Target Localization Based on Bistatic T/R Pair Selection in GNSS-Based Multistatic Radar System
Abstract
:1. Introduction
2. Target Localization Scheme with Multistatic Radar
2.1. System Geometry and Positioning Method Description
2.2. Positioning Performance Analysis
3. Selection Methods of Bistatic T/R Pairs
3.1. Covariance Matrix Fusion Method
3.2. Convex Hull Optimization Method
4. Simulation and Experimental Results
4.1. Experimental Scene and Conditions
4.2. Experimental Results of CMF Method
4.3. Experimental Results of CHO Method
4.4. The Case of a Larger Number of Satellites
4.5. Discussion of the Algorithm Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Liu, J.Y. Research on Anti-Spoofing Jamming Method of Multi-Static Radar System; Xidian University: Xi’an, China, 2018. [Google Scholar]
- Ye, F. Research on Anti-Radiation Missile Imaging and Recognition Technology Based on Distributed Passive Radar; Xidian University: Xi’an, China, 2009. [Google Scholar]
- Griffiths, H. Multistatic, MIMO and networked radar: The future of radar sensors. In Proceedings of the 7th European Radar Conference, Paris, France, 30 September–1 October 2010; pp. 81–84. [Google Scholar]
- Lan, J.J.; Chen, B.; Xu, T.X. Development status of netted radar and its jamming technology. Fly. Missile 2009, 12, 39–41. [Google Scholar]
- Zheng, G.Q.; Zheng, Y. Radar netting technology & its development. In Proceedings of the 2011 IEEE CIE International Conference on Radar, Chengdu, China, 24–27 October 2011; pp. 933–937. [Google Scholar]
- Liu, J.Y.; Chen, X.H.; Liu, Q.; Sun, J.Z. Development Status and Key Technology Analysis of Foreign Bistatic (Multistatic) Radar. Fly. Missile 2013, 6, 54–59. [Google Scholar]
- Greco, M.S.; Stinco, P.; Gini, F.; Farina, A. Cramer-Rao Bounds and Selection of Bistatic Channels for Multistatic Radar Systems. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 2934–2948. [Google Scholar] [CrossRef]
- Zhao, Y.B.; Liu, H.W. Review of MIMO radar technology. Data Acquis. Process. 2018, 33, 389–399. [Google Scholar]
- Fishler, E.; Haimovich, A.; Blum, R.S.; Cimini, L.J.; Chizhik, D.; Valenzuela, R.A. Spatial Diversity in Radars—Models and Detection Performance. IEEE Trans. Signal Process. 2006, 54, 823–838. [Google Scholar] [CrossRef]
- Donnet, B.J.; Longstaff, I.D. MIMO Radar, Techniques and Opportunities. In Proceedings of the 2006 European Radar Conference, Manchester, UK, 13–15 September 2006; pp. 112–115. [Google Scholar]
- Wang, H.H. RFS Multi-Target Tracking Algorithm and Its Application in Passive Radar; Xidian University: Xi’an, China, 2017. [Google Scholar]
- Fan, Y. Multistatic Radar Target Information Fusion Method and Its Application; Wuhan University: Wuhan, China, 2018. [Google Scholar]
- Wang, B.D. The Role of Bistatic/Multistatic Radar in Modern High-Tech Warfare; Chinese Institute of Electronics: Beijing, China, 2000; pp. 84–91. [Google Scholar]
- Li, X.; Zhu, Y.; Li, B. Optimal anti-jamming strategy in sensor networks. In Proceedings of the IEEE International Conference on Communications (ICC), Ottawa, ON, Canada, 10–15 June 2012; pp. 178–182. [Google Scholar]
- Chen, Y.G.; Li, X.H.; Shen, Y. Multistatic Radar Combat Capability Analysis and Evaluation; National Defense Industry Press: Beijing, China, 2006. [Google Scholar]
- Li, X.Y. Development and key technologies of bistatic/multistatic radar. Radar Countermeas. 2013, 33, 4–8. [Google Scholar]
- Wang, T.C.; Yang, J.W.; Zhao, H.S.; Ma, D.J. “Silent Sentinel” system and its core technology. Mil. Commun. Technol. 2009, 30, 89–93. [Google Scholar]
- Huang, X.; Tang, H.; Niu, C.; Zhang, J. Analysis of passive radar anti-stealth technology and its development trend. Fly. Missile 2012, 3, 31–35. [Google Scholar]
- Zhou, B.X. A brief introduction to the history and development of Russian radar. Electron. Eng. Inf. 2010, 4, 37–48. [Google Scholar]
- Zhao, Q.L. Multistatic Radar Target Positioning and Site Error Correction; Xidian University: Xi’an, China, 2015. [Google Scholar]
- Zhang, Z.; Zhou, F.; Zhang, L.L. An active/passive radar cooperative detection and tracking algorithm. J. Air Force Eng. Univ. (Science Edition) 2013, 14, 51–55. [Google Scholar]
- Zhou, F.; Zhang, L.L.; Wang, J.J.; Zhang, Z. Research on a mode and algorithm of active/passive radar cooperative detection and tracking. Electron. Opt. Control 2014, 2, 12–16. [Google Scholar]
- Chen, Y.Y.; Xie, J. Maneuvering target tracking algorithm based on passive time difference positioning system. Electron. Sci. Technol. 2012, 25, 61–65. [Google Scholar]
- Chaudhuri, S.P. A General Approach to the Development of Passive/Active Sensor Data Fusion. In Proceedings of the 1985 American Control Conference, Boston, MA, USA, 19–21 June 1985; pp. 823–828. [Google Scholar]
- Wu, X.Z. Research on the Joint Processing Method of Cognitive Radar Transmitting and Receiving; Xidian University: Xi’an, China, 2017. [Google Scholar]
- Ma, H.; Antoniou, M.; Pastina, D.; Santi, F.; Pieralice, F.; Bucciarelli, M.; Cherniakov, M. Maritime Moving Target Indication Using Passive GNSS-Based Bistatic Radar. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 115–130. [Google Scholar] [CrossRef]
- Pastina, D.; Santi, F.; Pieralice, F.; Bucciarelli, M.; Ma, H.; Tzagkas, D.; Antoniou, M.; Cherniakov, M. Maritime Moving Target Long Time Integration for GNSS-Based Passive Bistatic Radar. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 3060–3083. [Google Scholar] [CrossRef] [Green Version]
- Pieralice, F.; Pastina, D.; Santi, F.; Bucciarelli, M. Multi-transmitter ship target detection technique with GNSS-based passive radar. In Proceedings of the International Conference on Radar Systems (Radar 2017), Belfast, UK, 23–26 October 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Ma, H.; Antoniou, M.; Stove, A.G.; Winkel, J.; Cherniakov, M. Maritime Moving Target Localization Using Passive GNSS-Based Multistatic Radar. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4808–4819. [Google Scholar] [CrossRef]
- Santi, F.; Pieralice, F.; Pastina, D. Joint Detection and Localization of Vessels at Sea With a GNSS-Based Multistatic Radar. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5894–5913. [Google Scholar] [CrossRef]
- Ma, H.; Antoniou, M.; Stove, A.G.; Cherniakov, M. Target Kinematic State Estimation with Passive Multistatic Radar. IEEE Trans. Aerosp. Electron. Syst. 2018, 56. [Google Scholar] [CrossRef]
- Antoniou, M.; Cherniakov, M. Experimental demonstration of passive GNSS-based SAR imaging modes. In Proceedings of the IET International Radar Conference, Xi’an, China, 14–16 April 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Santi, F.; Pastina, D.; Antoniou, M.; Cherniakov, M. GNSS-based multistatic passive radar imaging of ship targets. In Proceedings of the 2020 IEEE International Radar Conference (RADAR), Washington, DC, USA, 28–30 April 2020; pp. 601–606. [Google Scholar] [CrossRef]
- Zhao, Y.S.; Zhao, Y.J.; Zhao, C. Multi-static and multi-external emitter passive location algorithm based on bistatic range. Acta Electron. 2018, 46, 2840–2847. [Google Scholar]
- Malanowski, M.; Kulpa, K. Two Methods for Target Localization in Multistatic Passive Radar. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 572–580. [Google Scholar] [CrossRef]
- Yu, H.T.; Zhang, Y.S.; Qi, L.F. Calculation and Analysis of the Positioning Accuracy of a Multistatic Radar System. J. Air Force Eng. Univ. (Natural Science Edition) 2005, 6, 8–11. [Google Scholar]
- Hao, X.J. Research on Acceleration and Improvement of Convex Hull Algorithm; Hebei University of Technology: Tianjin, China, 2003. [Google Scholar]
- De Berg, M.; van Kreveld, M.; Overmars, M.; Schwarzkopf, O. Computational Geometry: Algorithms and Applications; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
Satellite | Azimuth | Elevation | |
---|---|---|---|
1 | Galileo-GSAT0206 (PRN30) | 63.8~63.1° | 55.2~54.7° |
2 | Galileo-GSAT0211 (PRN02) | 40.27~40.33° | 7.3~6.7° |
3 | Glonass-COSMOS2457 | 314.2~313.6° | 67.8~68.8° |
4 | Glonass-COSMOS2425 | 42.4~42.1° | 53.5~52.5° |
5 | Glonass-COSMOS2477 | 317.9~318.1° | 16.1~16.9° |
6 | Glonass-COSMOS2459 | 305.4~304.7° | 5.1~4.5° |
7 | GPS-BIIR02 (PRN13) | 293.2~293.9° | 66.8~67.6° |
8 | GPS-BIIR04 (PRN20) | 289.0~288.0° | 46.4~46.8° |
9 | GPS-BIIR05 (PRN28) | 118.0~117.1° | 44.2~44.8° |
10 | GPS-BIIF05 (PRN30) | 63.7~63.5° | 52.6~51.8° |
11 | GPS-BIIRM04 (PRN15) | 288.1~288.3° | 35.4~36.2° |
12 | GPS-BIIRM06 (PRN07) | 58.1~58.3° | 19.6~18.9° |
The Measured RMS | The Theoretical Results | |
---|---|---|
Results without selecting/m | 65.7517 | 55.3471 |
Results with CMF method/m | 57.3979 | 46.3356 |
Results with CHO method/m | 50.8885 | 41.4248 |
Satellites | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|
RMS/m | 94.7684 | 72.1672 | 65.7517 | 59.9241 | 54.1715 | 51.1194 | 51.1783 | 48.2472 | 43.6705 |
Theoretical/m | 93.8474 | 60.5318 | 55.3471 | 47.4038 | 44.1906 | 41.9754 | 41.6998 | 40.3073 | 35.8506 |
Q | 2 | 5 | 10 | 15 | 20 |
---|---|---|---|---|---|
Number of CHO selected satellites | 31 | 31 | 31 | 31 | 31 |
RMS @ CHO method /m | 1.52 | 3.81 | 7.61 | 11.42 | 15.20 |
RMS @ all 55 satellites /m | 1.46 | 3.65 | 7.30 | 10.93 | 14.57 |
RMS @ random selection of 31 sat/m | 1.93 | 5.09 | 9.34 | 14.10 | 19.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, Y.; Ma, H.; Zhou, S.; Wang, X.; Antoniou, M.; Liu, H. Target Localization Based on Bistatic T/R Pair Selection in GNSS-Based Multistatic Radar System. Remote Sens. 2021, 13, 707. https://doi.org/10.3390/rs13040707
Shao Y, Ma H, Zhou S, Wang X, Antoniou M, Liu H. Target Localization Based on Bistatic T/R Pair Selection in GNSS-Based Multistatic Radar System. Remote Sensing. 2021; 13(4):707. https://doi.org/10.3390/rs13040707
Chicago/Turabian StyleShao, Yu’e, Hui Ma, Shenghua Zhou, Xue Wang, Michail Antoniou, and Hongwei Liu. 2021. "Target Localization Based on Bistatic T/R Pair Selection in GNSS-Based Multistatic Radar System" Remote Sensing 13, no. 4: 707. https://doi.org/10.3390/rs13040707
APA StyleShao, Y., Ma, H., Zhou, S., Wang, X., Antoniou, M., & Liu, H. (2021). Target Localization Based on Bistatic T/R Pair Selection in GNSS-Based Multistatic Radar System. Remote Sensing, 13(4), 707. https://doi.org/10.3390/rs13040707