Long-Time Interval Satellite Image Analysis on Forest-Cover Changes and Disturbances around Protected Area, Zeya State Nature Reserve, in the Russian Far East
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and References
2.3. Classification
2.4. Accuracy Assessment
2.5. Forest-Cover Change and Disturbance Analysis
3. Results
3.1. Classification Maps
3.2. Determination of NDVI and NBR of Successional Stages
3.3. Effectiveness of the Reserve
3.4. Analysis of MODIS Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Astrup, R.; Bernier, P.Y.; Genet, H.; Lutz, D.A.; Bright, R.M. A Sensible Climate Solution for the Boreal Forest. Nat. Clim. Chang. 2018, 8, 11–12. [Google Scholar] [CrossRef]
- Loboda, T.V.; Zhang, Z.; O’Neal, K.J.; Sun, G.; Csiszar, I.A.; Shugart, H.H.; Sherman, N.J. Reconstructing Disturbance History Using Satellite-Based Assessment of the Distribution of Land Cover in the Russian Far East. Remote Sens. Environ. 2012, 118, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Loboda, T.V.; Krylov, A.; Potapov, P.V. Mapping Stand Age Dynamics of the Siberian Larch Forests from Recent Landsat Observations. Remote Sens. Environ. 2016, 187, 320–331. [Google Scholar] [CrossRef]
- Zhao, F.; Liu, Y.; Shu, L. Change in the Fire Season Pattern from Bimodal to Unimodal under Climate Change: The Case of Daxing’anling in Northeast China. Agric. For. Meteorol. 2020, 291, 108075. [Google Scholar] [CrossRef]
- Bedritsky, A.I.; Blinov, V.G.; DGershinkova, A. Assessment report on climate change and its consequences in russian federation. In Proceedings of the Federal Service for Hydrometeorology and Environmental Monitoring (Roshydromet), Moscow, Russia, 7 November 2008. [Google Scholar]
- Bockel, L.; Bernoux, M.; Thapa, D.; Armstrong, A. GHG and Natural Capital Impact of Russia Forest Fire Response Project. 26; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011. [Google Scholar]
- Kharuk, V.I.; Ponomarev, E.I.; Ivanova, G.A.; Dvinskaya, M.L.; Coogan, S.C.P.; Flannigan, M.D. Wildfires in the Siberian Taiga. Ambio 2021. [Google Scholar] [CrossRef]
- Cohen, W.B.; Goward, S.N. Landsat’s Role in Ecological Applications of Remote Sensing. BioScience 2004, 54, 535–545. [Google Scholar] [CrossRef]
- Wendland, K.J.; Baumann, M.; Lewis, D.J.; Sieber, A.; Radeloff, V.C. Protected Area Effectiveness in European Russia: A Postmatching Panel Data Analysis. Land Econ. 2015, 91, 149–168. [Google Scholar] [CrossRef]
- Bartalev, S.A.; Loupian, E.A.; Stytsenko, F.V.; Panova, O.Y.; Efremov, V.Y. Rapid Mapping of Forest Burnt Areas over Russia Using Landsat Data. Curr. Probl. Remote Sens. Earth Space 2014, 11, 9–20. [Google Scholar]
- Kareiva, P.; Watts, S.; McDonald, R.; Boucher, T. Domesticated Nature: Shaping Landscapes and Ecosystems for Human Welfare. Science 2007, 316, 1866–1869. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Loboda, T.V. Surface Forcing of Non-Stand-Replacing Fires in Siberian Larch Forests. Environ. Res. Lett. 2018, 13, 45008. [Google Scholar] [CrossRef]
- Achard, F.; Mollicone, D.; Stibig, H.-J.; Aksenov, D.; Laestadius, L.; Li, Z.; Popatov, P.; Yaroshenko, A. Areas of Rapid Forest-Cover Change in Boreal Eurasia. For. Ecol. Manag. 2006, 237, 322–334. [Google Scholar] [CrossRef]
- Peterson, L.K.; Bergen, K.M.; Brown, D.G.; Vashchuk, L.; Blam, Y. Forested Land-Cover Patterns and Trends over Changing Forest Management Eras in the Siberian Baikal Region. For. Ecol. Manag. 2009, 257, 911–922. [Google Scholar] [CrossRef]
- Fiore, N.M.; Goulden, M.L.; Czimczik, C.I.; Pedron, S.A.; Tayo, M.A. Do Recent NDVI Trends Demonstrate Boreal Forest Decline in Alaska? Environ. Res. Lett. 2020, 15, 095007. [Google Scholar] [CrossRef]
- Ju, J.; Masek, J.G. The Vegetation Greenness Trend in Canada and US Alaska from 1984–2012 Landsat Data. Remote Sens. Environ. 2016, 176, 1–16. [Google Scholar] [CrossRef]
- Amiro, B.D.; Orchansky, A.L.; Barr, A.G.; Blacks, T.A.; Chambers, S.D.; Chapin, F.S.; Goulden, M.L.; Litvak, M.; Liu, H.P.; McCaughey, J.H.; et al. The Effect of Post-Fire Stand Age on the Boreal Forest Energy Balance. Agric. For. Meteorol. 2006, 140, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Loboda, T.V.; Krylov, A.; Potapov, V. Distribution of Estimated Stand Age Across Siberian Larch Forests, 1989–2012; Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC): Oak Ridge, TN, USA, 2017. [CrossRef]
- Kharuk, V.I.; Ranson, K.J.; Im, S.T.; Vdovin, A.S. Spatial Distribution and Temporal Dynamics of High-Elevation Forest Stands in Southern Siberia. Glob. Ecol. Biogeogr. 2010, 19, 822–830. [Google Scholar] [CrossRef]
- Potapov, P.; Yaroshenko, A.; Turubanova, S.; Dubinin, M.; Laestadius, L.; Thies, C.; Aksenov, D.; Egorov, A.; Yesipova, Y.; Glushkov, I.; et al. Mapping the World’s Intact Forest Landscapes by Remote Sensing. Ecol. Soc. 2008, 13. [Google Scholar] [CrossRef] [Green Version]
- He, N.; Fang, L.; Li, S.; Plaza, A.; Plaza, J. Remote Sensing Scene Classification Using Multilayer Stacked Covariance Pooling. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6899–6910. [Google Scholar] [CrossRef]
- Potapov, P.; Turubanova, S.; Hansen, M.C. Regional-Scale Boreal Forest Cover and Change Mapping Using Landsat Data Composites for European Russia. Remote Sens. Environ. 2011, 115, 548–561. [Google Scholar] [CrossRef]
- Bright, B.C.; Hudak, A.T.; Kennedy, R.E.; Braaten, J.D.; Henareh Khalyani, A. Examining Post-Fire Vegetation Recovery with Landsat Time Series Analysis in Three Western North American Forest Types. Fire Ecol. 2019, 15, 8. [Google Scholar] [CrossRef] [Green Version]
- Turner, M.G. Disturbance and Landscape Dynamics in a Changing World. Ecology 2010, 91, 2833–2849. [Google Scholar] [CrossRef] [Green Version]
- Turner, W.; Spector, S.; Gardiner, N.; Fladeland, M.; Sterling, E.; Steininger, M. Remote Sensing for Biodiversity Science and Conservation. Trends Ecol. Evol. 2003, 18, 306–314. [Google Scholar] [CrossRef]
- Wulder, M.A.; Coops, N.C. Satellites: Make Earth Observations Open Access. Nat. News 2014, 513, 30. [Google Scholar] [CrossRef]
- Anderson-Teixeira, K.J. Prioritizing Biodiversity and Carbon. Nat. Clim. Chang. 2018, 8, 667–668. [Google Scholar] [CrossRef]
- Zeya State Nature Reserve. Biodiversity 2020. Available online: https://zeyzap.ru/sohranyaem/zejskij-zapovednik/bioraznoobrazie/ (accessed on 5 December 2020).
- Dudov, S.V. Large-scale vegetation mapping of the Zeya State Nature Reserve. GiPR 2018. [Google Scholar] [CrossRef]
- Schroeder, T.A.; Wulder, M.A.; Healey, S.P.; Moisen, G.G. Mapping Wildfire and Clearcut Harvest Disturbances in Boreal Forests with Landsat Time Series Data. Remote Sens. Environ. 2011, 115, 1421–1433. [Google Scholar] [CrossRef]
- Smith, A.M.S.; Kolden, C.A.; Paveglio, T.B.; Cochrane, M.A.; Bowman, D.M.; Moritz, M.A.; Kliskey, A.D.; Alessa, L.; Hudak, A.T.; Hoffman, C.M.; et al. The Science of Firescapes: Achieving Fire-Resilient Communities. BioScience 2016, 66, 130–146. [Google Scholar] [CrossRef]
- Sommerfeld, A.; Senf, C.; Buma, B.; D’Amato, A.W.; Després, T.; Díaz-Hormazábal, I.; Fraver, S.; Frelich, L.E.; Gutiérrez, Á.G.; Hart, S.J.; et al. Patterns and Drivers of Recent Disturbances across the Temperate Forest Biome. Nat. Commun. 2018, 9, s41467–s415018. [Google Scholar] [CrossRef]
- U.S. Geological Survey (USGS). What Are the Band Designations for the Landsat Satellites? USGS: Reston, VA, USA, 2017.
- Chavez, P. Image-Based Atmospheric Corrections—Revisited and Improved. Available online: /paper/Image-Based-Atmospheric-Corrections-Revisited-and-Chavez/45f12625ce130261c7d360d50e09c635355ca919 (accessed on 27 February 2021).
- Hirata, Y.H.; Takahashi, T.T. Image Segmentation and Classification of Landsat Thematic Mapper Data Using a Sampling Approach for Forest Cover AssessmentThis Article Is One of a Selection of Papers from Extending Forest Inventory and Monitoring over Space and Time. Can. J. For. Res. 2010. [Google Scholar] [CrossRef]
- Başay, L.; Ersan, R. Comparison of Pixel-Based and Object-Based Classification Methods for Separation of Crop Patterns. Earth Obs. 2015, 6, 148–153. [Google Scholar]
- Drǎguţ, L.; Tiede, D.; Levick, S.R. ESP: A Tool to Estimate Scale Parameter for Multiresolution Image Segmentation of Remotely Sensed Data. Int. J. Geogr. Inf. Sci. 2010, 24, 859–871. [Google Scholar] [CrossRef]
- Tucker, C.J. Remote Sensing of Leaf Water Content in the near Infrared. Remote Sens. Environ. 1980, 10, 23–32. [Google Scholar] [CrossRef]
- Gao, B. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Chu, T.; Guo, X.; Takeda, K. Remote Sensing Approach to Detect Post-Fire Vegetation Regrowth in Siberian Boreal Larch Forest. Ecol. Indic. 2016, 62, 32–46. [Google Scholar] [CrossRef]
- Franco-Lopez, H.; Ek, A.R.; Bauer, M.E. Estimation and Mapping of Forest Stand Density, Volume, and Cover Type Using the k-Nearest Neighbors Method. Remote Sens. Environ. 2001, 77, 251–274. [Google Scholar] [CrossRef]
- Myint, S.W.; Yuan, M.; Cerveny, R.S.; Giri, C.P. Comparison of Remote Sensing Image Processing Techniques to Identify Tornado Damage Areas from Landsat TM Data. Sensors 2008, 8, 1128–1156. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Justice, C.; Boschetti, L.; Roy, D. MCD64A1 MODIS/Terra+Aqua Burned Area Monthly L3 Global 500m SIN Grid V006; NASA EOSDIS Land Processes DAAC: Sioux Falls, SD, USA, 2015. [CrossRef]
- ORNL DAAC MODIS and VIIRS Land Products Global Subsetting and Visualization Tool. ORNL DAAC, Oak Ridge, Tennessee, USA. Subset Obtained for MCD64A1 Product at Spatial Range: N = 60.41N, S = 59.73N, E = 140.68W, W = 141.71W, Time Period: 2000-01-02 to 2016-05-02, and Subset Size: 0.5 × 0.5 km. 2018. Available online: https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1379 (accessed on 2 December 2020). [CrossRef]
- Justice, C.O.; Vermote, E.; Townshend, J.R.G.; Defries, R.; Roy, D.P.; Hall, D.K.; Salomonson, V.V.; Privette, J.L.; Riggs, G.; Strahler, A.; et al. The Moderate Resolution Imaging Spectroradiometer (MODIS): Land Remote Sensing for Global Change Research. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1228–1249. [Google Scholar] [CrossRef] [Green Version]
- Roy, D.P.; Jin, Y.; Lewis, P.E.; Justice, C.O. Prototyping a Global Algorithm for Systematic Fire-Affected Area Mapping Using MODIS Time Series Data. Remote Sens. Environ. 2005, 97, 137–162. [Google Scholar] [CrossRef]
- Tei, S.; Sugimoto, A.; Kotani, A.; Ohta, T.; Morozumi, T.; Saito, S.; Hashiguchi, S.; Maximov, T. Strong and Stable Relationships between Tree-Ring Parameters and Forest-Level Carbon Fluxes in a Siberian Larch Forest. Polar Sci. 2019, 21, 146–157. [Google Scholar] [CrossRef]
- Suzuki, R.; Kobayashi, H.; Delbart, N.; Asanuma, J.; Hiyama, T. NDVI Responses to the Forest Canopy and Floor from Spring to Summer Observed by Airborne Spectrometer in Eastern Siberia. Remote Sens. Environ. 2011, 115, 3615–3624. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Ranson, K.J.; Oskorbin, P.A.; Im, S.T.; Dvinskaya, M.L. Climate Induced Birch Mortality in Trans-Baikal Lake Region, Siberia. For. Ecol. Manag. 2013, 289, 385–392. [Google Scholar] [CrossRef] [Green Version]
- Escuin, S.; Navarro, R.; Fernández, P. Fire Severity Assessment by Using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) Derived from LANDSAT TM/ETM Images. Int. J. Remote Sens. 2008, 29, 1053–1073. [Google Scholar] [CrossRef]
- Fernández-Nogueira, D.; Corbelle-Rico, E. Land Use Changes in Iberian Peninsula 1990–2012. Land 2018, 7, 99. [Google Scholar] [CrossRef] [Green Version]
- Kpienbaareh, D.; Sun, X.; Wang, J.; Luginaah, I.; Bezner Kerr, R.; Lupafya, E.; Dakishoni, L. Crop Type and Land Cover Mapping in Northern Malawi Using the Integration of Sentinel-1, Sentinel-2, and PlanetScope Satellite Data. Remote Sens. 2021, 13, 700. [Google Scholar] [CrossRef]
- Ruiz-Ramos, J.; Marino, A.; Boardman, C.; Suarez, J. Continuous Forest Monitoring Using Cumulative Sums of Sentinel-1 Timeseries. Remote Sens. 2020, 12, 3061. [Google Scholar] [CrossRef]
- Cocke, A.E.; Fulé, P.Z.; Crouse, J.E. Comparison of Burn Severity Assessments Using Differenced Normalized Burn Ratio and Ground Data. Int.J.Wildland Fire 2005, 14, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Bragina, E.V.; Radeloff, V.C.; Baumann, M.; Wendland, K.; Kuemmerle, T.; Pidgeon, A.M. Effectiveness of Protected Areas in the Western Caucasus before and after the Transition to Post-Socialism. Biol. Conserv. 2015, 184, 456–464. [Google Scholar] [CrossRef]
- Makoto, K.; Bryanin, S.V.; Lisovsky, V.V.; Kushida, K.; Wada, N. Dwarf Pine Invasion in an Alpine Tundra of Discontinuous Permafrost Area: Effects on Fine Root and Soil Carbon Dynamics. Trees 2016, 30, 431–439. [Google Scholar] [CrossRef]
- Elbakidze, M.; Angelstam, P.; Sobolev, N.; Degerman, E.; Andersson, K.; Axelsson, R.; Höjer, O.; Wennberg, S. Protected Area as an Indicator of Ecological Sustainability? A Century of Development in Europe’s Boreal Forest. AMBIO 2013, 42, 201–214. [Google Scholar] [CrossRef] [Green Version]
- Chistyakova, A.A.; Leonova, N.A. The State of Protected Forest Communities in the European Forest–Steppe Zone of Russia and Prospects for Their Reconstruction: A Case Study of Specially Protected Areas of Penza Oblast. Russ. J. Ecol. 2003, 34, 285–291. [Google Scholar] [CrossRef]
- Degteva, S.V.; Ponomarev, V.I.; Eisenman, S.W.; Dushenkov, V. Striking the Balance: Challenges and Perspectives for the Protected Areas Network in Northeastern European Russia. Ambio 2015, 44, 473–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wade, C.M.; Austin, K.G.; Cajka, J.; Lapidus, D.; Everett, K.H.; Galperin, D.; Maynard, R.; Sobel, A. What Is Threatening Forests in Protected Areas? A Global Assessment of Deforestation in Protected Areas, 2001–2018. Forests 2020, 11, 539. [Google Scholar] [CrossRef] [PubMed]
Path/Row | Date | Sensor | Band Combination for False Color Composite (R, G, B) |
---|---|---|---|
120/22 | 23 September 1988 | Landsat 5 TM | B5, B4, B3 |
120/22 | 21 August 1999 | Landsat 5 TM | B5, B4, B3 |
120/22 | 4 September 2010 | Landsat 5 TM | B5, B4, B3 |
120/22 | 19 August 2016 | Landsat 8 OLI | B6, B5, B4 |
Class Name | Full Class Name | Physical Description | Color in Landsat Images (False Color) |
---|---|---|---|
BURN | Burn area *** | Forest disturbance by wildfire | Red and pink |
CCTA | Clearcutting for timber or agricultural *** | Forest disturbance by harvesting for timber and ranching (outside of the reserve) | Yellow and red in geometric shape |
CCE | Clearcutting for electricity lines *** | Forest disturbance by clearcutting to settle down electricity lines (outside of the reserve) | Long-straight lines with bright color |
MD | Mixed disturbance *** | Forest disturbance by human-induced fire and harvesting at the same place (outside of the reserve) | Red and pink in geometric shape |
VGR | Vegetation recovery *** | Vegetation recovery after disturbance | Bright pink patches |
GRASS | Bogged larch forests in a wide valley and grassland | Muddy, wetland, willow, floodplain | Light pinkish with smoot light green |
MF | Mixed forests in a river valley | Larch mixed with Spruce, willow, grass (below 700 m a.s.l.) | Sparse light and dark green |
OBF | Oak–Daurian birch forests | Querqus mongolica, Lespedeza bicolor (below 700 m a.s.l.) | Light green |
BLF | Birch and larch forests | Larix gmelinii, Betula platyphylla | Normal green |
SFRV | Spruce forests in a river valley | Picea ajanensis (315–700 m a.s.l.) sparsely dispersed near stream | Dark green |
MSF | Mountain spruce forests | Picea ajanensis on steep slope (700–1300 m a.s.l.) | Very dark green |
DPW | Dwarf pine woodland | Pinus pumila, Betula lanata (1100–1300 m a.s.l.) | Smoot light green |
MTV | Mountain tundra vegetation | Shrub, sedge, lichen, moss (above 1200 m a.s.l.) | White |
TOWN | Settlement | Houses and airports (outside of the reserve) | Red-to-pink color |
ROAD | Unpaved road | Roads or ways for transportation without pavement | Gray color in long-straight lines |
ROCK | Stream bedrocks | River or Stream bedrocks where no water flows | Very reddish color |
WATER | Water | Water bodies (e.g., river and lake) | Dark blue |
CLOUD | Cloud **** | Smog, cloud, and cloud shadows | White and black color |
Class | 1988–1999 | 1999–2010 | 2010–2016 | |||
---|---|---|---|---|---|---|
Producer | User | Producer | User | Producer | User | |
BURN | 69.44% | 89.29% | 65.85% | 40.91% | 84.31% | 93.48% |
CCTA | 58.93% | 86.84% | 85.71% | 85.71% | 100.00% | 60.00% |
CCE | 70.00% | 100.00% | 86.67% | 100.00% | 87.50% | 87.50% |
MD | 64.29% | 40.91% | 80.00% | 66.67% | 84.62% | 100.00% |
VGR | 78.82% | 78.82% | 100.00% | 57.39% | 88.42% | 95.45% |
GRASS | 95.26% | 95.94% | 88.06% | 99.76% | 87.88% | 80.56% |
MF | 77.30% | 84.56% | 97.42% | 72.60% | 92.59% | 75.76% |
OBF | 100.00% | 100.00% | 95.00% | 95.00% | 100.00% | 100.00% |
BLF | 98.67% | 90.24% | 98.35% | 90.99% | 97.39% | 95.51% |
SFRV | 94.25% | 98.80% | 78.95% | 100.00% | 100.00% | 76.92% |
MSF | 96.26% | 94.74% | 94.30% | 91.46% | 86.71% | 93.75% |
DPW | 85.71% | 91.14% | 88.51% | 89.53% | 96.30% | 81.25% |
MTV | 92.86% | 88.64% | 90.91% | 85.11% | 77.55% | 92.68% |
TOWN | 87.91% | 97.56% | 85.96% | 80.33% | 80.00% | 100.00% |
ROAD | 93.75% | 88.24% | 85.71% | 94.74% | 100.00% | 90.91% |
ROCK | 91.41% | 93.60% | 77.97% | 94.85% | 76.47% | 100.00% |
WATER | 100.00% | 100.00% | 100.00% | 93.52% | 100.00% | 100.00% |
Overall Accuracy | 91.61% | 90.90% | 94.33% | |||
Kappa index of agreement (KIA) | 90.10% | 87.86% | 92.68% |
Class | Area (km2) | ||
---|---|---|---|
1988–1999 | 1999–2010 | 2010–2016 | |
BURN | 15.4134 | 136.9125 | 67.6089 |
CCTA | 20.0142 | 8.1333 | 6.5934 |
CCE | 4.2867 | 3.6063 | 9.4788 |
MD | 3.1158 | 10.1043 | 49.734 |
VGR | 105.9642 | 97.9578 | 45.4932 |
GRASS | 248.5971 | 316.1943 | 340.9686 |
MF | 224.7192 | 318.0006 | 209.2185 |
OBF | 70.4358 | 52.1739 | 46.4472 |
BLF | 2666.847 | 2468.893 | 2598.881 |
SFRV | 72.0909 | 31.7277 | 65.6172 |
MSF | 131.1309 | 115.5024 | 126.2691 |
DPW | 21.1194 | 24.8724 | 23.58 |
MTV | 7.1253 | 6.7365 | 8.1981 |
TOWN | 5.2515 | 2.9889 | 4.5891 |
ROAD | 5.6367 | 4.2255 | 7.2792 |
ROCK | 41.5503 | 29.7927 | 23.7357 |
WATER | 114.6123 | 128.7387 | 123.948 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khatancharoen, C.; Tsuyuki, S.; Bryanin, S.V.; Sugiura, K.; Seino, T.; Lisovsky, V.V.; Borisova, I.G.; Wada, N. Long-Time Interval Satellite Image Analysis on Forest-Cover Changes and Disturbances around Protected Area, Zeya State Nature Reserve, in the Russian Far East. Remote Sens. 2021, 13, 1285. https://doi.org/10.3390/rs13071285
Khatancharoen C, Tsuyuki S, Bryanin SV, Sugiura K, Seino T, Lisovsky VV, Borisova IG, Wada N. Long-Time Interval Satellite Image Analysis on Forest-Cover Changes and Disturbances around Protected Area, Zeya State Nature Reserve, in the Russian Far East. Remote Sensing. 2021; 13(7):1285. https://doi.org/10.3390/rs13071285
Chicago/Turabian StyleKhatancharoen, Chulabush, Satoshi Tsuyuki, Semyon V. Bryanin, Konosuke Sugiura, Tatsuyuki Seino, Viktor V. Lisovsky, Irina G. Borisova, and Naoya Wada. 2021. "Long-Time Interval Satellite Image Analysis on Forest-Cover Changes and Disturbances around Protected Area, Zeya State Nature Reserve, in the Russian Far East" Remote Sensing 13, no. 7: 1285. https://doi.org/10.3390/rs13071285
APA StyleKhatancharoen, C., Tsuyuki, S., Bryanin, S. V., Sugiura, K., Seino, T., Lisovsky, V. V., Borisova, I. G., & Wada, N. (2021). Long-Time Interval Satellite Image Analysis on Forest-Cover Changes and Disturbances around Protected Area, Zeya State Nature Reserve, in the Russian Far East. Remote Sensing, 13(7), 1285. https://doi.org/10.3390/rs13071285