluxes in the Arctic Ocean Using Satellite-Derived Salinity. Remote Sens. Earth Syst. Sci. 2019, 2, 2. [Google Scholar] [CrossRef]
- Mazloff, M.R.; Heimbach, P.; Wunsch, C. An Eddy-Permitting Southern Ocean State Estimate. J. Phys. Oceanogr. 2010, 40. [Google Scholar] [CrossRef]
- Kawai, Y.; Osafune, S.; Masuda, S.; Komuro, Y. Relations between Salinity in the Northwestern Bering Sea, the Bering Strait Throughflow and Sea Surface Height in the Arctic Ocean. J. Oceanogr. 2018, 74. [Google Scholar] [CrossRef] [Green Version]
- Olmedo, E.; Gabarró, C.; González-Gambau, V.; Martínez, J.; Ballabrera-Poy, J.; Turiel, A.; Portabella, M.; Fournier, S.; Lee, T. Seven Years of SMOS Sea Surface Salinity at High Latitudes: Variability in Arctic and Sub-Arctic Regions. Remote Sens. 2018, 10, 1772. [Google Scholar] [CrossRef] [Green Version]
- Supply, A.; Boutin, J.; Vergely, J.L.; Kolodziejczyk, N.; Reverdin, G.; Reul, N.; Tarasenko, A. A new methodology to derive SMOS sea surface salinity in the Arctic Ocean. Remote Sens. Environ. 2020, 249, 249–112027. [Google Scholar] [CrossRef]
- Houpert, L.; Inall, M.; Dumont, E.; Gary, S.; Johnson, C.; Porter, M.; Johns, W.; Cunningham, S. Structure and Transport of the North Atlantic Current in the Eastern Subpolar Gyre From Sustained Glider Observations. J. Geophys. Res. Ocean. 2018, 123. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, K.S.; Wang, S. Sea Surface Temperature Variability in the Arctic Ocean and Its Marginal Seas in a Changing Climate: Patterns and Mechanisms. Glob. Planet. Chang. 2020, 193. [Google Scholar] [CrossRef]
- Jung, O.; Sung, M.-K.; Sato, K.; Lim, Y.-K.; Kim, S.-J.; Baek, E.-H.; Jeong, J.-H.; Kim, B.-M. How Does the SST Variability over the Western North Atlantic Ocean Control Arctic Warming over the Barents–Kara Seas? Environ. Res. Lett. 2017, 12. [Google Scholar] [CrossRef]
- di Lorenzo, E.; Mantua, N. Multi-Year Persistence of the 2014/15 North Pacific Marine Heatwave. Nat. Clim. Chang. 2016, 6, 1042–1047. [Google Scholar] [CrossRef]
- Hu, Z.Z.; Kumar, A.; Jha, B.; Zhu, J.; Huang, B. Persistence and Predictions of the Remarkable Warm Anomaly in the Northeastern Pacific Ocean during 2014–2016. J. Clim. 2017, 30, 689–702. [Google Scholar] [CrossRef]
- Hartmann, D.L. Pacific Sea Surface Temperature and the Winter of 2014. Geophys. Res. Lett. 2015, 42. [Google Scholar] [CrossRef]
- Petty, A.A.; Stroeve, J.C.; Holland, P.R.; Boisvert, L.N.; Bliss, A.C.; Kimura, N.; Meier, W.N. The Arctic Sea Ice Cover of 2016: A Year of Record-Low Highs and Higher-Than-Expected Lows. Cryosphere 2018, 12, 433–452. [Google Scholar] [CrossRef] [Green Version]
- Tilling, R.L.; Ridout, A.; Shepherd, A.; Wingham, D.J. Increased Arctic Sea Ice Volume after Anomalously Low Melting in 2013. Nat. Geosci. 2015, 8. [Google Scholar] [CrossRef] [Green Version]
- Francis, J.A.; Chan, W.; Leathers, D.J.; Miller, J.R.; Veron, D.E. Winter Northern Hemisphere Weather Patterns Remember Summer Arctic Sea-Ice Extent. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Vihma, T. Effects of Arctic Sea Ice Decline on Weather and Climate: A Review. Surv. Geophys. 2014, 35, 1175–1214. [Google Scholar] [CrossRef] [Green Version]
- Overland, J.E.; Wang, M. Recent Extreme Arctic Temperatures Are Due to a Split Polar Vortex. J. Clim. 2016, 29. [Google Scholar] [CrossRef]
- Wang, Q.; Marshall, J.; Scott, J.; Meneghello, G.; Danilov, S.; Jung, T. On the Feedback of Ice-Ocean Stress Coupling from Geostrophic Currents in an Anticyclonic Wind Regime over the Beaufort Gyre. J. Phys. Oceanogr. 2019. [Google Scholar] [CrossRef]
- Dodd, P.A.; Heywood, K.J.; Meredith, M.P.; Naveira-Garabato, A.C.; Marca, A.D.; Falkner, K.K. Sources and Fate of Freshwater Exported in the East Greenland Current. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Jahn, A.; Aksenov, Y.; de Cuevas, B.A.; de Steur, L.; Häkkinen, S.; Hansen, E.; Herbaut, C.; Houssais, M.N.; Karcher, M.; Kauker, F.; et al. Arctic Ocean Freshwater: How Robust Are Model Simulations? J. Geophys. Res. Ocean. 2012, 117. [Google Scholar] [CrossRef]
- de Steur, L.; Peralta-Ferriz, C.; Pavlova, O. Freshwater Export in the East Greenland Current Freshens the North Atlantic. Geophys. Res. Lett. 2018, 45, 13359–13366. [Google Scholar] [CrossRef]
- Skliris, N.; Marsh, R.; Mecking, J.V.; Zika, J.D. Changing Water Cycle and Freshwater Transports in the Atlantic Ocean in Observations and CMIP5 Models. Clim. Dyn. 2020, 54, 4971–4989. [Google Scholar] [CrossRef]
- de Steur, L.; Pickart, R.S.; Macrander, A.; Våge, K.; Harden, B.; Jónsson, S.; Østerhus, S.; Valdimarsson, H. Liquid Freshwater Transport Estimates from the East Greenland Current Based on Continuous Measurements North of Denmark Strait. J. Geophys. Res. Ocean. 2017, 122. [Google Scholar] [CrossRef] [Green Version]
- Nghiem, S.V.; Hall, D.K.; Mote, T.L.; Tedesco, M.; Albert, M.R.; Keegan, K.; Shuman, C.A.; DiGirolamo, N.E.; Neumann, G. The Extreme Melt across the Greenland Ice Sheet in 2012. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Bamber, J.; van den Broeke, M.; Ettema, J.; Lenaerts, J.; Rignot, E. Recent Large Increases in Freshwater Fluxes from Greenland into the North Atlantic. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Josey, S.A.; Marsh, R. Surface Freshwater Flux Variability and Recent Freshening of the North Atlantic in the Eastern Subpolar Gyre. J. Geophys. Res. Ocean. 2005, 110, 1–17. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hall, S.B.; Subrahmanyam, B.; Nyadjro, E.S.; Samuelsen, A. Surface Freshwater Fluxes in the Arctic and Subarctic Seas during Contrasting Years of High and Low Summer Sea Ice Extent. Remote Sens. 2021, 13, 1570. https://doi.org/10.3390/rs13081570
Hall SB, Subrahmanyam B, Nyadjro ES, Samuelsen A. Surface Freshwater Fluxes in the Arctic and Subarctic Seas during Contrasting Years of High and Low Summer Sea Ice Extent. Remote Sensing. 2021; 13(8):1570. https://doi.org/10.3390/rs13081570
Chicago/Turabian StyleHall, Sarah B., Bulusu Subrahmanyam, Ebenezer S. Nyadjro, and Annette Samuelsen. 2021. "Surface Freshwater Fluxes in the Arctic and Subarctic Seas during Contrasting Years of High and Low Summer Sea Ice Extent" Remote Sensing 13, no. 8: 1570. https://doi.org/10.3390/rs13081570
APA StyleHall, S. B., Subrahmanyam, B., Nyadjro, E. S., & Samuelsen, A. (2021). Surface Freshwater Fluxes in the Arctic and Subarctic Seas during Contrasting Years of High and Low Summer Sea Ice Extent. Remote Sensing, 13(8), 1570. https://doi.org/10.3390/rs13081570