An Approach to Improving GNSS Positioning Accuracy Using Several GNSS Devices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Segmentation, Variance Value and Bootstrapping
2.1.1. Data Segmentation and Variance Value
2.1.2. Data Segmentation and Bootstrapping
- Begin with a sample S from a population with n GNSS observations, thus, the sample size is n.
- Draw a sample from the original sample S data with replacement size n, and replicate k times. Each re-sampled is called a Bootstrap Sample, and there will a total of k bootstrap samples.
- Evaluate the mean for each bootstrap sample; there will be a total k means. A few thousands is considered a reasonable value for k to have a good approximation [22].
- Estimate the variance of the k means. With the aid of a computer, we can make k as large as we like to approximate to the sampling distribution of our estimator mean. Our goal is to estimate the variance of the mean sample generated and compare it with the variance obtained from Equation (1).
2.2. Sequential Solution Method in a Local Geodetic Network. Mathematical and Stochastic Models
3. Results
3.1. Large Amounts of Data in Stationary Positions
3.1.1. Garmin Etrex 30 Measurements
3.1.2. Trimble Geo XT Measurements
3.1.3. Smartphones Measurements: Samsung Galaxy S3, Huawei Y330-U01 and Xiaomi Mi 8
3.2. Data Segmentation Test
3.3. Bootstrapping Test
3.4. Network Adjustment
3.4.1. Five Points Network (1) Observed by the Xiaomi Mi 8 Smartphone
3.4.2. Three Points Network (2) Observed by Three Different GNSS Devices
3.4.3. Three Points Network (3) Observed by Xiaomi Mi 8
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Period of Recorded Data (s) | E Mean (m) | N Mean (m) | E-DRTK (m) | N-DRTK (m) |
---|---|---|---|---|
350,980 | 729,009.8 | 4,373,582 | 0.16 | 0.454 |
430,660 | 729,009.9 | 4,373,582 | 0.088 | 0.392 |
505,140 | 729,009.8 | 4,373,582 | 0.175 | 0.223 |
594,580 | 729,009.8 | 4,373,582 | 0.139 | 0.185 |
676,220 | 729,009.8 | 4,373,582 | 0.112 | 0.116 |
757,240 | 729,009.8 | 4,373,582 | 0.134 | −0.032 |
866,780 | 729,009.8 | 4,373,582 | 0.11 | −0.116 |
942,970 | 729,009.8 | 4,373,583 | 0.102 | −0.142 |
1,340,830 | 729,009.8 | 4,373,582 | 0.109 | 0.381 |
1,422,310 | 729,009.8 | 4,373,583 | 0.109 | −0.381 |
1,611,310 | 729,009.8 | 4,373,583 | 0.18 | −0.417 |
1,699,930 | 729,009.8 | 4,373,583 | 0.169 | −0.425 |
1,872,400 | 729,009.8 | 4,373,583 | 0.145 | −0.482 |
1,999,440 | 729,009.8 | 4,373,583 | 0.136 | −0.484 |
2,154,670 | 729,009.8 | 4,373,583 | 0.135 | −0.505 |
2,706,200 | 729,009.8 | 4,373,583 | 0.111 | −0.433 |
2,808,710 | 729,009.8 | 4,373,583 | 0.111 | −0.433 |
3,777,260 | 729,009.8 | 4,373,583 | 0.112 | −0.411 |
3,831,260 | 729,009.8 | 4,373,583 | 0.111 | −0.41 |
3,909,810 | 729,009.8 | 4,373,583 | 0.113 | −0.434 |
3,963,810 | 729,009.8 | 4,373,583 | 0.097 | −0.386 |
4,017,810 | 729,009.8 | 4,373,583 | 0.096 | −0.372 |
4,092,710 | 729,009.8 | 4,373,583 | 0.097 | −0.375 |
4,173,710 | 729,009.8 | 4,373,583 | 0.096 | −0.374 |
4,254,710 | 729,009.9 | 4,373,583 | 0.095 | −0.377 |
4,391,420 | 729,009.9 | 4,373,583 | 0.094 | −0.388 |
4,463,090 | 729,009.9 | 4,373,583 | 0.091 | −0.39 |
4,684,810 | 729,009.8 | 4,373,583 | 0.097 | −0.39 |
4,738,810 | 729,009.8 | 4,373,583 | 0.097 | −0.39 |
4,829,140 | 729,009.8 | 4,373,583 | 0.1 | −0.382 |
4,856,140 | 729,009.8 | 4,373,583 | 0.098 | −0.38 |
4,883,140 | 729,009.8 | 4,373,583 | 0.097 | −0.378 |
4,910,140 | 729,009.8 | 4,373,583 | 0.096 | −0.378 |
4,937,140 | 729,009.9 | 4,373,583 | 0.093 | −0.382 |
4,964,140 | 729,009.9 | 4,373,583 | 0.092 | −0.379 |
5,057,220 | 729,009.9 | 4,373,583 | 0.093 | −0.379 |
5,084,220 | 729,009.9 | 4,373,583 | 0.092 | −0.379 |
5,180,640 | 729,009.9 | 4,373,583 | 0.093 | −0.379 |
Period of Recorded Data (s) | E Mean (m) | N Mean (m) | E-DRTK (m) | N-DRTK (m) |
---|---|---|---|---|
100,000 | 729,014.4 | 4,373,595 | −0.245 | −0.934 |
200,000 | 729,014.5 | 4,373,595 | −0.315 | −0.964 |
300,000 | 729,014.5 | 4,373,595 | −0.388 | −0.947 |
400,000 | 729,014.5 | 4,373,595 | −0.374 | −0.965 |
500,000 | 729,014.5 | 4,373,595 | −0.373 | −0.992 |
600,000 | 729,014.5 | 4,373,595 | −0.374 | −0.935 |
700,000 | 729,014.5 | 4,373,595 | −0.395 | −0.959 |
800,000 | 729,014.5 | 4,373,595 | −0.393 | −0.936 |
900,000 | 729,014.5 | 4,373,595 | −0.376 | −0.932 |
1,000,000 | 729,014.5 | 4,373,595 | −0.37 | −0.904 |
1,100,000 | 729,014.5 | 4,373,595 | −0.362 | −0.881 |
1,245,360 | 729,014.5 | 4,373,595 | −0.358 | −0.872 |
Period of Recorded Data (s) | E Mean (m) | N Mean (m) | E-DRTK (m) | N-DRTK (m) |
---|---|---|---|---|
100,000 | 729,013.3 | 4,373,595 | 0.873 | −0.67 |
200,000 | 729,013.4 | 4,373,595 | 0.708 | −0.949 |
300,000 | 729,013.5 | 4,373,595 | 0.639 | −0.919 |
400,000 | 729,013.6 | 4,373,595 | 0.597 | −0.988 |
500,000 | 729,013.6 | 4,373,595 | 0.602 | −0.996 |
600,000 | 729,013.5 | 4,373,595 | 0.611 | −1.047 |
700,000 | 729,013.5 | 4,373,595 | 0.651 | −1.097 |
800,000 | 729,013.5 | 4,373,595 | 0.679 | −1.107 |
900,000 | 729,013.5 | 4,373,595 | 0.66 | −1.23 |
1,000,000 | 729,013.5 | 4,373,595 | 0.637 | −1.248 |
1,100,000 | 729,013.5 | 4,373,595 | 0.631 | −1.242 |
1,200,000 | 729,013.5 | 4,373,595 | 0.633 | −1.289 |
1,300,000 | 729,013.5 | 4,373,595 | 0.634 | −1.305 |
1,400,000 | 729,013.5 | 4,373,595 | 0.628 | −1.287 |
1,500,000 | 729,013.5 | 4,373,595 | 0.64 | −1.295 |
1,600,000 | 729,013.5 | 4,373,595 | 0.648 | −1.294 |
1,700,000 | 729,013.5 | 4,373,595 | 0.67 | −1.307 |
1,800,000 | 729,013.5 | 4,373,595 | 0.685 | −1.275 |
1,900,000 | 729,013.4 | 4,373,595 | 0.726 | −1.255 |
2,000,000 | 729,013.4 | 4,373,595 | 0.754 | −1.245 |
2,100,000 | 729,013.4 | 4,373,595 | 0.797 | −1.224 |
2,200,000 | 729,013.3 | 4,373,595 | 0.833 | −1.177 |
2,300,000 | 729,013.3 | 4,373,595 | 0.872 | −1.145 |
2,400,000 | 729,013.3 | 4,373,595 | 0.894 | −1.118 |
2,500,000 | 729,013.3 | 4,373,595 | 0.898 | −1.095 |
2,600,000 | 729,013.2 | 4,373,595 | 0.91 | −1.08 |
2,788,870 | 729,013.2 | 4,373,595 | 0.93 | −1.068 |
Period of Recorded Data (s) | E Mean (m) | N Mean (m) | E-DRTK (m) | N-DRTK (m) |
---|---|---|---|---|
100,000 | 729,011 | 4,373,593 | −2.167 | −1.044 |
200,000 | 729,009.9 | 4,373,592 | −1.072 | −0.813 |
300,000 | 729,009.5 | 4,373,593 | −0.738 | −1.057 |
400,000 | 729,009.4 | 4,373,593 | −0.591 | −1.182 |
500,000 | 729,009.2 | 4,373,593 | −0.414 | −1.057 |
571,180 | 729,009.2 | 4,373,593 | −0.384 | −1.134 |
620,000 | 729,009.2 | 4,373,593 | −0.374 | −1.037 |
670,000 | 729,009.1 | 4,373,593 | −0.274 | −1.017 |
720,000 | 729,009.1 | 4,373,592 | −0.335 | −0.935 |
780,000 | 729,009.174 | 4,373,592.54 | −0.384 | −1.037 |
Period of Recorded Data (s) | E Mean (m) | N Mean (m) | E-DRTK (m) | N-DRTK (m) |
---|---|---|---|---|
10,000 | 729,007.4 | 4,373,592 | 1.384 | −0.465 |
20,000 | 729,007.5 | 4,373,591 | 1.308 | 0.211 |
30,000 | 729,008 | 4,373,592 | 0.807 | −0.06 |
40,000 | 729,008.2 | 4,373,592 | 0.54 | −0.144 |
50,000 | 729,008.3 | 4,373,591 | 0.514 | 0.057 |
60,000 | 729,008.5 | 4,373,592 | 0.275 | −0.154 |
70,000 | 729,008.6 | 4,373,592 | 0.172 | −0.387 |
80,000 | 729,008.6 | 4,373,592 | 0.148 | −0.472 |
90,000 | 729,008.6 | 4,373,592 | 0.165 | −0.416 |
100,000 | 729,008.4 | 4,373,592 | 0.341 | −0.457 |
110,000 | 729,008.4 | 4,373,592 | 0.368 | −0.441 |
120,000 | 729,008.4 | 4,373,592 | 0.353 | −0.474 |
130,000 | 729,008.4 | 4,373,592 | 0.39 | −0.471 |
140,000 | 729,008.4 | 4,373,592 | 0.373 | −0.427 |
150,000 | 729,008.4 | 4,373,592 | 0.366 | −0.438 |
160,000 | 729,008.4 | 4,373,592 | 0.343 | −0.383 |
170,000 | 729,008.5 | 4,373,592 | 0.327 | −0.273 |
180,000 | 729,008.5 | 4,373,592 | 0.321 | −0.338 |
190,000 | 729,008.5 | 4,373,592 | 0.309 | −0.426 |
200,000 | 729,008.4 | 4,373,592 | 0.361 | −0.399 |
210,000 | 729,008.4 | 4,373,592 | 0.346 | −0.373 |
217,587 | 729,008.5 | 4,373,592 | 0.307 | −0.346 |
Observations | Vertex 1 (m) | Vertex 1 (m) | Vertex 2 (m) | Vertex 2 (m) | Vertex 3 (m) | Vertex 3 (m) |
---|---|---|---|---|---|---|
500 | 0.86 | −1.04 | −0.25 | −0.18 | 1.92 | −2.85 |
1000 | 1 | −1 | −0.13 | 0.41 | 1.64 | −1.28 |
1500 | 0.66 | −0.46 | −0.09 | 0.53 | 1.5 | −0.57 |
2500 | 0.66 | −1.01 | 0.18 | 0.69 | 1.06 | 0 |
5000 | −0.48 | −1.36 | −0.18 | 0.38 | 0.57 | −0.91 |
10,000 | −0.18 | −0.33 | −0.71 | −0.56 | 0.29 | −1.25 |
15,000 | 0.12 | 0.25 | −0.79 | −0.63 | 0.41 | −0.62 |
19,542 | −0.08 | −0.11 | −0.5 | −0.7 | 0.61 | −0.14 |
Observations | Vertex 1 (m) | Vertex 1 (m) | Vertex 2 (m) | Vertex 2 (m) | Vertex 3 (m) | Vertex 3 (m) |
---|---|---|---|---|---|---|
500 | −0.84 | 1.35 | −0.84 | 1.35 | −0.84 | 1.35 |
1000 | −0.84 | 0.62 | −0.83 | 0.62 | −0.83 | 0.62 |
1500 | −0.69 | 0.17 | −0.69 | 0.17 | −0.69 | 0.17 |
2500 | −0.37 | 0.11 | −0.37 | 0.11 | −0.37 | 0.11 |
5000 | 0.03 | 0.63 | 0.03 | 0.63 | 0.03 | 0.63 |
10,000 | 0.2 | 0.71 | 0.2 | 0.71 | 0.2 | 0.72 |
15,000 | 0.08 | 0.33 | 0.08 | 0.33 | 0.08 | 0.33 |
19,542 | −0.01 | 0.32 | −0.01 | 0.32 | −0.01 | 0.32 |
References
- GNSS. Market Report, Issue 6; European Global Navigation Satellite Systems Agency: Prague, Czech Republic, 2019. [Google Scholar]
- Jahkola, O.; Happonen, A.; Knutas, A.; Ikonen, J. What should application developers understand about mobile phone position data. In Proceedings of the 18th International Conference on Computer Systems and Technologies, Ruse, Bulgaria, 23–24 June 2017; pp. 171–178. [Google Scholar]
- Li, G.; Geng, J. Characteristics of raw multi-GNSS measurement error from Google Android smart devices. GPS Solutions 2019, 23, 90. [Google Scholar] [CrossRef]
- Verhagen, S.; Odijk, D.; Teunissen, P.J.G.; Huisman, L. Performance improvement with low-cost multi-GNSS receivers. In Proceedings of the 2010 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC), Noordwijk, The Netherlands, 8–10 December 2010; pp. 1–8. [Google Scholar]
- Shabnam, M.; Chowdhury, I.H.; Tushar, Z.H.; Sultana, S.; E-Haider, H. Performance evaluation of GNSS receiver in multi-constellation system. In Proceedings of the 2017 International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox’s Bazar, Bangladesh, 16–18 February 2017. [Google Scholar] [CrossRef]
- Robustelli, U.; Baiocchi, V.; Pugliano, G. Assessment of dual frequency GNSS observations from a Xiaomi Mi 8 android smartphone and positioning performance analysis. Electronics 2019, 8, 91. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Wang, F.; Sang, J.; Lin, X.; Gong, X.; Zhang, W. Characteristics analysis of raw multi-GNSS measurement from Xiaomi Mi 8 and positioning performance improvement with L5/E5 frequency in an urban environment. Remote. Sens. 2020, 12, 744. [Google Scholar] [CrossRef] [Green Version]
- Critchley-Marrows, O.; Fortunato, M.; Roberts, W. Accuracy for the Masses, Real-Time Sub-Meter in a Consumer Receiver? Inside GNSS, Digital Edition March–April 2020. Available online: https://www.insidegnss.com (accessed on 30 April 2020).
- Wu, Q.; Sun, M.; Zhou, C.; Zhang, P. Precise point positioning using dual-frequency GNSS observations on smartphone. Sensors 2019, 19, 2189. [Google Scholar] [CrossRef] [Green Version]
- Skorupa, B. The problem of GNSS positioning with measurements recorded using Android mobile devices. Budownictwo i Architektura 2019, 18, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Fortunato, M.; Critchley-Marrows, J.; Siutkowska, M.; Ivanovici, M.L.; Benedetti, E.; Roberts, W. Enabling high accuracy dynamic applications in urban environments using PPP and RTK on android multi-frequency and multi-GNSS smartphones. In Proceedings of the 2019 European Navigation Conference (ENC), Warsaw, Poland, 9–12 April 2019; pp. 1–9. [Google Scholar] [CrossRef]
- Elmezayen, A.; El-Rabbany, A. Precise point positioning using world’s first dual-frequency GPS/GALILEO smartphone. Sensors 2019, 19, 2593. [Google Scholar] [CrossRef] [Green Version]
- Aggrey, J.; Bisnath, S.; Naciri, N.; Shinghal, G.; Yang, S. Multi-GNSS precise point positioning with next-generation smartphone measurements. J. Spat. Sci. 2019, 65, 79–98. [Google Scholar] [CrossRef]
- Psychas, D.; Bruno, J.; Massarweh, L.; Darugna, F. Towards sub-meter positioning using android raw GNSS measurements. In Proceedings of the 32nd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2019), Miami, FL, USA, 16–20 September 2019. [Google Scholar] [CrossRef]
- Darugna, F.; Wübbena, J.; Ito, A.; Wübbena, T.; Wübbena, G.; Schmitz, M. RTK and PPP-RTK using smartphones: From short-baseline to long-baseline applications. In Proceedings of the 32nd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2019), Miami, FL, USA, 16–20 September 2019; pp. 3932–3945. [Google Scholar] [CrossRef]
- Wanninger, L.; Heßelbarth, A. GNSS code and carrier phase observations of a Huawei P30 smartphone: Quality assessment and centimeter-accurate positioning. GPS Solutions 2020, 24. [Google Scholar] [CrossRef] [Green Version]
- Hesselbarth, A.; Wanninger, L. Towards centimeter accurate positioning with smartphones. In Proceedings of the 2020 European Navigation Conference (ENC), Dresden, Germany, 23–24 November 2020. [Google Scholar] [CrossRef]
- Mueck, M.; Strinati, E.C.; Kim, I.-G.; Clemente, A.; Dore, J.-B.; De Domenico, A.; Kim, T.; Choi, T.; Chung, H.K.; Destino, G.; et al. 5G CHAMPION—Rolling out 5G in 2018. In Proceedings of the 2016 IEEE Globecom Workshops (GC Wkshps), Washington, DC, USA, 4–8 December 2018; pp. 1–6. [Google Scholar]
- Crapart, R.; Maymo-Camps, R.; Vautherin, B.; Saloranta, J. 5G positioning and hybridization with GNSS observations. In Proceedings of the ITSNT 2018, International Technical Symposium on Navigation and Timing, Toulouse, France, 13–16 November 2018. [Google Scholar] [CrossRef]
- Destino, G.; Saloranta, J.; Seco-Granados, G.; Wymeersch, H. Performance analysis of hybrid 5G-GNSS localization. In Proceedings of the 2018 52nd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 28–31 October 2018; pp. 8–12. [Google Scholar]
- Mayer-Schönberger, V.; Cukier, K. Big Data: A Revolution That Will Transform How We Live, Work, and Think; Houghton Mifflin Harcourt: Boston, MA, USA, 2013. [Google Scholar]
- McFarland, D.A.; McFarland, H.R. Big data and the danger of being precisely inaccurate. Big Data Soc. 2015. [Google Scholar] [CrossRef] [Green Version]
- Laptev, N.; Zeng, K.; Zaniolo, C. Very fast estimation for result and accuracy of big data analytics: The EARL system. In Proceedings of the 2013 IEEE 29th International Conference on Data Engineering (ICDE), Brisbane, Australia, 8–12 April 2013. [Google Scholar]
- Kleiner, A.; Talwalkar, A.; Sarka, P.; Jordan, M. The big data bootstrap. In Proceedings of the 29th International Conference on Machine Learning, Edinburgh, Scotland, 26 June–1 July 2012. [Google Scholar]
- Champagne, C.; McNairn, H.; Daneshfar, B.; Shang, J. A bootstrap method for assessing classification accuracy and confidence for agricultural land use mapping in Canada. Int. J. Appl. Earth Obs. Geoinf. 2014, 29, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Angrisano, A.; Maratea, A.; Gaglione, S. A resampling strategy based on bootstrap to reduce the effect of large blunders in GPS absolute positioning. J. Geod. 2017. [Google Scholar] [CrossRef]
- Touil, K.; Zribi, M.; Choquel, J.B.; Benjelloun, M. Bayesian bootstrap filter for integrated GPS and dead reckoning positioning. In Proceedings of the 2007 IEEE International Symposium on Industrial Electronics, Vigo, Spain, 4–7 June 2007. [Google Scholar]
- Teunissen, P.J.G. GNSS Ambiguity bootstrapping: Theory and application. In Proceedings of the International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation, Banff, AB, Canada, 5–8 June 2001. [Google Scholar]
- Teunissen, P.J.G. Integer aperture bootstrapping: A new GNSS ambiguity estimator with controllable fail-rate. J. Geod. 2005, 79, 389–397. [Google Scholar] [CrossRef] [Green Version]
- Alsubaie, N.M.; Youssef, A.A.; El-Sheimy, N. Improving the accuracy of direct geo-referencing of smartphone-based mobile mapping systems using relative orientation and scene geometric constraints. Sensors 2017, 17, 2237. [Google Scholar] [CrossRef] [Green Version]
- Kromanis, R.; Liang, H. Condition assessment of structures using smartphones: A position independent multi-epoch imaging approach. In Proceedings of the 9th European Workshop on Structural Health Monitoring Series (EWSHM), Manchester, UK, 10–13 July 2018. [Google Scholar]
- Lu, L.; Ma, L.; Wu, T.; Chen, X. Performance analysis of positioning solution using low-cost single-frequency U-blox receiver based on baseline length constraint. Sensors 2019, 19, 4352. [Google Scholar] [CrossRef] [Green Version]
- Teunissen, P.J.G.; Nadarajah, N.; Giorgi, G.; Buist, P.J. Low-Complexity Instantaneous GNSS Attitude Determination with Multiple Low-Cost Antennas. In Proceedings of the 24th International Technical Meeting of the Satellite Division of The Institute of Navigation, Portland, OR, USA, 20–23 September 2011. [Google Scholar]
- Quesada-Olmo, N.; Jimenez-Martinez, M.; Farjas-Abadia, M. Real-time high-rise building monitoring system using global navigation satellite system technology. Measurement 2018, 123, 115–124. [Google Scholar] [CrossRef]
- Leick, A.; Rapoport, L.; Tatarnikov, D. GPS Satellite Surveying; Wiley: New York, NY, USA, 2015. [Google Scholar]
- Czaplewski, K.; Wiśniewski, Z.; Specht, C.; Koc, W.; Wilk, A.; Karwowski, K.; Dąbrowski, P.; Specht, M.; Chrostowski, P.; Szmagliński, J. Use of a least squares with conditional equations method in positioning a tramway track in the Gdansk agglomeration. Trans. Nav. Int. J. Mar. Navig. Saf. Sea Transp. 2019, 13, 895–900. [Google Scholar] [CrossRef]
- Wolf, P.; Ghilani, C. Adjustment Computations Spatial Data Analysis; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Gogoi, N.; Minetto, A.; Linty, N.; Dovis, F. A controlled-environment quality assessment of android GNSS raw measurements. Electronics 2019, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Tavani, S.; Pignalosa, A.; Corradetti, A.; Mercuri, M.; Smeraglia, L.; Riccardi, U.; Seers, T.; Pavlis, T.; Billi, A. Photogrammetric 3D model via smartphone GNSS sensor: Workflow, error estimate, and best practices. Remote. Sens. 2020, 12, 3616. [Google Scholar] [CrossRef]
- Angrisano, A.; Del Pizzo, S.; Gaglione, S.; Troisi, S.; Vultaggio, M. Using local redundancy to improve GNSS absolute positioning in harsh scenario. Acta IMEKO 2018. [Google Scholar] [CrossRef]
- GSA Working Group. Using GNSS Raw Measurements on Android Devices. Available online: https://www.gsa.europa.eu/system/files/reports/gnss_raw_measurement_web_0.pdf (accessed on 8 November 2018).
- Baiocchi, V.; Del Pizzo, S.; Pugliano, G.; Onori, M.; Robustelli, U.; Troisi, S.; Vatore, F.; Trujillo, F.J.L. Use of the sensors of a latest generation mobile phone for the three-dimensional reconstruction of an archaeological monument: The survey of the Intihuatana stone in Machu Picchu (Peru’). IOP Conf. Series Mater. Sci. Eng. 2020, 949. [Google Scholar] [CrossRef]
- Petrovski, I.G. GPS, GLONASS, Galileo, and BeiDou for Mobile Devices; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Guzman-Acevedo, G.M.; Vazquez-Becerra, G.E.; Millan-Almaraz, J.R.; Rodriguez-Lozoya, H.E.; Reyes-Salazar, A.; Gaxiola-Camacho, J.R.; Martinez-Felix, C.A. GPS, accelerometer, and smartphone fused smart sensor for SHM on real-scale bridges. Adv. Civ. Eng. 2019. [Google Scholar] [CrossRef]
- Li, X.; Rizos, C.; Ge, L.; Tamura, Y.; Yoshida, A. The complementary characteristics of GPS and accelerometer in monitoring structural deformation. In Proceedings of the ION 2005 National Technical Meeting, Institute of Navigation (ION), San Diego, CA, USA, 24–26 January 2005. [Google Scholar]
- Chan, W.S.; Xu, Y.-L.; Ding, X.L.; Dai, W.J. An integrated GPS–accelerometer data processing technique for structural deformation monitoring. J. Geod. 2006, 80, 705–719. [Google Scholar] [CrossRef]
- Hwang, J.; Yun, H.; Park, S.-K.; Lee, D.H.; Hong, S. Optimal methods of RTK-GPS/accelerometer integration to monitor the displacement of structures. Sensors 2012, 12, 1014–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reuper, B.; Becker, M.; Leinen, S. Benefits of multi-constellation/multi-frequency GNSS in a tightly coupled GNSS/IMU/odometry integration algorithm. Sensors 2018, 178, 3052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Realini, E.; Caldera, S.; Pertusini, L.; Sampietro, D. Precise GNSS positioning using smart devices. Sensors 2017, 17, 2434. [Google Scholar] [CrossRef] [Green Version]
GNSS Device | First Release Year | Tolerance (m) |
---|---|---|
Garmin Etrex 30 (0.103 m × 0.054 m) | 2015 | |
Trimble Geo XT (0.255 m × 0.127 m) | 2005 | |
Samsung Galaxy S3 (0.137 m × 0.071 m) | 2011 | |
Huawei Y330-U01 (0.122 m × 0.064 m) | 2014 | |
Xiaomi Mi 8 (0.155 m × 0.075 m) | 2018 |
Segment | Segment Size (Observations) | Number of Segments n | E Standard Deviation (m) | N Standard Deviation (m) |
---|---|---|---|---|
1 | 5000 | 18 | 0.85 | 1.05 |
2 | 20,000 | 11 | 0.32 | 0.26 |
3 | 40,000 | 6 | 0.19 | 0.13 |
4 | 70,000 | 3 | 0.23 | 0.14 |
Segment | Number of Segments n | k | E Mean (m) | N Mean (m) | E Standard Deviation (m) | N Standard Deviation (m) |
---|---|---|---|---|---|---|
1 | 18 | 100,000 | 729,008.62 | 4,373,591.93 | 0.87 | 1.09 |
2 | 11 | 100,000 | 729,008.49 | 4,373,591.86 | 0.47 | 0.53 |
3 | 6 | 100,000 | 729,008.54 | 4,373,591.81 | 0.39 | 0.33 |
4 | 3 | 100,000 | 729,008.48 | 4,373,591.87 | 0.15 | 0.10 |
Vertex | Smartphone | E Mean (m) | N Mean (m) | E-RTK (m) | N-RTK (m) | (m) | (m) |
---|---|---|---|---|---|---|---|
1 | Xiaomi Mi 8 | 729,063.75 | 4,373,540.64 | 729,063.52 | 4,373,541.21 | −0.23 | 0.57 |
Vertex | Smartphone | E Mean (m) | N Mean (m) | E-RTK (m) | N-RTK (m) | dE (m) | dN (m) |
---|---|---|---|---|---|---|---|
1 | Xiaomi Mi 8 | 729,063.8 | 4,373,541 | 729,063.5 | 4,373,541 | −0.23 | 0.57 |
4′ | Xiaomi Mi 8 | 729,063.1 | 4,373,541 | 729,063.2 | 4,373,541 | 0.15 | 0.18 |
5′ | Xiaomi Mi 8 | 729,065.2 | 4,373,542 | 729,063.8 | 4,373,541 | −1.42 | −0.61 |
Vertex. | Smartphone | E Mean (m) | N Mean (m) | E-RTK (m) | N-RTK (m) | dE (m) | dN (m) |
---|---|---|---|---|---|---|---|
1 | Xiaomi Mi 8 | 729,064 | 4,373,541 | 729,063.5 | 4,373,541 | −0.5 | 0.04 |
4′ | Xiaomi Mi 8 | 729,063.7 | 4,373,541 | 729,063.2 | 4,373,541 | −0.5 | 0.04 |
5′ | Xiaomi Mi 8 | 729,064.3 | 4,373,541 | 729,063.8 | 4,373,541 | −0.5 | 0.04 |
Vertex | Device | E Mean (m) | N Mean (m) | E-RTK (m) | N-RTK (m) | dE (m) | dN (m) |
---|---|---|---|---|---|---|---|
1 | Huawei | 729,009.2 | 4,373,593 | 729,008.8 | 4,373,592 | −0.37 | −1.02 |
2 | Trimble GeoXT | 729,014.6 | 4,373,595 | 729,014.2 | 4,373,594 | −0.42 | −1.05 |
3 | Garmin Etrex | 729,010.1 | 4,373,582 | 729,010 | 4,373,582 | −0.15 | 0.66 |
Vertex | Device | E Mean (m) | N Mean (m) | E-RTK (m) | N-RTK (m) | dE (m) | dN (m) |
---|---|---|---|---|---|---|---|
1 | Huawei | 729,009.1 | 4,373,592 | 729,008.8 | 4,373,592 | −0.31 | −0.47 |
2 | Trimble Geo XT | 729,014.5 | 4,373,595 | 729,014.2 | 4,373,594 | −0.31 | −0.47 |
3 | Garmin Etrex | 729,010.3 | 4,373,583 | 729,010 | 4,373,582 | −0.31 | −0.47 |
Observations | Vertex 1 (m) | Vertex 1 (m) | Vertex 2 (m) | Vertex 2 (m) | Vertex 3 (m) | Vertex 3 (m) |
---|---|---|---|---|---|---|
5000 | −0.3 | −1.12 | −1.12 | −0.28 | 0.09 | 0.49 |
10,000 | −2.17 | −1.05 | −1.05 | −0.3 | 0.03 | 0.39 |
15,000 | −1.43 | −0.79 | −0.79 | −0.28 | 0.03 | 0.76 |
20,000 | −1.07 | −0.81 | −0.81 | −0.27 | −0.03 | 0.8 |
25,000 | −0.42 | −1.06 | −1.06 | −0.4 | −0.14 | 0.62 |
30,000 | −0.74 | −1.06 | −1.06 | −0.34 | −0.11 | 0.55 |
35,000 | −0.6 | −1.14 | −1.14 | −0.33 | −0.14 | 0.44 |
40,000 | −0.59 | −1.18 | −1.18 | −0.32 | −0.11 | 0.48 |
45,000 | −0.43 | −1.05 | −1.05 | −0.36 | −0.11 | 0.51 |
51,330 | −0.42 | −1.06 | −1.06 | −0.4 | −0.14 | 0.62 |
Observations | Vertex 1 (m) | Vertex 1 (m) | Vertex 2 (m) | Vertex 2 (m) | Vertex 3 (m) | Vertex 3 (m) |
---|---|---|---|---|---|---|
5000 | −0.16 | −0.63 | −0.16 | −0.63 | −0.16 | −0.6 |
10,000 | −0.81 | −0.57 | −0.81 | −0.57 | −0.81 | −0.54 |
15,000 | −0.56 | −0.37 | −0.56 | −0.37 | −0.56 | −0.34 |
20,000 | −0.45 | −0.35 | −0.45 | −0.35 | −0.45 | −0.32 |
25,000 | −0.31 | −0.51 | −0.32 | −0.51 | −0.32 | −0.48 |
30,000 | −0.39 | −0.51 | −0.39 | −0.51 | −0.39 | −0.48 |
35,000 | −0.35 | −0.59 | −0.35 | −0.59 | −0.35 | −0.56 |
40,000 | −0.34 | −0.6 | −0.34 | −0.6 | −0.34 | −0.57 |
45,000 | −0.3 | −0.54 | −0.3 | −0.54 | −0.3 | −0.51 |
51,330 | −0.31 | −0.51 | −0.32 | −0.51 | −0.32 | −0.48 |
Vertex | Smartphone | E Mean (m) | N Mean (m) | E-RTK (m) | N-RTK (m) | dE (m) | dN (m) |
---|---|---|---|---|---|---|---|
1 | Xiaomi Mi 8 | 729,008.1 | 4,373,592 | 729,008.8 | 4,373,592 | 0.66 | −0.46 |
2 | Xiaomi Mi 8 | 729,014.2 | 4,373,594 | 729,014.2 | 4,373,594 | −0.09 | 0.53 |
3 | Xiaomi Mi 8 | 729,008.5 | 4,373,583 | 729,010 | 4,373,582 | 1.51 | −0.57 |
Vertex | Smartphone | E Mean (m) | N Mean (m) | E-RTK (m) | N-RTK (m) | dE (m) | dN (m) |
---|---|---|---|---|---|---|---|
1 | Xiaomi Mi 8 | 729,008.1 | 4,373,592 | 729,008.8 | 4,373,592 | 0.69 | −0.17 |
2 | Xiaomi Mi 8 | 729,013.5 | 4,373,594 | 729,014.2 | 4,373,594 | 0.69 | −0.17 |
3 | Xiaomi Mi 8 | 729,009.3 | 4,373,583 | 729,010 | 4,373,582 | 0.69 | −0.17 |
Observations per Vertex | (Minutes) | (m) | (m) | (m) | |
---|---|---|---|---|---|
Network (1) | 2200 | 37 | 0.61 | 0.50 | 0.58 |
Network (2) | 25,000 | 4166 | 1.08 | 0.56 | 0.57 |
Network (3) | 1493 | 25 | 0.80 | 0.51 | 0.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Martínez, M.J.; Farjas-Abadia, M.; Quesada-Olmo, N. An Approach to Improving GNSS Positioning Accuracy Using Several GNSS Devices. Remote Sens. 2021, 13, 1149. https://doi.org/10.3390/rs13061149
Jiménez-Martínez MJ, Farjas-Abadia M, Quesada-Olmo N. An Approach to Improving GNSS Positioning Accuracy Using Several GNSS Devices. Remote Sensing. 2021; 13(6):1149. https://doi.org/10.3390/rs13061149
Chicago/Turabian StyleJiménez-Martínez, María Jesús, Mercedes Farjas-Abadia, and Nieves Quesada-Olmo. 2021. "An Approach to Improving GNSS Positioning Accuracy Using Several GNSS Devices" Remote Sensing 13, no. 6: 1149. https://doi.org/10.3390/rs13061149
APA StyleJiménez-Martínez, M. J., Farjas-Abadia, M., & Quesada-Olmo, N. (2021). An Approach to Improving GNSS Positioning Accuracy Using Several GNSS Devices. Remote Sensing, 13(6), 1149. https://doi.org/10.3390/rs13061149