Modeling Community-Scale Natural Resource Use in a Transboundary Southern African Landscape: Integrating Remote Sensing and Participatory Mapping
Abstract
:1. Introduction
2. Study Area
3. Data
3.1. Field Data
- “Name of the main area your livestock usually grazes in the wet/dry season in the past 3 years?”
- “Did you collect any of the following natural resources during the wet/dry season in the past 3 years?” (Listed resources were firewood, thatching grass, building poles, fish, reeds, palm leaves, medicinal plants, and fruits and vegetables.)
- “[What is the] Name of the main area where you usually collected [the resource] in the wet/dry season in the past 3 years?”
- “How do you usually travel there (walk, cart, canoe, etc.)?”
- “Time taken to get to the area?”
- “Total quantity gathered during the wet/dry season since this time last year?”
3.2. Landsat Data
3.3. Population Proxy Data
4. Methods
4.1. Preprocessing
4.2. Random Forest Modeling
4.3. Comparing Resource Use Intensity Patterns
4.4. Validating Model Outputs
5. Results
5.1. Landsat RF Models
5.2. WorldPop RF Models
5.3. All-Covariates RF, Feature Selection, and Final RF Models
5.4. Predicted Resource Use Intensity
5.5. Validating Model Outputs
6. Discussion
6.1. Population Proxy Predictors
6.2. Landsat Predictors
6.3. Feature Selection
6.4. Final Model Performance and Resource Use Patterns
6.5. Validating Model Outputs with Reference Samples
6.6. Participatory Mapping and Remote Sensing
6.7. Challenges, Limitations, and Future Directions
7. Conclusions
- (1)
- The covariates we derived from Landsat data were limited on their own in providing an accurate model of resource use intensity in the current modeling methodology, but Landsat may remain the best platform for this task because of its long operational timespan. To further inquire into the utility of Landsat in this classification application, we first suggest extracting variables from a denser time series (>12 images for every year), using spectral bands and more textural metrics in a similarly constructed classification model. If this is not fruitful, we suggest exploring other Landsat-based approaches such as multi-year land cover change metrics or woody biomass proxies to discern relevant vegetation trends for each natural resource activity. Additionally, the utility of higher-resolution, freely available imagery platforms, such as Sentinel 2 and PlanetScope, ought to be explored in similar methodological frameworks.
- (2)
- Covariates reflecting proxies of population density and mobility proved to be much more powerful than expected and were responsible for the majority of model performance. This supports our fundamental argument that in communally managed landscapes such as these, patterns of accessibility and proximity to important natural resource areas are strong predictors of where people will use natural resources and at what level of intensity. Therefore, ancillary geospatial covariates such as the ones used in this study should continue to be given high consideration when attempting to map resource use intensity in rural heterogenous landscapes.
- (3)
- The spatial patterns of resource use intensity surprisingly differed little between resource use types, which we relate to the same common rules of the human landscape being applied to resource use regardless of the resource type. Pattern differences of resource use intensity between CBOs were therefore largely a reflection of the patterns in which humans are settled within each community and the ways that they can most efficiently travel.
- (4)
- Challenges were numerous in deriving training data from the participatory mapped resource area dataset. These challenges and our proposed solutions contribute insights to the feasibility of integrating supervised machine learning-based remote sensing analysis with participatory mapping and other survey-derived datasets going forward.
- (5)
- The results from this study suggest that mapping NTFP collection and grazing intensity at the community scale pose a relatively new challenge for remote sensing practitioners, but that participatory mapping can provide useful training and validation data for the analysis process.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
LAND COVER | CECT | MASHI | LWZ GMA |
---|---|---|---|
SHRUBS | 60.5% | 27.2% | 13.1% |
HERBACEOUS VEGETATION | 7.0% | 1.0% | 2.2% |
CROPLAND | 0.4% | 3.2% | 1.7% |
URBAN/BUILT AREA | 0.2% | 0.0% | 0.1% |
WATER BODIES | 0.1% | 0.0% | 0.6% |
HERBACEOUS WETLAND | 9.3% | 2.7% | 0.9% |
CLOSED FOREST | 1.3% | 0.6% | 5.8% |
OPEN FOREST | 21.2% | 65.2% | 75.7% |
Class | CECT | Mashi | LWZ GMA | |
---|---|---|---|---|
Grazing | 0 | 10471 (50.2%) | 2573 (31.3%) | 48,740 (69.8%) |
1 | 8000 (38.3%) | 2262 (27.6%) | 10,768 (15.4%) | |
2 | 2398 (11.5%) | 3375 (41.1%) | 10,315 (14.8%) | |
Building Pole Collection | 0 | 13862 (66.4%) | 5057 (61.6%) | 48,872 (72.6%) |
1 | 6984 (33.5%) | 1618 (19.7%) | 8228 (12.2%) | |
2 | 20 (0.1%) | 1532 (18.7%) | 10,226 (15.2%) | |
Wood Collection | 0 | 6942 (33.2%) | 6807 (82.9%) | 46,074 (66.6%) |
1 | 8406 (40.3%) | 1086 (13.2%) | 11,731 (17.0%) | |
2 | 5536 (26.5%) | 317 (3.9%) | 11,327 (16.4%) |
Country | Class | Pixel Count |
---|---|---|
1 | 0 | 10,540 |
1 | 1 | 7896 |
1 | 2 | 2475 |
2 | 0 | 2978 |
2 | 1 | 2766 |
2 | 2 | 3500 |
3 | 0 | 45,349 |
3 | 1 | 10,284 |
3 | 2 | 10,470 |
References
- Fauchereau, N.; Trzaska, S.; Rouault, M.; Richard, Y. Rainfall Variability and Changes in Southern Africa during the 20th Century in the Global Warming Context. Nat. Hazards 2003, 29, 139–154. [Google Scholar] [CrossRef]
- Gaughan, A.E.; Staub, C.G.; Hoell, A.; Weaver, A.; Waylen, P.R. Inter- and Intra-Annual Precipitation Variability and Associated Relationships to ENSO and the IOD in Southern Africa. Int. J. Climatol. 2016, 36, 1643–1656. [Google Scholar] [CrossRef]
- Marumbwa, F.M.; Cho, M.A.; Chirwa, P.W. Analysis of Spatio-Temporal Rainfall Trends across Southern African Biomes between 1981 and 2016. Phys. Chem. Earth Parts A/B/C 2019, 114, 102808. [Google Scholar] [CrossRef]
- Funk, C.; Dettinger, M.D.; Michaelsen, J.C.; Verdin, J.P.; Brown, M.E.; Barlow, M.; Hoell, A. Warming of the Indian Ocean Threatens Eastern and Southern African Food Security but Could Be Mitigated by Agricultural Development. Proc. Natl. Acad. Sci. USA 2008, 105, 11081–11086. [Google Scholar] [CrossRef] [Green Version]
- Serdeczny, O.; Adams, S.; Baarsch, F.; Coumou, D.; Robinson, A.; Hare, W.; Schaeffer, M.; Perrette, M.; Reinhardt, J. Climate Change Impacts in Sub-Saharan Africa: From Physical Changes to Their Social Repercussions. Reg. Environ. Chang. Dordr. 2017, 17, 1585–1600. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F.; Chaney, N.; Guan, K.; Sadri, S.; Yuan, X.; Olang, L.; Amani, A.; Ali, A.; Demuth, S.; et al. A Drought Monitoring and Forecasting System for Sub-Sahara African Water Resources and Food Security. Bull. Am. Meteorol. Soc. 2013, 95, 861–882. [Google Scholar] [CrossRef]
- Morton, J.F. The Impact of Climate Change on Smallholder and Subsistence Agriculture. Proc. Natl. Acad. Sci. USA 2007, 104, 19680–19685. [Google Scholar] [CrossRef] [Green Version]
- Sitati, N.W.; Walpole, M.J.; Leader-Williams, N. Factors Affecting Susceptibility of Farms to Crop Raiding by African Elephants: Using a Predictive Model to Mitigate Conflict. J. Appl. Ecol. 2005, 42, 1175–1182. [Google Scholar] [CrossRef]
- Salerno, J.; Cassidy, L.; Drake, M.; Hartter, J. Living in an Elephant Landscape: The Local Communities Most Affected by Wildlife Conservation Often Have Little Say in How It Is Carried out, Even When Policy Incentives Are Intended to Encourage Their Support. Am. Sci. 2018, 106, 34–42. [Google Scholar]
- Sileshi, G.W.; Kuntashula, E.; Matakala, P.; Nkunika, P.O. Farmers’ Perceptions of Tree Mortality, Pests and Pest Management Practices in Agroforestry in Malawi, Mozambique and Zambia. Agrofor. Syst. 2008, 72, 87–101. [Google Scholar] [CrossRef]
- Angelsen, A.; Jagger, P.; Babigumira, R.; Belcher, B.; Hogarth, N.J.; Bauch, S.; Börner, J.; Smith-Hall, C.; Wunder, S. Environmental Income and Rural Livelihoods: A Global-Comparative Analysis. World Dev. 2014, 64, S12–S28. [Google Scholar] [CrossRef] [Green Version]
- Shackleton, C.M.; Shackleton, S.E.; Netshiluvhi, T.R.; Mathabela, F.R. The Contribution and Direct-Use Value of Livestock to Rural Livelihoods in the Sand River Catchment, South Africa. Afr. J. Range Forage Sci. 2005, 22, 127–140. [Google Scholar] [CrossRef]
- Gaughan, A.E.; Stevens, F.R.; Pricope, N.G.; Hartter, J.; Cassidy, L.; Salerno, J. Operationalizing Vulnerability: Land System Dynamics in a Transfrontier Conservation Area. Land 2019, 8, 111. [Google Scholar] [CrossRef] [Green Version]
- Salerno, J.; Bailey, K.; Gaughan, A.E.; Stevens, F.R.; Hilton, T.; Cassidy, L.; Drake, M.D.; Pricope, N.G.; Hartter, J. Wildlife Impacts and Vulnerable Livelihoods in a Transfrontier Conservation Landscape. Conserv. Biol. 2020, 34, 891–902. [Google Scholar] [CrossRef]
- Pricope, N.G.; Cassidy, L.; Gaughan, A.E.; Salerno, J.D.; Stevens, F.R.; Hartter, J.; Drake, M.; Mupeta-Muyamwa, P. Addressing Integration Challenges of Interdisciplinary Research in Social-Ecological Systems. Soc. Nat. Resour. 2020, 33, 418–431. [Google Scholar] [CrossRef]
- Mugido, W.; Shackleton, C.M. The Contribution of NTFPS to Rural Livelihoods in Different Agro-Ecological Zones of South Africa. For. Policy Econ. 2019, 109, 101983. [Google Scholar] [CrossRef]
- Schlesinger, J.; Drescher, A.; Shackleton, C.M. Socio-Spatial Dynamics in the Use of Wild Natural Resources: Evidence from Six Rapidly Growing Medium-Sized Cities in Africa. Appl. Geogr. 2015, 56, 107–115. [Google Scholar] [CrossRef]
- Shanley, P.; Pierce, A.R.; Laird, S.A.; Binnqüist, C.L.; Guariguata, M.R. From Lifelines to Livelihoods: Non-timber Forest Products into the Twenty-First Century. In Tropical Forestry Handbook; Pancel, L., Köhl, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–50. ISBN 978-3-642-41554-8. [Google Scholar]
- Nkambwe, M.; Sekhwela, M.B.M. Utilization Characteristics and Importance of Woody Biomass Resources on the Rural-Urban Fringe in Botswana. Environ. Manag. 2006, 37, 281–296. [Google Scholar] [CrossRef] [PubMed]
- Joos-Vandewalle, S.; Wynberg, R.; Alexander, K.A. Dependencies on Natural Resources in Transitioning Urban Centers of Northern Botswana. Ecosyst. Serv. 2018, 30, 342–349. [Google Scholar] [CrossRef] [Green Version]
- Heubach, K.; Wittig, R.; Nuppenau, E.-A.; Hahn, K. The Economic Importance of Non-Timber Forest Products (NTFPs) for Livelihood Maintenance of Rural West African Communities: A Case Study from Northern Benin. Ecol. Econ. 2011, 70, 1991–2001. [Google Scholar] [CrossRef]
- Timko, J.A.; Waeber, P.; Kozak, R.A. The Socio-Economic Contribution of Non-Timber Forest Products to Rural Livelihoods in Sub-Saharan Africa: Knowledge Gaps and New Directions. Int. For. Rev. 2010, 12, 284–294. [Google Scholar] [CrossRef]
- Shackleton, C.; Delang, C.O.; Shackleton, S.; Shanley, P. Non-timber Forest Products: Concept and Definitions. In Non-Timber Forest Products in the Global Context; Shackleton, S., Shackleton, C., Shanley, P., Eds.; Tropical Forestry; Springer: Berlin/Heidelberg, Germany, 2011; pp. 3–21. ISBN 978-3-642-17983-9. [Google Scholar]
- Belcher, B.; Ruíz-Pérez, M.; Achdiawan, R. Global Patterns and Trends in the Use and Management of Commercial NTFPs: Implications for Livelihoods and Conservation. World Dev. 2005, 33, 1435–1452. [Google Scholar] [CrossRef]
- Sardeshpande, M.; Shackleton, C. Wild Edible Fruits: A Systematic Review of an Under-Researched Multifunctional NTFP (Non-Timber Forest Product). Forests 2019, 10, 467. [Google Scholar] [CrossRef] [Green Version]
- Mulenga, B.P.; Richardson, R.B.; Tembo, G.; Mapemba, L. Rural Household Participation in Markets for Non-Timber Forest Products in Zambia. Environ. Dev. Econ. 2014, 19, 487–504. [Google Scholar] [CrossRef]
- Descheemaeker, K.; Oosting, S.J.; Tui, S.H.-K.; Masikati, P.; Falconnier, G.N.; Giller, K.E. Climate Change Adaptation and Mitigation in Smallholder Crop-Livestock Systems in Sub-Saharan Africa: A Call for Integrated Impact Assessments. Reg. Envir. Chang. 2016, 16, 2331–2343. [Google Scholar] [CrossRef] [Green Version]
- Ryan, C.M.; Pritchard, R.; McNicol, L.; Owen, M.; Fisher, J.A.; Lehmann, C. Ecosystem Services from Southern African Woodlands and Their Future under Global Change. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150312. [Google Scholar] [CrossRef]
- Haarmeyer, D.H.; Schumann, K.; Bernhardt-Römermann, M.; Wittig, R.; Thiombiano, A.; Hahn, K. Human Impact on Population Structure and Fruit Production of the Socio-Economically Important Tree Lannea Microcarpa in Burkina Faso. Agrofor. Syst. 2013, 87, 1363–1375. [Google Scholar] [CrossRef]
- Gaughan, A.E.; Waylen, P.R. Spatial and Temporal Precipitation Variability in the Okavango–Kwando–Zambezi Catchment, Southern Africa. J. Arid Environ. 2012, 82, 19–30. [Google Scholar] [CrossRef]
- Pricope, N.; Gaughan, A.; All, J.; Binford, M.; Rutina, L.; Pricope, N.G.; Gaughan, A.E.; All, J.D.; Binford, M.W.; Rutina, L.P. Spatio-Temporal Analysis of Vegetation Dynamics in Relation to Shifting Inundation and Fire Regimes: Disentangling Environmental Variability from Land Management Decisions in a Southern African Transboundary Watershed. Land 2015, 4, 627–655. [Google Scholar] [CrossRef]
- King, B.; Yurco, K.; Young, K.R.; Crews, K.A.; Shinn, J.E.; Eisenhart, A.C. Livelihood Dynamics Across a Variable Flooding Regime. Hum. Ecol. N. Y. 2018, 46, 865–874. [Google Scholar] [CrossRef]
- Bunting, E.L.; Southworth, J.; Herrero, H.; Ryan, S.J.; Waylen, P. Understanding Long-Term Savanna Vegetation Persistence across Three Drainage Basins in Southern Africa. Remote Sens. 2018, 10, 1013. [Google Scholar] [CrossRef] [Green Version]
- National Research Council. People and Pixels: Linking Remote Sensing and Social Science; National Academies Press: Washington, DC, USA, 1998; ISBN 978-0-309-06408-8. [Google Scholar]
- Kugler, T.A.; Grace, K.; Wrathall, D.J.; de Sherbinin, A.; Van Riper, D.; Aubrecht, C.; Comer, D.; Adamo, S.B.; Cervone, G.; Engstrom, R.; et al. People and Pixels 20 Years Later: The Current Data Landscape and Research Trends Blending Population and Environmental Data. Popul. Environ. 2019, 41, 209–234. [Google Scholar] [CrossRef]
- Brown, M.I.; Pearce, T.; Leon, J.; Sidle, R.; Wilson, R. Using Remote Sensing and Traditional Ecological Knowledge (TEK) to Understand Mangrove Change on the Maroochy River, Queensland, Australia. Appl. Geogr. 2018, 94, 71–83. [Google Scholar] [CrossRef]
- Dennis, R.A.; Mayer, J.; Applegate, G.; Chokkalingam, U.; Colfer, C.J.P.; Kurniawan, I.; Lachowski, H.; Maus, P.; Permana, R.P.; Ruchiat, Y.; et al. Fire, People and Pixels: Linking Social Science and Remote Sensing to Understand Underlying Causes and Impacts of Fires in Indonesia. Hum. Ecol. 2005, 33, 465–504. [Google Scholar] [CrossRef]
- Leiterer, R.; Bloesch, U.; Wulf, H.; Eugster, S.; Joerg, P.C. Vegetation Monitoring in Refugee-Hosting Areas in South Sudan. Appl. Geogr. 2018, 93, 1–15. [Google Scholar] [CrossRef]
- Wingate, V.R.; Phinn, S.R.; Kuhn, N.; Bloemertz, L.; Dhanjal-Adams, K.L. Mapping Decadal Land Cover Changes in the Woodlands of North Eastern Namibia from 1975 to 2014 Using the Landsat Satellite Archived Data. Remote Sens. 2016, 8, 681. [Google Scholar] [CrossRef] [Green Version]
- Zaehringer, J.G.; Llopis, J.C.; Latthachack, P.; Thein, T.T.; Heinimann, A. A Novel Participatory and Remote-Sensing-Based Approach to Mapping Annual Land Use Change on Forest Frontiers in Laos, Myanmar, and Madagascar. J. Land Use Sci. 2018, 13, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.E. Assessing Natural Resource Management Challenges in Senegal Using Data from Participatory Rural Appraisals and Remote Sensing. World Dev. 2006, 34, 751–767. [Google Scholar] [CrossRef]
- Diniz, F.H.; Kok, K.; Hott, M.C.; Hoogstra-Klein, M.A.; Arts, B. From Space and from the Ground: Determining Forest Dynamics in Settlement Projects in the Brazilian Amazon. Int. For. Rev. 2013, 15, 442–455. [Google Scholar] [CrossRef]
- Laris, P. Burning the Seasonal Mosaic: Preventative Burning Strategies in the Wooded Savanna of Southern Mali. Hum. Ecol. 2002, 30, 155–186. [Google Scholar] [CrossRef]
- Del Rio, T.; Groot, J.C.J.; DeClerck, F.; Estrada-Carmona, N. Integrating Local Knowledge and Remote Sensing for Eco-Type Classification Map in the Barotse Floodplain, Zambia. Data Brief. 2018, 19, 2297–2304. [Google Scholar] [CrossRef] [PubMed]
- Robiglio, V.; Mala, W.A. Integrating Local and Expert Knowledge Using Participatory Mapping and GIS to Implement Integrated Forest Management Options in Akok, Cameroon. For. Chron. 2005, 81, 392–397. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, S.; Medley, K.E. Landscape Mapping: Gaining “Sense of Place” for Conservation in the Manaslu Conservation Area, Nepal. J. Ethnobiol. 2016, 36, 326–347. [Google Scholar] [CrossRef] [Green Version]
- Chambers, R. The Origins and Practice of Participatory Rural Appraisal. World Dev. 1994, 22, 953–969. [Google Scholar] [CrossRef] [Green Version]
- Herlihy, P.H.; Knapp, G. Maps of, by, and for the Peoples of Latin America. Hum. Organ. Okla. City 2003, 62, 303–314. [Google Scholar] [CrossRef]
- Liverman, D.M.; Cuesta, R.M.R. Human Interactions with the Earth System: People and Pixels Revisited. Earth Surf. Process. Landf. 2008, 33, 1458–1471. [Google Scholar] [CrossRef]
- Walsh, S.J.; Bilsborrow, R.E.; McGregor, S.J.; Frizzelle, B.G.; Messina, J.P.; Pan, W.K.T.; Crews-Meyer, K.A.; Taff, G.N.; Baquero, F. Integration of Longitudinal Surveys, Remote Sensing Time Series, and Spatial Analyses. In People and the Environment: Approaches for Linking Household and Community Surveys to Remote Sensing and GIS; Fox, J., Rindfuss, R.R., Walsh, S.J., Mishra, V., Eds.; Springer: Boston, MA, USA, 2003; pp. 91–130. ISBN 978-0-306-48130-7. [Google Scholar]
- Pricope, N.G.; Mapes, K.L.; Woodward, K.D. Remote Sensing of Human–Environment Interactions in Global Change Research: A Review of Advances, Challenges and Future Directions. Remote Sens. 2019, 11, 2783. [Google Scholar] [CrossRef] [Green Version]
- Eddy, I.M.S.; Gergel, S.E.; Coops, N.C.; Henebry, G.M.; Levine, J.; Zerriffi, H.; Shibkov, E. Integrating Remote Sensing and Local Ecological Knowledge to Monitor Rangeland Dynamics. Ecol. Indic. 2017, 82, 106–116. [Google Scholar] [CrossRef]
- Hopping, K.A.; Yeh, E.T.; Gaerrang; Harris, R.B. Linking People, Pixels, and Pastures: A Multi-Method, Interdisciplinary Investigation of How Rangeland Management Affects Vegetation on the Tibetan Plateau. Appl. Geogr. 2018, 94, 147–162. [Google Scholar] [CrossRef] [Green Version]
- Adjorlolo, C.; Botha, J.O.; Mhangara, P.; Mutanga, O.; Odindi, J. Integrating remote sensing and conventional grazing/browsing models for modelling carrying capacity in Southern African rangelands. In Remote Sensing for Agriculture, Ecosystems, and Hydrology Xvi; Neale, C.M.U., Maltese, A., Eds.; Spie-Int Soc Optical Engineering: Bellingham, WA, USA, 2014; Volume 9239, p. UNSP 92390B. ISBN 978-1-62841-302-1. [Google Scholar]
- Williams, D.; Thorne, J.H.; Sumba, D.; Muruthi, P.; Gregory-Michelman, N. Evaluating Outcomes of Community-Based Conservation on Kenyan Group Ranches with Remote Sensing. Environ. Conserv. 2018, 45, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Kakembo, V.; Ndou, N. Relating Vegetation Condition to Grazing Management Systems in the Central Keiskamma Catchment, Eastern Cape Province, South Africa. Land Degrad. Dev. 2019, 30, 1052–1060. [Google Scholar] [CrossRef]
- Biswal, A.; Mukherjee, S.; Jeyaram, A.; Murthy, Y.V.N.K. Man in Biosphere Reserve: A Remote Sensing Study in Similipal, Orissa. In Isprs Bhopal 2011 Workshop Earth Observation for Terrestrial Ecosystem; Panigrahy, S., Ray, S.S., Huete, A.R., Eds.; Copernicus Gesellschaft Mbh: Gottingen, Germany, 2011; Volume 38-8, pp. 82–86. [Google Scholar]
- Vadjunec, J.M.; Rocheleau, D. Beyond Forest Cover: Land Use and Biodiversity in Rubber Trail Forests of the Chico Mendes Extractive Reserve. Ecol. Soc. 2009, 14, art29. [Google Scholar] [CrossRef] [Green Version]
- Hitztaler, S.K.; Bergen, K.M. Mapping Resource Use over a Russian Landscape: An Integrated Look at Harvesting of a Non-Timber Forest Product in Central Kamchatka. Environ. Res. Lett. 2013, 8, 045020. [Google Scholar] [CrossRef]
- Norris, D.; Ulises Rodriguez Chuma, V.J.; Arevalo-Sandi, A.R.; Landazuri Paredes, O.S.; Peres, C.A. Too Rare for Non-Timber Resource Harvest? Meso-Scale Composition and Distribution of Arborescent Palms in an Amazonian Sustainable-Use Forest. For. Ecol. Manag. 2016, 377, 182–191. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Verduzco, G.C.; Galeana-Pizaña, J.M.; Cruz-Bello, G.M. Coupling Community Mapping and Supervised Classification to Discriminate Shade Coffee from Natural Vegetation. Appl. Geogr. 2012, 34, 1–9. [Google Scholar] [CrossRef]
- Srivastava, V.K.; Anitha, D. Mapping of Non-Timber Forest Products Using Remote Sensing and GIS. Trop. Ecol. 2010, 51, 107–116. [Google Scholar]
- Chagumaira, C.; Rurinda, J.; Nezomba, H.; Mtambanengwe, F.; Mapfumo, P. Use Patterns of Natural Resources Supporting Livelihoods of Smallholder Communities and Implications for Climate Change Adaptation in Zimbabwe. Environ. Dev. Sustain. Dordr. 2016, 18, 237–255. [Google Scholar] [CrossRef]
- Bailey, K.M.; Drake, M.D.; Salerno, J.; Cassidy, L.; Gaughan, A.E.; Stevens, F.R.; Pricope, N.G.; Woodward, K.D.; Luwaya, H.M.; Hartter, J. Mapping Natural Resource Collection Areas from Household Survey Data in Southern Africa. Appl. Geogr. 2020, 125, 102326. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of Machine-Learning Classification in Remote Sensing: An Applied Review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef] [Green Version]
- Adelabu, S.; Mutanga, O.; Adam, E.E.; Cho, M.A. Exploiting Machine Learning Algorithms for Tree Species Classification in a Semiarid Woodland Using RapidEye Image. JARS 2013, 7, 073480. [Google Scholar] [CrossRef]
- Chan, J.C.-W.; Paelinckx, D. Evaluation of Random Forest and Adaboost Tree-Based Ensemble Classification and Spectral Band Selection for Ecotope Mapping Using Airborne Hyperspectral Imagery. Remote Sens. Environ. 2008, 112, 2999–3011. [Google Scholar] [CrossRef]
- Dalponte, M.; Ørka, H.O.; Gobakken, T.; Gianelle, D.; Næsset, E. Tree Species Classification in Boreal Forests with Hyperspectral Data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2632–2645. [Google Scholar] [CrossRef]
- Colditz, R.R. An Evaluation of Different Training Sample Allocation Schemes for Discrete and Continuous Land Cover Classification Using Decision Tree-Based Algorithms. Remote Sens. 2015, 7, 9655–9681. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Galiano, V.F.; Chica-Olmo, M.; Abarca-Hernandez, F.; Atkinson, P.M.; Jeganathan, C. Random Forest Classification of Mediterranean Land Cover Using Multi-Seasonal Imagery and Multi-Seasonal Texture. Remote Sens. Environ. 2012, 121, 93–107. [Google Scholar] [CrossRef]
- Kaaya, E.; Chapman, M. Micro-Credit and Community Wildlife Management: Complementary Strategies to Improve Conservation Outcomes in Serengeti National Park, Tanzania. Environ. Manag. 2017, 60, 464–475. [Google Scholar] [CrossRef]
- Adams, W.M.; Hulme, D. If Community Conservation Is the Answer in Africa, What Is the Question? Oryx 2001, 35, 193–200. [Google Scholar] [CrossRef]
- Lepper, C.M.; Goebel, J.S. Community-Based Natural Resource Management, Poverty Alleviation and Livelihood Diversification: A Case Study from Northern Botswana. Dev. South. Afr. 2010, 27, 725–739. [Google Scholar] [CrossRef]
- Yu, L.; Liang, L.; Wang, J.; Zhao, Y.; Cheng, Q.; Hu, L.; Liu, S.; Yu, L.; Wang, X.; Zhu, P.; et al. Meta-Discoveries from a Synthesis of Satellite-Based Land-Cover Mapping Research. Int. J. Remote Sens. 2014, 35, 4573–4588. [Google Scholar] [CrossRef]
- Lloyd, C.T.; Chamberlain, H.; Kerr, D.; Yetman, G.; Pistolesi, L.; Stevens, F.R.; Gaughan, A.E.; Nieves, J.J.; Hornby, G.; MacManus, K.; et al. Global Spatio-Temporally Harmonised Datasets for Producing High-Resolution Gridded Population Distribution Datasets. Big Earth Data 2019, 3, 108–139. [Google Scholar] [CrossRef] [Green Version]
- Vergara-Asenjo, G.; Sharma, D.; Potvin, C. Engaging Stakeholders: Assessing Accuracy of Participatory Mapping of Land Cover in Panama. Conserv. Lett. 2015, 8, 432–439. [Google Scholar] [CrossRef]
- Cassidy, L. Enterprise Development and Community Based Natural Resources Management in Botswana.; IUCN: Gland, Switzerland, 1999; ISBN 978-99912-0-297-6. [Google Scholar]
- Stone, M.T. Community Empowerment Through Community-Based Tourism: The Case of Chobe Enclave Conservation Trust in Botswana. In Institutional Arrangements for Conservation, Development and Tourism in Eastern and Southern Africa: A Dynamic Perspective; van der Duim, R., Lamers, M., van Wijk, J., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 81–100. ISBN 978-94-017-9529-6. [Google Scholar]
- Zambia Department of National Parks and Wildlife General Management Plan for the Lower West Zambezi Game Management Area; Department of National Parks and Wildlife: Lusaka, Zambia, 2016.
- Buchhorn, M.; Lesiv, M.; Tsendbazar, N.-E.; Herold, M.; Bertels, L.; Smets, B. Copernicus Global Land Cover Layers—Collection 2. Remote Sens. 2020, 12, 1044. [Google Scholar] [CrossRef] [Green Version]
- Center, N.C.P. NOAA’s Climate Prediction Center. Available online: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (accessed on 3 March 2020).
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lloyd, C.T.; Sorichetta, A.; Tatem, A.J. High Resolution Global Gridded Data for Use in Population Studies. Sci. Data 2017, 4, 170001. [Google Scholar] [CrossRef] [Green Version]
- Sorichetta, A.; Bird, T.J.; Ruktanonchai, N.W.; zu Erbach-Schoenberg, E.; Pezzulo, C.; Tejedor, N.; Waldock, I.C.; Sadler, J.D.; Garcia, A.J.; Sedda, L.; et al. Mapping Internal Connectivity through Human Migration in Malaria Endemic Countries. Sci. Data 2016, 3, UNSP 160066. [Google Scholar] [CrossRef]
- Nieves, J.J.; Stevens, F.R.; Gaughan, A.E.; Linard, C.; Sorichetta, A.; Hornby, G.; Patel, N.N.; Tatem, A.J. Examining the Correlates and Drivers of Human Population Distributions across Low- and Middle-Income Countries. J. R. Soc. Interface 2017, 14, 20170401. [Google Scholar] [CrossRef] [Green Version]
- Hoffman-Hall, A.; Loboda, T.V.; Hall, J.V.; Carroll, M.L.; Chen, D. Mapping Remote Rural Settlements at 30 m Spatial Resolution Using Geospatial Data-Fusion. Remote Sens. Environ. 2019, 233, 111386. [Google Scholar] [CrossRef]
- Stevens, F.R.; Gaughan, A.E.; Linard, C.; Tatem, A.J. Disaggregating Census Data for Population Mapping Using Random Forests with Remotely-Sensed and Ancillary Data. PLoS ONE 2015, 10, e0107042. [Google Scholar] [CrossRef] [Green Version]
- Bwangoy, J.-R.B.; Hansen, M.C.; Roy, D.P.; De Grandi, G.; Justice, C.O. Wetland Mapping in the Congo Basin Using Optical and Radar Remotely Sensed Data and Derived Topographical Indices. Remote Sens. Environ. 2010, 114, 73–86. [Google Scholar] [CrossRef]
- Hayashi, S.N.; Souza-Filho, P.W.; Nascimento, W.R.; Fernandes, M. The Effect of Anthropogenic Drivers on Spatial Patterns of Mangrove Land Use on the Amazon Coast. PLoS ONE 2019, 14, e0217754. [Google Scholar] [CrossRef] [Green Version]
- Martiny, N.; Camberlin, P.; Richard, Y.; Philippon, N. Compared Regimes of NDVI and Rainfall in Semi-Arid Regions of Africa. Int. J. Remote Sens. 2006, 27, 5201–5223. [Google Scholar] [CrossRef]
- Burke, J.J.; Pricope, N.G.; Blum, J. Thermal Imagery-Derived Surface Inundation Modeling to Assess Flood Risk in a Flood-Pulsed Savannah Watershed in Botswana and Namibia. Remote Sens. 2016, 8, 676. [Google Scholar] [CrossRef] [Green Version]
- Jacquin, A.; Sheeren, D.; Lacombe, J.-P. Vegetation Cover Degradation Assessment in Madagascar Savanna Based on Trend Analysis of MODIS NDVI Time Series. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, S3–S10. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Brandt, M.; Tong, X.; Tian, Q.; Fensholt, R. Impacts of the Seasonal Distribution of Rainfall on Vegetation Productivity across the Sahel. Biogeosciences 2018, 15, 319–330. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring Vegetation Phenology Using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- Guan, K.; Wood, E.F.; Caylor, K.K. Multi-Sensor Derivation of Regional Vegetation Fractional Cover in Africa. Remote Sens. Environ. 2012, 124, 653–665. [Google Scholar] [CrossRef]
- Hansen, M.C.; DeFries, R.S.; Townshend, J.R.G.; Marufu, L.; Sohlberg, R. Development of a MODIS Tree Cover Validation Data Set for Western Province, Zambia. Remote Sens. Environ. 2002, 83, 320–335. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Wang, M. Influence of Number of Features on Texture Based Residential Area Extraction from Remotely Sensed Imagery; Qiu, P.H., Yiu, C., Zhang, H., Wen, X.B., Eds.; IEEE: New York, NY, USA, 2009; pp. 1088–1091. ISBN 978-1-4244-4130-3. [Google Scholar]
- Chrysafis, I.; Mallinis, G.; Tsakiri, M.; Patias, P. Evaluation of Single-Date and Multi-Seasonal Spatial and Spectral Information of Sentinel-2 Imagery to Assess Growing Stock Volume of a Mediterranean Forest. Int. J. Appl. Earth Obs. Geoinf. 2019, 77, 1–14. [Google Scholar] [CrossRef]
- Lam, N.S.-N.; Cheng, W.; Zou, L.; Cai, H. Effects of Landscape Fragmentation on Land Loss. Remote Sens. Environ. 2018, 209, 253–262. [Google Scholar] [CrossRef]
- Myint, S.W. Fractal Approaches in Texture Analysis and Classification of Remotely Sensed Data: Comparisons with Spatial Autocorrelation Techniques and Simple Descriptive Statistics. Int. J. Remote Sens. 2003, 24, 1925–1947. [Google Scholar] [CrossRef]
- Read, J.M.; Lam, N.S.N. Spatial Methods for Characterising Land Cover and Detecting Land-Cover Changes for the Tropics. Int. J. Remote Sens. 2002, 23, 2457–2474. [Google Scholar] [CrossRef]
- Kowe, P.; Mutanga, O.; Odindi, J.; Dube, T. Exploring the Spatial Patterns of Vegetation Fragmentation Using Local Spatial Autocorrelation Indices. JARS 2019, 13, 024523. [Google Scholar] [CrossRef]
- Zheng, X.; Wu, B.; Weston, M.V.; Zhang, J.; Gan, M.; Zhu, J.; Deng, J.; Wang, K.; Teng, L. Rural Settlement Subdivision by Using Landscape Metrics as Spatial Contextual Information. Remote Sens. 2017, 9, 486. [Google Scholar] [CrossRef] [Green Version]
- Ghimire, B.; Rogan, J.; Galiano, V.R.; Panday, P.; Neeti, N. An Evaluation of Bagging, Boosting, and Random Forests for Land-Cover Classification in Cape Cod, Massachusetts, USA. GIScience Remote Sens. 2012, 49, 623–643. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, X.; Chen, Y.; Liang, X. Land-Cover Mapping Using Random Forest Classification and Incorporating NDVI Time-Series and Texture: A Case Study of Central Shandong. Int. J. Remote Sens. 2018, 39, 8703–8723. [Google Scholar] [CrossRef]
- Hijmanns, R.J. Raster: Geographic Data Analysis and Modeling. 2019. Available online: https://cran.r-project.org/package=raster (accessed on 8 February 2021).
- Ghimire, B.; Rogan, J.; Miller, J. Contextual Land-Cover Classification: Incorporating Spatial Dependence in Land-Cover Classification Models Using Random Forests and the Getis Statistic. Remote Sens. Lett. 2010, 1, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, R. Classification and Regression by RandomForest. 2002. Available online: https://www.researchgate.net/profile/Andy_Liaw/publication/228451484_Classification_and_Regression_by_RandomForest/links/53fb24cc0cf20a45497047ab/Classification-and-Regression-by-RandomForest.pdf (accessed on 8 February 2021).
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Genuer, R.; Poggi, J.-M.; Tuleau-Malot, C. Variable Selection Using Random Forests. Pattern Recognit. Lett. 2010, 31, 2225–2236. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, A.E.; Strager, M.P.; Warner, T.A.; Zégre, N.P.; Yuill, C.B. Comparison of NAIP Orthophotography and RapidEye Satellite Imagery for Mapping of Mining and Mine Reclamation. GIScience Remote Sens. 2014, 51, 301–320. [Google Scholar] [CrossRef]
- Peres, C.A.; Lake, I.R. Extent of Nontimber Resource Extraction in Tropical Forests: Accessibility to Game Vertebrates by Hunters in the Amazon Basin. Conserv. Biol. 2003, 17, 521–535. [Google Scholar] [CrossRef] [Green Version]
- Verburg, P.H.; Erb, K.-H.; Mertz, O.; Espindola, G. Land System Science: Between Global Challenges and Local Realities. Curr. Opin. Environ. Sustain. 2013, 5, 433–437. [Google Scholar] [CrossRef] [Green Version]
- Dons, K.; Panduro, T.E.; Bhattarai, S.; Smith-Hall, C. Spatial Patterns of Subsistence Extraction of Forest Products—An Indirect Approach for Estimation of Forest Degradation in Dry Forest. Appl. Geogr. 2014, 55, 292–299. [Google Scholar] [CrossRef]
- Albers, H.J.; Robinson, E.J.Z. A Review of the Spatial Economics of Non-Timber Forest Product Extraction: Implications for Policy. Ecol. Econ. 2013, 92, 87–95. [Google Scholar] [CrossRef]
- Foody, G.M. Harshness in Image Classification Accuracy Assessment. Int. J. Remote Sens. 2008, 29, 3137–3158. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; Professional Paper; Geological Survey Circular 671 United States Government Printing Office: Washington, DC, USA, 1976. [Google Scholar]
- He, H.; Garcia, E.A. Learning from Imbalanced Data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [Google Scholar] [CrossRef]
- Duro, D.C.; Franklin, S.E.; Dubé, M.G. A Comparison of Pixel-Based and Object-Based Image Analysis with Selected Machine Learning Algorithms for the Classification of Agricultural Landscapes Using SPOT-5 HRG Imagery. Remote Sens. Environ. 2012, 118, 259–272. [Google Scholar] [CrossRef]
- Jackson, Q.; Landgrebe, D.A. An Adaptive Classifier Design for High-Dimensional Data Analysis with a Limited Training Data Set. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2664–2679. [Google Scholar] [CrossRef] [Green Version]
- Ndangalasi, H.J.; Bitariho, R.; Dovie, D.B.K. Harvesting of Non-Timber Forest Products and Implications for Conservation in Two Montane Forests of East Africa. Biol. Conserv. 2007, 134, 242–250. [Google Scholar] [CrossRef]
- Ringrose, S.; Chipanshi, A.C.; Matheson, W.; Chanda, R.; Motoma, L.; Magole, I.; Jellema, A. Climate- and Human-Induced Woody Vegetation Changes in Botswana and Their Implications for Human Adaptation. Environ. Manag. 2002, 30, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Naughton-Treves, L.; Kammen, D.M.; Chapman, C. Burning Biodiversity: Woody Biomass Use by Commercial and Subsistence Groups in Western Uganda’s Forests. Biol. Conserv. 2007, 134, 232–241. [Google Scholar] [CrossRef]
- Palmer, C.; Macgregor, J. Fuelwood Scarcity, Energy Substitution, and Rural Livelihoods in Namibia. Environ. Dev. Econ. 2009, 14, 693–715. [Google Scholar] [CrossRef] [Green Version]
- Dent, D.; Dubois, O.; Dalal-Clayton, B. Rural Planning in Developing Countries: Supporting Natural Resource Management and Sustainable Livelihoods; Routledge: Abingdon, UK, 2013; ISBN 978-1-136-54699-0. [Google Scholar]
- McCALL, M.K.; Minang, P.A. Assessing Participatory GIS for Community-Based Natural Resource Management: Claiming Community Forests in Cameroon. Geogr. J. 2005, 171, 340–356. [Google Scholar] [CrossRef]
- Tompkins, E.; Adger, W.N. Does Adaptive Management of Natural Resources Enhance Resilience to Climate Change? Ecol. Soc. 2004, 9. [Google Scholar] [CrossRef]
- Rist, S.; Chidambaranathan, M.; Escobar, C.; Wiesmann, U.; Zimmermann, A. Moving from Sustainable Management to Sustainable Governance of Natural Resources: The Role of Social Learning Processes in Rural India, Bolivia and Mali. J. Rural Stud. 2007, 23, 23–37. [Google Scholar] [CrossRef]
- Souverijns, N.; Buchhorn, M.; Horion, S.; Fensholt, R.; Verbeeck, H.; Verbesselt, J.; Herold, M.; Tsendbazar, N.-E.; Bernardino, P.N.; Somers, B.; et al. Thirty Years of Land Cover and Fraction Cover Changes over the Sudano-Sahel Using Landsat Time Series. Remote Sens. 2020, 12, 3817. [Google Scholar] [CrossRef]
- Wingate, V.R.; Phinn, S.R.; Kuhn, N.; Scarth, P. Estimating Aboveground Woody Biomass Change in Kalahari Woodland: Combining Field, Radar, and Optical Data Sets. Int. J. Remote Sens. 2018, 39, 577–606. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; De Pauw, E.; Hellden, U. Assessing Woody Biomass in African Tropical Savannahs by Multiscale Remote Sensing. Int. J. Remote Sens. 2013, 34, 4525–4549. [Google Scholar] [CrossRef]
- Li, W.; Buitenwerf, R.; Munk, M.; Bocher, P.K.; Svenning, J.-C. Deep-Learning Based High-Resolution Mapping Shows Woody Vegetation Densification in Greater Maasai Mara Ecosystem. Remote Sens. Environ. 2020, 247, 111953. [Google Scholar] [CrossRef]
- Mosomtai, G.; Odindi, J.; Abdel-Rahman, E.M.; Babin, R.; Fabrice, P.; Mutanga, O.; Tonnang, H.E.Z.; David, G.; Landmann, T. Landscape Fragmentation in Coffee Agroecological Subzones in Central Kenya: A Multiscale Remote Sensing Approach. J. Appl. Remote Sens. 2020, 14, 044513. [Google Scholar] [CrossRef]
- Butt, B. Pastoral Resource Access and Utilization: Quantifying the Spatial and Temporal Relationships Between Livestock Mobility, Density and Biomass Availability in Southern Kenya. Land Degrad. Dev. 2010, 21, 520–539. [Google Scholar] [CrossRef]
- Stehman, S.V.; Foody, G.M. Key Issues in Rigorous Accuracy Assessment of Land Cover Products. Remote Sens. Environ. 2019, 231, UNSP 111199. [Google Scholar] [CrossRef]
CBO (Country) | Resource Areas | Average Perimeter (km) | Average Area (km2) | # Households Using Each Resource Area | # Resource Areas Used by Each Household | Average Amount Collected/Resource Area (kg) | Average Amount Collected/Household (kg) |
---|---|---|---|---|---|---|---|
LWZ GMA (Zambia) | 77 | 11.2 (9.7) | 10.2 (23.2) | 3.2 (7.4) | 2.2 (1.0) | 9033 (25,162) | 2117 (9658) |
CECT (Botswana) | 53 | 7.3 (8.1) | 4.4 (10.1) | 5.8 (8.5) | 2.6 (1.4) | 907 (1351) | 180 (370) |
Mashi (Namibia) | 84 | 3.6 (4.5) | 1.2 (3.0) | 3.3 (5.2) | 2.5 (1.2) | 2145 (5084) | 354 (1080) |
Total | 214 | 7.3 (8.3) | 5.22 (15.3) | 3.8 (7) | 2.4 (1.2) | 4095 (15,213) | 907 (5772) |
WorldPop Dataset | Model Variable Name | Data Sources |
---|---|---|
Distance to OSM Major Roads 2016 | osm_dst_road_100 m | Lloyd et al., 2017 |
Distance to OSM Major Road Intersections 2016 | osm_dst_roadintersec_100 m | Lloyd et al., 2017 |
Distance to OSM Major Waterways 2016 | osm_dst_waterway_100 m | Lloyd et al., 2017 |
Distance to ESA-CCI-LC inland water per country | esaccilc_dst_water_100 m | Lamarche, C. et al., 2017 |
SRTM-based slope per country 2000 | srtm_slope_100 m | de Ferranti, J., 2017 |
SRTM-based elevation per country 2000 | srtm_topo_100 m | de Ferranti, J., 2017 |
All Variables | WorldPop | Landsat | Final Model | |
---|---|---|---|---|
(M = 36) | (M = 6) | (M = 30) | (M = 11) | |
Grazing | ||||
m | 36 | 4 | 7 | 6 |
Overall Accuracy | 91% | 94% | 64% | 92% |
Wood collection | ||||
m | 22 | 4 | 7 | 9 |
Overall Accuracy | 88% | 94% | 62% | 92% |
Building pole collection | ||||
m | 33 | 6 | 15 | 11 |
Overall Accuracy | 92% | 95% | 71% | 94% |
Grazing | Class | 0 | 1 | 2 | User’s Accuracy |
0 | 17,276 | 823 | 585 | 0.92 | |
1 | 259 | 5304 | 269 | 0.91 | |
2 | 124 | 150 | 4087 | 0.94 | |
Producer’s Accuracy | 0.98 | 0.84 | 0.83 | ||
Wood collection | Class | 0 | 1 | 2 | User’s Accuracy |
0 | 16,548 | 778 | 571 | 0.92 | |
1 | 503 | 5548 | 342 | 0.87 | |
2 | 174 | 63 | 4350 | 0.95 | |
Producer’s Accuracy | 0.96 | 0.87 | 0.83 | ||
Building pole collection | Class | 0 | 1 | 2 | User’s Accuracy |
0 | 19,701 | 801 | 503 | 0.94 | |
1 | 308 | 4297 | 52 | 0.92 | |
2 | 115 | 66 | 3034 | 0.94 | |
Producer’s Accuracy | 0.98 | 0.83 | 0.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woodward, K.D.; Pricope, N.G.; Stevens, F.R.; Gaughan, A.E.; Kolarik, N.E.; Drake, M.D.; Salerno, J.; Cassidy, L.; Hartter, J.; Bailey, K.M.; et al. Modeling Community-Scale Natural Resource Use in a Transboundary Southern African Landscape: Integrating Remote Sensing and Participatory Mapping. Remote Sens. 2021, 13, 631. https://doi.org/10.3390/rs13040631
Woodward KD, Pricope NG, Stevens FR, Gaughan AE, Kolarik NE, Drake MD, Salerno J, Cassidy L, Hartter J, Bailey KM, et al. Modeling Community-Scale Natural Resource Use in a Transboundary Southern African Landscape: Integrating Remote Sensing and Participatory Mapping. Remote Sensing. 2021; 13(4):631. https://doi.org/10.3390/rs13040631
Chicago/Turabian StyleWoodward, Kyle D., Narcisa G. Pricope, Forrest R. Stevens, Andrea E. Gaughan, Nicholas E. Kolarik, Michael D. Drake, Jonathan Salerno, Lin Cassidy, Joel Hartter, Karen M. Bailey, and et al. 2021. "Modeling Community-Scale Natural Resource Use in a Transboundary Southern African Landscape: Integrating Remote Sensing and Participatory Mapping" Remote Sensing 13, no. 4: 631. https://doi.org/10.3390/rs13040631
APA StyleWoodward, K. D., Pricope, N. G., Stevens, F. R., Gaughan, A. E., Kolarik, N. E., Drake, M. D., Salerno, J., Cassidy, L., Hartter, J., Bailey, K. M., & Luwaya, H. M. (2021). Modeling Community-Scale Natural Resource Use in a Transboundary Southern African Landscape: Integrating Remote Sensing and Participatory Mapping. Remote Sensing, 13(4), 631. https://doi.org/10.3390/rs13040631