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Abstract: Boreal forest areas in the Russian Far East contained very large intact forests. This particular
area is considered one of the most productive and diverse forests in the boreal biome of the world,
and it is also home to many endangered species. Zeya State Nature Reserve is located at the southern
margin of the boreal forest area in the Russian Far East and has rich fauna and flora. However, the
forest in the region faced large-scale forest fires and clearcutting for timber recently. The information
of disturbances is rarely understood. This study aimed to explore the effects of disturbance and
forest dynamics around the reserve. Our study used two-year overlaid Landsat images from Landsat
5 Thematic Mapper (TM) and 8 Operational Land Imager (OLI), to generate forest-cover-change maps
of 1988–1999, 1999–2010, and 2010–2016. In this paper, we analyze the direction of forest successional
stages, to demonstrate the effectiveness of this protected area in terms of preventing human-based
deforestation on the vegetation indices. The vegetation indices included the normalized burn ratio
(NBR), the normalized difference vegetation index (NDVI), and the normalized difference water index
(NDWI). The study provided information on the pattern of forest-cover change and disturbance area
around the reserve. The NDWI was used to differentiate between water and non-water areas. The
mean values of NBR and NDVI were calculated and determine the forest successional stages between
burn, vegetation recovery, grass, mixed forest, oak forest, and birch and larch forest. The accuracy
was assessed by using field measurements, field photos, and high-resolution images as references.
Overall, our classification results have high accuracy for all three periods. The most disturbed area
occurred during 2010–2016. The reserve was highly protected, with no human-disturbance activity.
However, large areas from fire disturbance were found (137 km2) during 1999–2010. The findings
also show a large area of disturbance, mostly located outside of the reserve. Mixed disturbance
increased to almost 50 km2 during 2010–2016, in the buffer zone and outside of the reserve. We
recommend future works to apply our methods to other ecosystems, to compare the forest dynamics
and disturbance inside and outside the protected area.
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1. Introduction

Boreal forests are considered the largest ecoregion on Earth. This particular area is
well-known for its productivity and diverse forest types which is home to many endangered
species. About 20% of the world’s boreal forests are located in Eastern Siberia and the
Russian Far East affected by natural disturbances and human activities [1]. Deforestation
and degradation are expected to expand in the Central Siberia [2], the Eastern Siberia, and
the Russian Far East [3]. In recent decades, unprecedented large-scale fire events have
caused air pollution, smog blankets, ecosystem degradation, and biodiversity loss [1,3].
The increasing temperature of and the windy weather may intensify the forest fire on the
mountain top after lightning occurred. There were significant positive correlations between
lightning and wetter precipitation and the advent of forest fires during the summer and
fall seasons [4]. More than 70% of forest fire in Russia are caused by human activities,
11% by lightning, 10% by agricultural prescribed burning [5,6]. Road building and bridge
construction were expanded in Siberia and the Russian Far East, which has a tendency to
cause the area more flammable when the weather is dry and warm. Mining and prescribed
burning are also the causes of huge fire area in the 2015 Russia wildfire event and 2003
Siberian Taiga Fires event. The fire was out of control, causing as much as ten million
hectares from West Siberia to the Russian Far East [7]. Scientists have linked the loss of
forest cover in fires to human activity and global climate change, but as some remote
regions in the Russian Far East are still unexplored, there are still lack of many data on the
information of land-cover characteristics and forest dynamics [8].

Several nature reserves have been designated in the Russian Far East, to protect the
landscape and conservation efforts against land conversion [9,10]. Although these remote
places have a little human occupation, lack of monitoring makes them susceptible to
landscape alteration, such as clearcutting for timber, agricultural expansion for ranching,
mining, and road building [11]. Keeping the forest landscape stable and maintaining forest
succession after disturbance is necessary to protect species diversity and climate regulation.
Boreal forests are famous for their annual fire cycle [12]. However, some disturbed areas
have not recovered to the old-growth forest, and many old-growth forests have turned into
secondary forests and grassland. This modern forest dynamic increases the risk of reducing
the function of the forest ecosystem, raising the risk of global climatic disturbance [13].

The inaccessible area and remote locations mean that forest changes and disturbance
history have not been well studied [9]. Studying areas requires advanced technologies
such as remote sensing. Using remote sensing to detect the disturbance history is essential
for evaluating the effectiveness of site protection measures [9]. For example, satellite image
analysis demonstrated that the Russian Far East forests were greatly affected by Siberian
Taiga Fires in 2003, which destroyed nearly 3 million ha of forest, the most considerable loss
in the Russian Far East’s history [2,13,14]. Satellite imagery is routinely used to calculate the
normalized difference vegetation index (NDVI) and the normalized burn ratio (NBR), and
the normalized difference water index (NDWI) which were used to detect vegetation health,
fire severity, and water [15,16]. Such data can be useful for landscape management [17,18].
As commercial satellite images are costly, the use of freely available data, such as Landsat
images, is a popular alternative for ecologists and environmentalists [2,18,19]. However, the
images have disadvantages for studying forest cover in the Russian Far East due to frequent
cloudiness and short seasons, limiting the number of high-quality images available [20].
Two year images could be overlaid to increase reliability. Such a two-image classification
can yield higher accuracy than standard single-image classification, overcoming limited
image availability [21]. However, the potentially long time interval between successive
images reduces the accuracy of detecting forest disturbances, resulting in underestimation
of disturbance [22]. A disturbed area might have recovered to typical vegetation in the
later image and can no longer be treated as disturbed area [2,23]. Therefore, to adequately
evaluate disturbance, it is necessary to consider changes of the forest types or successional
forest type direction.
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Here we determined forest-cover change and disturbance in a protected region of the
Russian Far East to help managers prioritize conservation efforts on protecting flora and
fauna and managing fuel above ground to prevent severed fire [24–27]. We present the
maps of forest-cover change between 1988 and 2016, in this vulnerable ecosystem, based
on remote-sensing data, to show the following: (1) how forest cover and disturbance differ
among inside the protected area, the buffer zone, and outside the protected area. The buffer
zone indicated the area that runs along the boundary of the reserve that limited some level
of human activities but not highly restricted as the reserve and enhance the protection of
biodiversity of the reserve. The next is (2) how vegetation indices can be used to overcome
disadvantages of long-interval image analysis to show forest successional stages after
disturbance; and the last is (3) how effective the reserve is in terms of preventing fire
disturbance and protecting forest based on the area of forest successional directions inside,
the buffer zone, and outside of the reserve.

2. Materials and Methods
2.1. Study Area

The study area is located in Zeya State Nature Reserve, Amur Oblast, Far Eastern
Russia (53◦58′–54◦07′N, 126◦52′–127◦22′E; Figure 1). The reserve, with a total area of
99,430 ha, was established on 3 October 1963, at the eastern end of the Tukuringra Ridge.
Within the reserve, 40% of the area has an elevation of up to 700 m a.s.l., 35% of 700 to
1000 m, 18% of 1000 to 1300 m, and 7% of over 1300 m. The elevation gradient is shown in
Figure 1. The average temperature is −28.8 ◦C in January and +19.7 ◦C in July. The average
annual precipitation is 515.2 mm. The prevailing winds are northeasterly, most commonly
(75%) at 1.2 to 2.2 m/s. The reserve are considered home to more than thousands of
species, including 1111 species of plants, 2001 species of invertebrates, and 225 species
of vertebrates. The biodiversity in the reserve is richer than other protected area in the
Russian Far East. More than 35 species of fauna and flora are listed on the Red Book of
Russia, and 10 species of bird and 1 species of mammal are on the International Union for
Conservation of Nature (IUCN) Red List [28].

Figure 1. The study area and field plots established at Zeya State Nature Reserve. (a) The normalized
different vegetation index (NDVI) distribution map of East Asia. (b) Zeya State Nature Reserve.
(c) The study area elevation (m) and field plots.
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More than 90% of the reserve is covered by 7 major different forest types, with the
most dominant be the Betula platyphylla and Larix gmelinii species (80% of the reserve and
Picea ajanensis species (10% of the reserve) (Supplementary Materials Table S1). According
to Dudov’s [29] spatial map of vegetation, the mountain tundra belts, located at elevations
of >1200 m, are dominated by alpine dry heath species, such as Vaccinium uliginosum L.,
Arctous alpina (L.) Niedenzu, and Betula exilis Sukacz., edged by the dark green shrub-like
tree Pinus pumila (Pall.) Regal. Picea ajanensis (Lindl. et Gord.) Fisch. ex Carr. grows at two
elevations, high on the mountains and sometimes mixed with larch along river valleys.
Larix gmelinii (Rupr.) Kuzen and Betula divaricata Pall. spread across the mountain in various
habitats and end at the mountain tundra belt (1200 m). Vegetation under the canopy of
larch forests includes Vaccinium vitis-idaea L., Ledum palustre L., Rhododendron dauricum L.,
and green mosses. Grasses and willows grow in the river valleys and floodplains at
lower elevations. Quercus mongolica Fisch. et Ledeb. grows in the southeastern part of
the reserve along the northern slopes. Tilia amurensis Rupr., Lespedeza bicolor Turcz., and
Corylus heterophylla Fisch. ex Trautv. grow under the canopy of oak and black birch forests.
Other plants along the river valleys include Dasiphora fruticosa (L.) Rydb., Syringa amurensis
Rupr., Calamagrostis spp., and Carex spp. Meadows and grasslands are scattered in several
places, such as fire-disturbed areas and floodplains. Marshes occupy only a small area
inside the reserve, mostly in flat areas and on gentle slopes with northern exposure. In 2003,
the region experienced a large-scale fire (around 700 km2) that caused extensive damage to
forests both inside and outside the reserve.

The reserve established a buffer zone along the edge of the reserve, extending more
than 5 km distance from the border of the reserve to the road on the eastern side and
to the electricity line on the southern side and to the river on the western and northern
sides. The area has reduced some degree of human activities but is not quite restrictive
as inside the reserve. The buffer-zone area strengthens the conservation of biodiversity,
providing protection shield to the reserve’s fauna and flora and only allowed limited
intense use of natural resources. There is some monitoring at the buffer zone area to track
human disturbance and infrastructure developments, like roads and bridge construction.
Outside areas of the reserve beyond the buffer zone line owned by the federal government
is seldom controlled or monitored by government officials. Rare surveillance may put the
region at risk of forest destruction and landscape changes. The reserve interior was well
protected from human disturbance, with no settlements or clearcutting activity within it.
This situation has shown its effectiveness in protecting natural resources and ecosystems.
However, many human-induced disturbances were still found nearby. The flat terrain and
unprotected status outside the reserve make large forests vulnerable to human disturbance
activity [30]. Clearcutting occurred more in the buffer zone during the most recent period
because of easier accessibility and a new mining camp. In recent years, most forest fires
have occurred in the clearcutting area, raising the question of whether the timber harvesters
or the miners caused the fire and whether it was accidental or natural. For example, many
areas of mixed disturbance located next to the mining area and the nearby electricity line in
2010–2016. An increasing fire frequency resulting from changes in species composition that
favor the regrowth of deciduous forests prone to fire [31,32] usually occurs in small-scale
clearcutting or selective logging areas [30].

2.2. Data and References

We used two datasets in this study: satellite images of the reserve during summer, for
classification; and field data (Supplementary Materials Table S2) plus maps and literature,
along with the high-resolution image and photographs, as references. The dataset for
classification included Landsat satellite imagery, and 30 m Shuttle Radar Topography
Mission (SRTM) data were acquired from the US Geological Survey’s Earth Resources
Observation (USGS) [33]. We selected Landsat images with <10% cloud cover during
the growing season (1 June to 30 September). After screening, we chose only four most
suitable images based on cloud-free and relatively within the same season and appropriate
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time-interval, acquired in 1988, 1999, 2010, and 2016, from the Landsat Thematic Mapper
(TM) and Operational Land Imager (OLI) imagery (Table 1). The images were preprocessed,
using radiometric calibration, atmospheric correction made with COST model [34], and
topographic correction made with SRTM as Digital Elevation Model (DEM) with TNTmips
2017 software (MicroImages, Raymond, NE, USA).

Table 1. List of processed Landsat images.

Path/Row Date Sensor Band Combination for False
Color Composite (R, G, B)

120/22 23 September
1988 Landsat 5 TM B5, B4, B3

120/22 21 August 1999 Landsat 5 TM B5, B4, B3

120/22 4 September 2010 Landsat 5 TM B5, B4, B3

120/22 19 August 2016 Landsat 8 OLI B6, B5, B4
TM, Thematic Mapper; OLI, Operational Land Imager.

To preprocess the SRTM images, we used the TNTmips2017 Radiometric Correction,
the most suitable parameters that provide the best images on all four dates were a scale of
1 for reflectance, “dark object from histogram”, and “very hazy” with a skylight fraction of
0.80 for correction. These parameters provided similar ranges of reflectance values between
sunny and shadowy areas. After the reflectance images of all the full Landsat scenes were
produced, they were extracted into regions of interest that covered the entire reserve and
some areas outside it.

The reference dataset used as training and validating samples to evaluate classification
accuracies, we investigated the area inside and outside the reserve during the summer
season, August 2016 to 2018, and collected measurement data (Supplementary Materials
Table S2). We established twenty-three plots in total: eleven plots (NR1–NR11) inside
the reserve, six plots in the buffer zone (BZ1–BZ6), and six plots outside the reserve
(ONR1–ONR6), each covering approximately 100 m2 (Figure 2). In each plot, we recorded
tree species, tree height, and diameter at breast height, to identify forest cover. The photos
and evidences of burn scars and cut woods helped identify the disturbance type in the
area. Most of the plots were dominated by L. gmelinii and Betula platyphylla, and the higher
elevation plots were dominated by P. ajanensis. Several plots, however, had experienced
forest fire and clearcutting in the past.

Besides the field investigation information, other references included drawing maps,
vegetation maps, high-resolution images, and photographs. For drawing fire maps, the
reserve-management-office specialists observed and recorded the burned area that occurred
from the 1990s to 2010 and hand-drawn the boundaries of the burned area on the reserve
map. The vegetation map had been published in 2016, in Russian, by Dudov [29], using
satellite images as a based map. The author collected information in the field and produced
the classified vegetation map of the reserve, consisting of 45 forest classes in total. The
mountainous topography and inaccessibility of the northern part of the reserve made it
difficult for us to collect data there, so we used a high-resolution image from Digital Globe
WorldView-2, taken on 20 September 2010, covering around 20 km2, to investigate the
inaccessible area at the northern border of the reserve and check whether there is any
evidence of forest burning or clearcutting area. We also obtained photographic evidence
and evidence from experts and scientists who previously conducted experiments inside the
reserve. The high-resolution images from global online mapping services, such as Google
Earth imageries, Bing Maps, and Google Maps, also allowed us to monitor the change of
the landscape and used it as one of the references to identify of forest cover and disturbance
outside of the reserve area.
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Figure 2. Overview examples of forest plots in the field: (a) plot NR1, located below the tundra belt,
at 1305 m a.s.l., and dominated by mountain spruce forests; (b) plot NR2, located along the trail,
at 853 m a.s.l., dominated by larch; (c) plot NR3, located at 626 m a.s.l., along the river valley, with
the dominant species being larch and spruce in the river valley; (d) plot NR4, located near the road,
with dominant trees including birch and larch; (e) plot BZ1 buffer zone plot, which experienced both
massive forest fire and clearcutting in 2003 and 2007, and is now recovered by grass and shrub and
birch; (f) plot ONR1, outside reserve plot, experienced with frequent annual burning from wildfires,
the latest of which occurred in July. The photos were taken on 8 August 2016 (Khatancharoen 2016;
personal observation).

2.3. Classification

For image-classification processing (Figure 3), image datasets were first classified by
object-based segmentation, a multi-scale object-oriented procedure that divides an image
into small regions called “objects”, using eCognition v. 9.0 software (Trimble Geospatial,
Sunnyvale, CA, USA). This study introduced a two-year overlaid image classification
technique. In our object-based classification process, we inserted 12 layers of 6 bands
(R, G, B, NIR, SWIR1, and SWIR2) from two Landsat dates (pre- and post- year images,
e.g., 1988 and 1999) and a layer from the SRTM data in the workspace. All 13 band images
were then segmented into objects, using a multiresolution segmentation algorithm with
a scale of 10 for the most appropriate scale parameter [35]. We also gave image layer
weights of 2 for NIR layer to weigh vegetation cover more. The other parameters remained
defaults (0.1 for shape and 0.5 for compactness) [36]. The multiresolution segmentation
algorithm provided ability to divide the pixels with similar spectral values into polygons.
This technique lowers the numbers of heterogeneity polygon areas [37].
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Figure 3. Flowchart for object-based classification based on Landsat images.

After segmentation, three vegetation indices (NDVI, NDWI (normalized difference
water index), and NBR) and band values (RED, NIR (near-infrared), SWIR1 (short-wave
infrared band 1), and SWIR2) of the Landsat images were calculated in the software, to
provide information on polygon index values [38]. The NDVI was used to detect live green
vegetation [39], to separate forest type into different classes. The NDWI was used to detect
surface waters in wetlands [40] and to distinguish water and non-water areas. The NBR
was used to detect burned areas [23]. We also calculated the change of the NDVI and NBR
between years. The change of NBR between two years allowed us to locate the burn area in
our study area, while the change of NDVI can give us a hint as to the location of deforested
areas.

For the classification process, the study employed the nearest neighbors (NNs) algo-
rithm. The core concept of the non-parametric machine learning NN algorithm method
was that if the training objects and the neighboring objects in feature space belonged to the
same class, then the objects would be identified as that class [41]. It was appropriated for
our study because many objects had spectral values across multiple categories. The objects
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unfitted to the class would be identified as unclassified objects on the classification layer.
We also used the interactive algorithm, such as the thresholding algorithm and assigning
algorithm, for the post-classification to assign the unidentified and mismatch class objects
to the proper class based on spectral values and indices. During the classification process
in eCognition, first, we inserted the class hierarchy of 17 land-use classes. We selected
training objects that represented each class well and assigned classes to the objects based
on the criteria in Table 1. We checked the area on the layers and selected the polygons that
match the physical description of each land-cover type, based on the Zeya State Nature
Reserve vegetation map, field investigation, and high-resolution images used as training
samples. After creating training samples for each image, NDVI and NDWI were calculated
in the software, to add sufficient information for object features, which included 12 band
values, four spectral indices, and the SRTM. In each period classification, we applied the
standardized nearest neighbor (SNN) function [42] with the object features altogether with
additional parameters that were already predefined in the software, including brightness,
relative borders, shape index, and area index. The function allowed us to input specific
characteristic information to the training objects, so that the classification would classify the
objects based on similar information as the training objects. The classification function used
NN algorithm and produced raster layer results of the 17 classes and unclassified class.
After classification, several misclassified or unclassified isolated objects may exist, so we
corrected them by using a basic classification algorithm that includes a class-reassignment
algorithm, to adjust misclassified objects based on elevation range (Table 2), expert’s
explanation, and reference data.

The thresholding algorithm allowed us to reassign misclassified class to the aiming
class based on the condition we set. First, we corrected the unclassified class to WATER
class, using a thresholding algorithm, by setting the mean NIR value to be less than 80. Due
to the mislocation of MTV class and GRASS class, we reassigned MTV class of <1100 m
a.s.l. as GASS, and GRASS class of ≥1100 m a.s.l., as MTV, by referring to SRTM elevation
layer. Moreover, mislocated MSF class in the lower valley of <700 m a.s.l. was reassigned
to SFRV class. These reassignment was executed by “assigned class” algorithm. On the
other hand, a few unclassified objects and human-related disturbance classes misidentified
inside the reserve were reassigned to the proper classes by their properties and physical
characteristics or similarity to the nearest class inside the reserve, by executing “selected
object” algorithm. This interactive algorithm allowed us to reassign misclassified class to
the desired class to only the objects we selected. Two-year overlaid images were finally
classified to obtain the results of one period of the forest-cover-change maps. We performed
the same classification algorithms for three periods (1988–1999, 1999–2010, and 2010–2016).
A total of three maps of three periods were generated as the final classification maps.

2.4. Accuracy Assessment

We randomly selected new sample “objects” or polygons to assess classification
accuracy within the study area. To avoid appearing on a similar location as a training
area and cloud and shadow effects, the “objects” located in such area were excluded,
and then the total numbers of “objects” for validating process were 2121 for 1988–1999,
2321 for 1999–2010, and 2541 for 2010–2016. Those new sample objects were treated as
validating objects and selected independently from training sample objects. The validating
objects were identified based on references, including ground-truth plots, drawing fire
map, vegetation maps of 2016, high-resolution image, and experts’ knowledge to evaluate
the classification performance, using the “Accuracy Assessment” function in eCognition.
We inserted the vegetation map 2016 raster layer and high-resolution image to eCognition.
We selected validating objects based on reference layers and also refer to drawing a fire
map. For classes outside of the reserve which were inaccessible, we referred to a high-
resolution image of 2010, employed from Digital Globe World View-2, Google Maps,
and Bing Maps, along with field photographs (see Supplementary Materials Figure S1)
and staffs’ knowledge, to identify the ground-truth forest cover. The validating objects
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were then converted to the Training and Test Area (TTA) Mask, to compare with the
classification layer. Finally, classification accuracy was assessed, using “Error Matrix Based
on TTA”. The outputs included user’s accuracy, the number of correctly classified objects
in that class divided by the total number of that class’s objects on the classified maps,
producer’s accuracy, the number of correctly classified objects in that class divided by the
total number of reference objects for that class, the overall accuracy, the total number of
correctly classified objects divided by the total number of reference objects, and Kappa
index of agreement (KIA) that measured the interrater reliability.

Table 2. Classification criteria for object-based segmentation classification (see also Supplementary Materials Figure S1).

Class Name Full Class Name Physical Description Color in Landsat Images
(False Color)

BURN Burn area *** Forest disturbance by wildfire Red and pink

CCTA Clearcutting for timber or
agricultural ***

Forest disturbance by harvesting for
timber and ranching

(outside of the reserve)

Yellow and red in geometric
shape

CCE Clearcutting for electricity
lines ***

Forest disturbance by clearcutting to
settle down electricity lines

(outside of the reserve)

Long-straight lines with
bright color

MD Mixed disturbance ***
Forest disturbance by

human-induced fire and harvesting at
the same place (outside of the reserve)

Red and pink in geometric
shape

VGR Vegetation recovery *** Vegetation recovery after disturbance Bright pink patches

GRASS Bogged larch forests in a wide
valley and grassland Muddy, wetland, willow, floodplain Light pinkish with smoot light

green

MF Mixed forests in a river valley Larch mixed with Spruce, willow,
grass (below 700 m a.s.l.) Sparse light and dark green

OBF Oak–Daurian birch forests Querqus mongolica, Lespedeza bicolor
(below 700 m a.s.l.) Light green

BLF Birch and larch forests Larix gmelinii, Betula platyphylla Normal green

SFRV Spruce forests in a river valley Picea ajanensis (315–700 m a.s.l.)
sparsely dispersed near stream Dark green

MSF Mountain spruce forests Picea ajanensis on steep slope
(700–1300 m a.s.l.) Very dark green

DPW Dwarf pine woodland Pinus pumila, Betula lanata
(1100–1300 m a.s.l.) Smoot light green

MTV Mountain tundra vegetation Shrub, sedge, lichen, moss
(above 1200 m a.s.l.) White

TOWN Settlement Houses and airports
(outside of the reserve) Red-to-pink color

ROAD Unpaved road Roads or ways for transportation
without pavement

Gray color in long-straight
lines

ROCK Stream bedrocks River or Stream bedrocks where no
water flows Very reddish color

WATER Water Water bodies (e.g., river and lake) Dark blue

CLOUD Cloud **** Smog, cloud, and cloud shadows White and black color

Note: *** Change class detected after verifying existence between the two years. **** Cloud-cover-change class was masked out in
forest-cover-change maps and analysis.
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2.5. Forest-Cover Change and Disturbance Analysis

We generated forest-cover-change maps based on the 17 classes in each of the three
periods. Delineating three zones—inside the reserve, a buffer (an area that runs along
the boundary of the reserve which limited some level of human activities but not highly
restricted as the reserve and enhance the protection of biodiversity of the reserve), and
outside the reserve— helped us analyze the forest-cover change and disturbance areas.
The buffer zones added security to the reserve’s biodiversity and ecosystem. The reserve
established the buffer zone border to avoid heavy usage of natural resources. To understand
the dynamics of forest and disturbance around the reserve, we separate the buffer zone area
from the outside area to monitor the disturbance patterns and trend near the border of the
reserve. The area was extracted by using the polygons of inside, buffer zone, and outside
the reserve for forest-cover change and disturbance analysis. We calculated the areas of
all the classes and created a matrix of area changes among the three periods and the three
zones. We focused on six classes (BURN, VGR, GRASS, MF, OBF, and BLF) for analysis.
These classes represented typical forest successional stages after disturbance in large areas
inside the reserve, buffer zone, and outside the reserve. We excluded four classes (SFRV,
MSF, DPW, and MTV) because those vegetation types were at higher elevations, had small
area, and were rarely disturbed. We analyzed the mean values of NDVI and NBR of the
six successional stages to assess forest succession. The lowest average value of NDVI
and NBR class was considered the first stage while the higher average value class was
considered the next stage and so on. The broad-leave forests typically dominated the land
before needle-leave forest, thus we arranged BLF as the last stage of forest succession. After
we assessed forest succession, we created a matrix of the percentage of area changes of
successional stages to show their directions in the three zones.

Finally, we compared inter-annual fires to check the more precise dates of fire in the
study region, using the MCD64A1 product [43] from Moderate Resolution Imaging Spectro-
radiometer (MODIS) satellite [44] (Supplementary Materials Figure S2). As MODIS started
orbiting after 2000, it was possible to compare only two periods (1999–2010 and 2010–2016)
in this research. The MODIS sensor has 36 spectral bands to monitor earth and water
surface conditions, spatial resolutions of 250 m, 500 m, and 1 km, and temporal coverage of
1 or 2 days [45]. We selected the MCD64A1 product because it was specifically developed
for burned area detection and has 500 m spatial and 1 month temporal resolutions [46].
This helped us better understand how the fire cycle impacted the forest cover in our study
area.

3. Results
3.1. Classification Maps

The object-based classification produced three changed maps from three periods
(1988–1999, 1999–2010, and 2010–2016). The maps indicated “change classes” and “stable
classes” (Figure 4). “Changed classes” referred to the disturbance and recovery classes for
which a large change was detected during classification (Table 1), while “stable classes”
referred to classes for which a large change was not detected between pre- and post-
year images, during classification; this included, forest, rock, water, permanent road, and
settlement classes. These classified maps were the first change maps ever produced in
the study area. This is also the first time we detected large burned area across the river
at the northern border, outside the reserve, during 1999–2010 and 2010–2016. Most of the
burned area lay to the southern, outside the reserve, near grassland. We found that, in the
period 1988–1999, the burned area was small and hardly detected, but when compared to
the period 1999–2010 and 2010–2016, large burned areas were detected across the southern
parts of the reserve. By combining sequential images, we found that the classification
had high overall accuracy for all three periods: 91.6% for 1988–1999, 90.9% for 1999–2010,
and 94.3% for 2010–2016 (Table 3). For 1988–1999, the producer’s accuracy was low in
most disturbance classes: 64.3% in mixed disturbance, 69.4% in burned area, 58.9% in
clearcutting for timber or agriculture, and 70.0% in clearcutting for electricity line. The
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user’s accuracy for mixed disturbance class was 40.9%. This means that, even though
64.3% of mixed disturbance area from the ground-truth was correctly identified as mixed
disturbance, only 40.9% of the mixed disturbance area on the classified map was actually
mixed disturbance. For 1999–2010, the user’s accuracy was low in mixed disturbance
(66.7%), burned area (40.9%), and vegetation recovery (57.4%). For 2010–2016, accuracy
was very high except for clearcutting for timber or agriculture, with a user’s accuracy of
only 60.0%.

Figure 4. Change maps obtained from object-based segmentation classification to detect the change of forest cover in
the Scheme 1988 (a). (b) 1999–2010, and (c) 2010–2016. BURN = burned area, CCTA = clearcutting for timber or agricul-
tural, CCE = clearcutting for electricity lines, MD = mixed disturbance, VGR = vegetation recovery, GRASS = grassland,
MF = mixed forests, OBF = oak–Daurian birch forests, BLF = birch and larch forests, SFRV = spruce forests in a river valley,
MSF = mountain spruce forests, DPW = dwarf pine woodland, MTV = mountain tundra vegetation, TOWN = settlement,
ROAD = unpaved road, ROCK = stream bedrocks, and WATER = water.

Table 3. Producer’s accuracy and user’s accuracy for 1988–1999, 1999–2010, and 2010–2016.
BURN = burned area, CCTA = clearcutting for timber or agricultural, CCE = clearcutting for electric-
ity lines, MD = mixed disturbance, VGR = vegetation recovery, GRASS = grassland, MF = mixed
forests, OBF = oak–Daurian birch forests, BLF = birch and larch forests, SFRV = spruce forests in
a river valley, MSF = mountain spruce forests, DPW = dwarf pine woodland, MTV = mountain
tundra vegetation, TOWN = settlement, ROAD = unpaved road, ROCK = stream bedrocks, and
WATER = water.

Class
1988–1999 1999–2010 2010–2016

Producer User Producer User Producer User

BURN 69.44% 89.29% 65.85% 40.91% 84.31% 93.48%

CCTA 58.93% 86.84% 85.71% 85.71% 100.00% 60.00%

CCE 70.00% 100.00% 86.67% 100.00% 87.50% 87.50%

MD 64.29% 40.91% 80.00% 66.67% 84.62% 100.00%

VGR 78.82% 78.82% 100.00% 57.39% 88.42% 95.45%
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Table 3. Cont.

Class
1988–1999 1999–2010 2010–2016

Producer User Producer User Producer User

GRASS 95.26% 95.94% 88.06% 99.76% 87.88% 80.56%

MF 77.30% 84.56% 97.42% 72.60% 92.59% 75.76%

OBF 100.00% 100.00% 95.00% 95.00% 100.00% 100.00%

BLF 98.67% 90.24% 98.35% 90.99% 97.39% 95.51%

SFRV 94.25% 98.80% 78.95% 100.00% 100.00% 76.92%

MSF 96.26% 94.74% 94.30% 91.46% 86.71% 93.75%

DPW 85.71% 91.14% 88.51% 89.53% 96.30% 81.25%

MTV 92.86% 88.64% 90.91% 85.11% 77.55% 92.68%

TOWN 87.91% 97.56% 85.96% 80.33% 80.00% 100.00%

ROAD 93.75% 88.24% 85.71% 94.74% 100.00% 90.91%

ROCK 91.41% 93.60% 77.97% 94.85% 76.47% 100.00%

WATER 100.00% 100.00% 100.00% 93.52% 100.00% 100.00%

Overall Accuracy 91.61% 90.90% 94.33%

Kappa index of
agreement (KIA) 90.10% 87.86% 92.68%

Some of the forest areas in the southern parts experienced burning and two or more
clearcuttings during 1988–2016. The burned area increased more than 3.48% of total area
from the period of 1988–1999 to 1999–2010, but it decreased −2.02% from the period of
1999–2010 to 2010–2016, covering ~137 km2 (Figure 5; Table 4). Most of the burned area lay
around the southern region inside the reserve during 1999–2010 (Figure 3; Supplementary
Materials Table S3). The grassland area decreased inside and increased outside the reserve,
after the first period. The total grassland area increased around 2.15% from the period of
1988–1999 to 1999–2010. Mixed disturbance was the only class that increased continuously,
by about 0.20% from the period of 1988–1999 to 1999–2010, and 1.10% from the period
of 1999–2010 to 2010–2016. Birch and larch forests lost ~42 km2 to vegetation recovery
and lost ~212 km2 to mixed forests in 1999–2010, the largest conversion (Supplementary
Materials Table S4). Other significant conversions of >50 km2 included birch and larch
forests to grassland (69.35 km2), mixed forests to birch and larch forests (100.43 km2), and
spruce forests in river valley to birch and larch forests (68.56 km2). In 2010–2016, most of
the disturbance occurred in mixed forest areas, which lost ~19 km2 to burned area, and
~18 km2 became vegetation recovery (Supplementary Materials Table S5).

Some of the burned area areas in 1999–2010 repeatedly occurred during 2010–2016
(1.57 km2), and some converted to mixed disturbance (3.12 km2). Vegetation recovery
area was unexpectedly low, at only 45 km2 during 2010–2016. The largest conversion was
mixed forests to birch and larch forests (225.44 km2). The most surprising finding was
the change of 51 km2 of the burned area to birch and larch forests. Major disturbances
increased from the period of 1988–1999 to 2010–2016, especially outside the reserve, and
both burned areas and mixed disturbance occupied larger areas (Figure 6). The burned
area contained a large percentage increase from the period of 1988–1999 to 1999–2010 for
all zones, inside (5.36%), the buffer zone (1.86%), and outside (2.93%) of the reserve, while
it decreased in all zones, from the period of 1999–2010 to 2010–2016 (Figure 7). Clearcutting
area for timber or agriculture and mixed disturbance only occurred in the buffer zone and
outside of the reserve. Clearcutting for timber or agriculture increased the area by more
than 0.18% in the buffer zone from the period of 1988–1999 to 1999–2010. For the outside
of the reserve, mixed disturbance appeared to expand the area more than 0.31% from the
period of 1988–1999 to 1999–2010, and 1.69% from the period of 1999–2010 to 2010–2016.
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Figure 5. Area change percentage of class covers from the period of 1988–1999 to 1999–2010 and from the period of
1999–2010 to 2010–2016. BURN = burned area, CCTA = clearcutting for timber or agricultural, CCE = clearcutting
for electricity lines, MD = mixed disturbance, VGR = vegetation recovery, GRASS = grassland, MF = mixed forests,
OBF = oak–Daurian birch forests, BLF = birch and larch forests, SFRV = spruce forests in a river valley, MSF = mountain
spruce forests, DPW = dwarf pine woodland, MTV = mountain tundra vegetation, TOWN = settlement, ROAD = unpaved
road, ROCK = stream bedrocks, and WATER = water.

Figure 6. The area of major disturbance classes, per year, in inside, buffer zone, and outside of the
reserve, during 1988–1999, 1999–2010, and 2010–2016. BURN = burned area, CCTA = clearcutting for
timber or agriculture, and MD = mixed disturbance.
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Table 4. Area (km2) of class covers in first (1988–1999), second (1999–2010), and third (2010–2016)
periods. BURN = burned area, CCTA = clearcutting for timber or agricultural, CCE = clearcutting for
electricity lines, MD = mixed disturbance, VGR = vegetation recovery, GRASS = grassland, MF = mixed
forests, OBF = oak–Daurian birch forests, BLF = birch and larch forests, SFRV = spruce forests in
a river valley, MSF = mountain spruce forests, DPW = dwarf pine woodland, MTV = mountain
tundra vegetation, TOWN = settlement, ROAD = unpaved road, ROCK = stream bedrocks, and
WATER = water.

Class
Area (km2)

1988–1999 1999–2010 2010–2016

BURN 15.4134 136.9125 67.6089

CCTA 20.0142 8.1333 6.5934

CCE 4.2867 3.6063 9.4788

MD 3.1158 10.1043 49.734

VGR 105.9642 97.9578 45.4932

GRASS 248.5971 316.1943 340.9686

MF 224.7192 318.0006 209.2185

OBF 70.4358 52.1739 46.4472

BLF 2666.847 2468.893 2598.881

SFRV 72.0909 31.7277 65.6172

MSF 131.1309 115.5024 126.2691

DPW 21.1194 24.8724 23.58

MTV 7.1253 6.7365 8.1981

TOWN 5.2515 2.9889 4.5891

ROAD 5.6367 4.2255 7.2792

ROCK 41.5503 29.7927 23.7357

WATER 114.6123 128.7387 123.948

Figure 7. Area-change percentage of major disturbances inside, buffer zone, and outside the reserve, from the period of
1988–1999 to 1999–2010, and from the period of 1999–2010 to 2010–2016. BURN = burned area, CCTA = clearcutting for
timber or agricultural, and MD = mixed disturbance.
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3.2. Determination of NDVI and NBR of Successional Stages

Mean NDVI and NBR values were lowest in burned area in 1999 and 2016 and tended
to decrease during the study period. Most values were lower outside the reserve than
inside and in the buffer zone. Higher values mean a gain in vegetation coverage. The
characteristic values of NDVI in the growing season for this geoclimatic region ranged from
0.3 to 0.8 for NDVI of birch and larch forests [47–49]. Birch and larch forests, oak–Daurian
birch forests, mixed forests, and vegetation recovery had higher NDVI and NBR values
than grassland and burned area (Figure 8). The leftward and downward shifts of NDVI vs.
NBR lines over time indicated that vegetation coverage decreased owing to disturbance.
Birch and larch forests dominated the landscape, with larger NDVI and NBR, and with
means between those of mixed forests and oak–Daurian birch forests. Oak–Daurian birch
forests had higher mean values than the other five successional classes. The large-scale
fire in 2003 occurred in many places with different degrees of severity. The long period
(1999–2010) created a spatial mixture of vegetation coverage, so the mean NDVI and NBR
values of the burned area areas varied between inside and outside the reserve. However,
based on box plots of NDVI and NBR (Supplementary Materials Figures S3–S6), some of
burned area and vegetation recovery areas had already recovered to a similar index value
as grassland or higher. We then determined the ranking of the six successional classes
after burn disturbance from first to last as burned area, vegetation recovery, grassland,
mixed forest, oak–Daurian birch forests, and birch and larch forests based on the field
investigation information. Thus, after a forest fire, areas enter the vegetation recovery
stage before grassland develops. The growth of broadleaf and conifer seedlings creates a
mixed of short grass and some trees. Broadleaf oaks or birch fully occupy the areas a few
years later. If the areas are far from water bodies, larch will finally outcompete them and
dominate.

Figure 8. NDVI versus normalized burn ratio (NBR) inside, buffer zone, and outside of the reserve in 1999, 2010, 2016.
BURN = burned area, VGR = vegetation recovery, GRASS = grassland, MF = mixed forests, OBF = oak–Daurian birch forests,
and BLF = birch and larch forests.

3.3. Effectiveness of the Reserve

The change matrices show the direction of forest successional change (Figure 9): upper
right indicates higher stability, meaning forward succession, while lower left indicates lower
stability, meaning backward succession. Green color gradient represented the forward
successional stages and red color gradient represented the backward successional stages.
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The darker color means the higher percentages of an area moving toward that direction.
Inside had higher ratios of each class moving forwards than the buffer, and outside of the
reserve. On the contrast, outside had higher ratios moving backwards successional stages
than inside the reserve. From the period 1999–2010 to 2010–2016, inside of the reserve was
well protected, with all the classes moving backward successional stages were less than 5%.
From the period of 1999–2010 to 2010–2016, 40.20 km2 of mixed forests outside converted
to grassland, the largest ratio (22%) of backwards succession, indicating significant forest
area loss to fire (Supplementary Materials Table S6). During the same time, 11.5% of mixed
forest area in the buffer zone was converted to grassland while the inside of the reserve
showed the smallest area of mixed forest-grassland conversion. More than 10% of mixed
forests, oak–Daurian birch forests and birch and larch forests in the buffer zone and outside
of the reserve moved at least one class backward on the forest successional stage from the
first period to the second period.

Figure 9. The relative area changes of each class. BURN = burned area, VGR = vegetation recovery, GRASS = grassland,
MF = mixed forests, OBF = oak–Daurian birch forests, and BLF = birch and larch forests.

3.4. Analysis of MODIS Data

Figure 10 shows the annual distribution of the MCD64A1 product’s burned areas over
the reserve for a whole year and the monthly distribution of burned areas detected from
2000 to 2016. The fire season usually occurred from March to May. These three months
contained the largest burned areas per month. Approximately 50% of the total burned
areas detected in our study area were aggregated in 2002, 2003, 2008, and 2015. On the
contrary, 2000 and 2009 had no registrations of burned areas.
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Figure 10. The burned area in the study area (March, April, May, and whole year only) obtained by
the MCD64A1 product.

4. Discussion

This study is the first to assess fire disturbance and forest-cover change in the Zeya
State Nature Reserve at the landscape scale. We used remote-sensing data to compensate
for the lack of data in this remote region. Although ground-truth data were insufficient
for accurate classification, our results show a high accuracy of classification maps. To
analyze forest dynamics from long-time interval Landsat images, we used mean NDVI
and NBR values to extract forest successional stages. The vegetation recovered through
successional stages of grasses, shrubs, broadleaf and conifer trees, oak–birch forest, and
birch and larch forests after severe fires (Figure 11). The results of the classification maps
showed that several classes had both low producer’s accuracy and low user’s accuracy. The
low producer’s accuracy of the disturbance classes (burned area, clearcutting for timber
or agricultural, and mixed disturbance) in the 1988–1999 map was due to the limited
ground-truth information in the historical data. The low user’s accuracy for burned area,
mixed disturbance, and vegetation recovery in the 1999–2010 map was due to limitations
in distinguishing spectral values due to the massive burned class being possibly adjacent
to or including clearcutting area [50]. More high-resolution images are needed to monitor
whether the tree canopy has been cut down in the disturbance classes. The sufficient data
that can separate burned area and mixed disturbance will further improve the accuracy of
classification.

The large-scale conversion of a mature forest to a lower successional stage is rarely
observed in nature. Low-intensity, short-interval disturbances in the late 1980s to early
1990s reverted larch and birch forests to earlier ecological stages [51]. Clear-cut areas outside
the reserve were associated with forest fires in recent years, challenging the separation of
types of disturbances with similar severity. Vegetation indices helped determine the forest
and disturbance types [50]. However, we found a similar range of mean NDVI and NBR
values for grassland and burned area, owing to rapid understory vegetation recovery [31].
Intense disturbances created a massive loss of the forest canopy and understory vegetation,
which showed up as lower vegetation areas on the Landsat images [16]. The decrease
in NBR mean values during all three periods might be linked to the long-term effects of
human activities on the ecosystem [15]. In the future, we will research the potential of
using other difference satellites, such as Russian, Japanese, Chinese or Indian satellites to
cover the gaps due to cloud coverage. Our study also contained enormous diversity of
land features, from flat terrain to steep hills. Other satellite sensors, such as, the Sentinel-1
and Sentinel-2 data, could help us generate images with high temporal resolution for
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differentiating small agricultural areas and grassland [52]. The synthetic aperture radar
(SAR) have been widely used to detect clearcutting in the tropical forest [53], however,
our study did not involve such a method. We will also apply SAR-based change detection
approach to monitor clearcutting evidences in our study area in the future.

Figure 11. Typical forest successional gradient after forest fire disturbance on Zeya State Nature Reserve.

As we assumed some forest areas can suffer repeated fires, the recovery from which
varies, while other places might only experience fire once and recover rapidly. Some
heavily disturbed areas can only restore to the recovery stage of grass and mixed forest [12]
while others with fewer and less intense fires might have a higher possibility of recovering
back to the original forest stage [23]. For simple succession, such as recovery stage and
grass, the whole process might finish within a year. On the other hand, the large severe
fire area in mature forests might require longer recoveries. Birch and larch forests and oak
forests might take years to recover. From 2010 to 2016, grassland, vegetation recovery, and
mixed forests did not differ much in NBR compared with BLF and OBF, which had lower
NBR values than 1999–2010. This might be due to much slower recovery than grassland [3]
or because the fire occurred near the post-year image.

MODIS showed supporting evidence that major fire damage occurred in the early
years in the 1999–2010 period and later in the 2010–2016 period. This temporal variation in
fire occurrence within a period can impact the recovery stage detected at the end of the
period [18,23]. The years 2015 and 2016, which were the final years of the classified map
2010–2016, included larger recent fires than the years 2009 and 2010, which had small fires.
A large-scale fire settled in the year 2003, so the recovery process of some classes in the
1999–2010 period might have had higher NBR and NDVI values than the 2010–2016 period.
Even though this analysis did not involve forest succession process based on local climate
(temperature and rainfall) and soil type, we recommend that future work consider those
factors. Our approach overcame the gaps inherent in long-interval image analysis.

The findings of MODIS revealed that large areas of burning during 2002, 2008, 2012
and 2015. The findings matched the recorded fire map for all years except 2008. The
southwest of the reserve had a fire in 2002, while the northern border of the reserve had a
fire in two areas in 2012. In 2015, due to extreme temperatures and high winds, Russian
wildfires have caused large damage around the reserve. The fire was initially set to clear
grass but it was out of control, causing vast areas of forest loss from Transbaikal to the Far
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East of Russia. Historical documents failed to capture the burned area inside the reserve
during 2008, our approach by using MODIS showed that the satellite could capture forest
fire in an inaccessible location. We also found that the burned area from the records in 2000
and 2011 was absent from the MODIS data and the Landsat image, the location is yet to be
explored, and in the future we will look for further confirmation from other satellite images.
The overall study period showed the effects of strong enforcement of the protection of
the reserve. Even though forest fires occurred inside the reserve, from 1999 to 2010, other
human-made disturbances were low. The buffer zone around the reserve and the area
outside the reserve faced more deforestation and burning, which pose threats to the area
inside the reserve. Thus, more restrictions should be established to avoid unpredicted
consequences. The buffer zone perhaps experienced more disturbances due to infrequent
monitoring and the difficulty of preventing large fires. Difficulties in assessing such terrain
also restrict enforcement. Forest fires and clearcutting were concentrated near the reserve
boundary because of timber activities along the roads and flat terrain.

Even though remote-sensing data are useful in detecting burned areas, we found
three limitations of the object-based segmentation classification. First, the Landsat surface
reflectance’s pixel values were similar for clearcutting objects and neighboring objects that
represented burned areas. Differentiating between mixed disturbance and burned areas
on Landsat images is difficult [30]. Due to the extensive cloud cover and early vegetation
regrowth, it was also difficult to identify fire scars and clearcutting area [54]. Second, the
time-resolution of our study was not fine enough to detect precise disturbance events
and vegetation recovery. The early recovery of grasses and shrubs (secondary succession
stage) after a disturbance has been overlooked during long periods and has instead been
interpreted as grassland. Third, areas burned from 1988 to 1999 and clear-cut for agriculture
from 2010 to 2016 were minimal [30].

Our results suggest the need for more frequent observation and the incorporation of
environmental factors. Sufficient ground-truth data of historical disturbance—not only
large-scale fires but also small fires and clearcutting—would enhance classification accuracy.
Analyzing large areas in short time intervals is difficult, costly, and laborious. Instead, using
long-interval Landsat images is possible if we consider the successional stage as supporting
information. This would allow us to recognize how fast the understory vegetation has
recovered and the effectiveness of reserves at protecting fauna and flora [55]. For example,
mountain tundra vegetation and other alpine ecosystems are well protected from human
disturbance, but they are vulnerable to climate change [56]. Therefore, knowing how forest
covers change over time inside and outside protected areas, especially in inaccessible
locations, can improve forest conservation and management [9,55,57]. Information on
forest fires, timber harvesting, and other anthropogenic activities around reserves, along
with the help of remote-sensing techniques, can support park protection [9,58–60].

5. Conclusions

Using open-access satellite data is essential for detecting forest disturbance and forest-
cover change. Applying object-based segmentation classification, using overlaid images
from different years, also increased the accuracy and consistency among forest-cover-
change maps. The analysis of successional stages based on NDVI and NBR values provided
important insights into forest-cover-change patterns inside the Zeya State Nature Reserve,
in the buffer zone, and outside the reserve, from the periods of 1988–1999, 1999–2010, and
2010–2016. Severe burning from the periods 1999–2010 and 2010–2016 revealed the critical
role of fire in forest dynamics. Most areas burned outside the reserve were associated with
clearcutting, indicating that anthropogenic factors influenced forest fire and forest-cover
change. Even though the reserve is protected effectively, we found a reduction of both
vegetation indices in burned areas, so there is no guarantee that forest-cover change and
disturbance patterns outside the reserve will not affect the forest dynamics inside it.

The direction of forest successional stages is based on disturbance severity. Some
forest areas did not return to their climax class. The dominant birch and larch forests
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were found to be linked with burned areas. If the consequences of disturbances are not
predictable, the risk of losing biological diversity and ecological function is high. There is
an urgent need for multiple-spatial-scale studies of how forest fires have behaved recently.
Data on fire frequency, intensity, and severity can identify susceptible areas.

This study supported the assumption that fires are becoming more frequent in boreal
forest and have been more extensive in recent years, affecting forest-cover patterns and
trends. Unexpected weather events, increasing demand for timber along the Russia–China
border, and increases in legal and illegal logging activity could alter the boreal forest
ecosystem. Thus, a better understanding of recent forest fires and forest-cover changes
in remote areas is needed to develop better ways to preserve biological diversity and
ecosystem services. Our research has yielded data on forest disturbances in remote areas
that other researchers can use to improve forest management and conservation plans for
large-scale protected areas.

We encourage further studies using vegetation indices to determine ecological succes-
sion after disturbances to overcome the disadvantages of long-time-series analyses. Such
methods can reduce the effort needed to monitor global forest trends. We also recommend
that future studies focus on forest disturbances and forest-cover patterns in other protected
areas, so that we can understand the effectiveness of forest conservation there as well.

Supplementary Materials: The following are available online, at https://www.mdpi.com/article/
10.3390/rs13071285/s1, Table S1: Major forest types of Zeya State Nature Reserve. Table S2: Data
from survey plots at Zeya State Nature Reserve. Table S2: List of processed Landsat images. Table
S5: Producer’s accuracy and user’s accuracy for 1988–1999, 1999–2010, and 2010–2016. Table S3:
Class-cover area (km2) inside, buffer zone, and outside of the reserve in 1988–1999, 1999–2010, and
2010–2016. Table S4: Area changes in different vegetation classes during 1999–2010, compared to
1988–1999. Table S5: Area changes in different vegetation classes during 2010–2016, compared to
1999–2010. Table S6: The change matrix of successional stages of class cover area (km2) in different
periods and different zones of the reserve. Figure S1: Comparison of Landsat image data, classification
result, and reference data (high-resolution image and field photographs) for 17 classes. Figure S2:
Box plot of (a) normalized difference vegetation index (NDVI) and (b) normalized burn ratio index
(NBR) values in total area of the reserve for each class in 2016. Figure S3: Box plot of (a) normalized
difference vegetation index (NDVI) and (b) normalized burn ratio index (NBR) values in inside area
of the reserve for each class in 2016. Figure S4: Box plot of (a) normalized difference vegetation
index (NDVI) and (b) normalized burn ratio index (NBR) values in buffer zone area of the reserve for
each class in 2016. Figure S5: Box plot of (a) normalized difference vegetation index (NDVI) and (b)
normalized burn ratio index (NBR) in outside area of the reserve for each class in 2016. Figure S6:
The reserve burned area in each date registered by the MCD64A1 product.
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