& emote sensing

Article

Modeling Community-Scale Natural Resource Use in a
Transboundary Southern African Landscape: Integrating
Remote Sensing and Participatory Mapping

Kyle D. Woodward 1,* Narcisa G. Pricope 1@, Forrest R. Stevens

2D, Andrea E. Gaughan 209,

Nicholas E. Kolarik 207, Michael D. Drake 3{7, Jonathan Salerno *, Lin Cassidy °, Joel Hartter 3, Karen M. Bailey 3
and Henry Maseka Luwaya ©

check for

updates
Citation: Woodward, K.D.; Pricope,
N.G.; Stevens, FR.; Gaughan, A.E.;
Kolarik, N.E.; Drake, M.D.; Salerno, J.;
Cassidy, L.; Hartter, J.; Bailey, K.M.;
et al. Modeling Community-Scale
Natural Resource Use in a
Transboundary Southern African
Landscape: Integrating Remote
Sensing and Participatory Mapping.
Remote Sens. 2021, 13, 631.
https:/ /doi.org/10.3390 /1513040631

Academic Editors: Eva Ivits,
Stephanie Horion, Roel Van Hoolst
and Giuseppe Modica

Received: 31 December 2020
Accepted: 5 February 2021
Published: 10 February 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Earth and Ocean Sciences, University of North Carolina Wilmington, 601 S College Road,
Wilmington, NC 28403, USA; pricopen@uncw.edu

Department of Geography and Geosciences, Lutz Hall, University of Louisville, Louisville, KY 40292, USA;
forrest.stevens@louisville.edu (FR.S.); ae.gaughan@louisville.edu (A.E.G.);
nicholaskolarik@u.boisestate.edu (N.E.K.)

Environmental Studies Program, Sustainability, Energy, and Environment Community, University of
Colorado Boulder, 4001 Discovery Drive, Boulder, CO 80303, USA; Michael. Drake-1@colorado.edu (M.D.D.);
joel.hartter@colorado.edu (J.H.); Karen.bailey@colorado.edu (K.M.B.)

Department of Human Dimensions of Natural Resources, Graduate Degree Program in Ecology, Colorado
State University, Campus Box 1480, Fort Collins, CO 80523-1480, USA; jonathan.salerno@colostate.edu
Okavango Research Institute, University of Botswana, P/Bag 285, Maun, Botswana; lcassidy@ub.ac.bw
Department of National Parks and Wildlife, Private Bag 1, Kafue Road, Chilanga, Zambia;
henrymaseka@gmail.com

Correspondence: kdwoodyll@gmail.com

Abstract: Remote sensing analyses focused on non-timber forest product (NTFP) collection and
grazing are current research priorities of land systems science. However, mapping these particular
land use patterns in rural heterogeneous landscapes is challenging because their potential signatures
on the landscape cannot be positively identified without fine-scale land use data for validation.
Using field-mapped resource areas and household survey data from participatory mapping research,
we combined various Landsat-derived indices with ancillary data associated with human habitation
to model the intensity of grazing and NTFP collection activities at 100-m spatial resolution. The study
area is situated centrally within a transboundary southern African landscape that encompasses
community-based organization (CBO) areas across three countries. We conducted four iterations of
pixel-based random forest models, modifying the variable set to determine which of the covariates
are most informative, using the best fit predictions to summarize and compare resource use intensity
by resource type and across communities. Pixels within georeferenced, field-mapped resource areas
were used as training data. All models had overall accuracies above 60% but those using proxies for
human habitation were more robust, with overall accuracies above 90%. The contribution of Landsat
data as utilized in our modeling framework was negligible, and further research must be conducted
to extract greater value from Landsat or other optical remote sensing platforms to map these land
use patterns at moderate resolution. We conclude that similar population proxy covariates should
be included in future studies attempting to characterize communal resource use when traditional
spectral signatures do not adequately capture resource use intensity alone. This study provides
insights into modeling resource use activity when leveraging both remotely sensed data and proxies
for human habitation in heterogeneous, spectrally mixed rural land areas.

Keywords: remote sensing; participatory mapping; NTFP; grazing; random forest; natural resources;
drylands; savanna woodlands
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1. Introduction

Rural communities in southern Africa face a variety of climatic and environmental
challenges that contribute toward their vulnerability. People in this region often rely on
rain-fed agriculture for their livelihoods. However, fluctuations in inter- and intra-annual
rainfall patterns are increasing in their intensity and duration [1-4], contributing to crop
yield sensitivity [5-7]. Crop loss from wildlife, pests, and disease can further constrain food
and economic resources for a household [8-10]. To overcome such hardships, diversify
their livelihood base, and buffer themselves from climatic shocks, many households raise
livestock and collect natural resources from surrounding lands [11-15]. However, the natu-
ral resource bases that allow for these additional livelihood activities are also susceptible to
overuse through natural resource exploitation and environmental changes.

Local natural resources, frequently termed non-timber forest products (NTFPs), sig-
nificantly contribute to daily livelihood needs and income of Africans, both across the
rural-urban divide [16-20] and across income levels [11,21,22]. NTFPs are infinitely di-
verse in their sources [23], however, common uses include food, medicine, cooking fuel,
and materials for household construction and marketable craftwork [24-26]. Along with
productive grazing areas for livestock, NTFP collection areas are significant components
of the land systems and are critical for supporting rural livelihoods in southern Africa.
However, land conversion to cropland and settlements as well as overexploitation of natu-
rally occurring resources are a clear hindrance to the sustainability of the natural resource
base in southern Africa [27-29]. Increasing climate variability may further exacerbate
these issues by constraining seasonal and long-term accessibility of NTFPs and productive
grasslands [30-33].

Given the socioeconomic importance of NTFPs and livestock ownership in rural
African communities, it is imperative to know where on the landscape people engage in
these activities and to what level of intensity people use valuable areas. Analyzing the
spatial and quantitative components to resource use is critical to uncovering the social,
economic, and environmental patterns that influence natural resource use decisions at
different levels of social organization. To effectively make those linkages, a people and pixel
approach provides a path forward that leverages remote sensing data with ground-based
social data for capturing specific resource use activities on the ground [34,35]. Previous
work shows that remote sensing integrated with socio-ecological research can help to
elucidate drivers of resource use and land cover change [36—40], identify environmental
causes of socioeconomic challenges [41], validate local environmental perceptions [42,43],
and produce relevant maps of locally important ecotypes and places [44—46].

One approach to mapping natural resource use activity is through participatory rural
appraisals (PRA), a suite of participatory methods such as household and individual
surveys, focus groups, workshops, and participatory mapping [47]. The combination of
participatory mapping and geographic information systems (GISs) has been integral in
mapping and analyzing spatial characteristics of the human—environment landscape [48],
and increasingly, the use of remote sensing has become more tractable (i.e., finer spatial
and temporal grains) and accessible in such participatory efforts [34,49-51].

While remote sensing has been used in PRA contexts to answer questions related
to grazing [52-54], few studies relate to communally held land tenure systems such as
community-based organizations (CBOs) (but see [55,56]). Remote sensing has also been
integrated into PRA studies that aim to map NTFP availability, to analyze ecosystem effects
of NTEP collection, and to understand the collection and use behaviors of the community
members who rely on them [57,58]. However, NTFP studies that incorporate remote
sensing techniques beyond manual interpretation of satellite imagery more commonly
focus on individual plant species with NTFP value [59-61]. Of those remote sensing
studies that do focus on broader NTFP functional scale (firewood, building materials,
etc.), only a few use remote sensing techniques such as vegetation indices and supervised
classification to model or characterize human use of NTFPs [62,63]. Therefore, there is
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much to be investigated regarding the capabilities of remote sensing analyses in modeling
NTEFP collection and grazing activities in communally managed landscapes.

In this study, we used a GIS-based resource area dataset that was previously pro-
duced using participatory mapping methods [64] to map the intensity of three distinct
types of resource use: livestock grazing, firewood collection, and building pole collec-
tion. The main objective of this study was to investigate the feasibility of integrating
participatory mapped training data with multisource remotely sensed data within a com-
monly used machine learning classification model. The random forest (RF) approach is a
nonparametric, ensemble classification technique that has become quite common in land
cover applications [65,66], with its robustness preferable or on par with other classification
algorithms [67]. RF classifiers lend themselves well to high-dimensional data [65] and their
insensitivity to highly correlated and non-informative variables makes them appealing to
use with various bands of spectral data and texture features [66,68]. The ability to combine
discrete and continuous data as model inputs makes RF attractive for interdisciplinary
modeling approaches that draw from a variety of data sources [69]. RF implementations
are also desirable due to their few critical tuning parameters and they require less time and
computational resources to train compared to other machine learning models [70]. The ran-
dom forest internal variable importance assessment, made available through “bagging” of
training data [71], not only aids in improving model performance, but also helps practi-
tioners understand which variables are most informative for classifying the phenomena of
interest [72].

We apply this methodology in the Kavango-Zambezi Transfrontier Conservation
(KAZA) region of southern Africa, where many rural communities are predominantly natu-
ral resource-dependent and local political institutions commonly referred to as community-
based organizations (CBO) have been established to facilitate community-based natural
resource management and sustainable development [73-75]. Input data for the model
include various Landsat-derived vegetation indices and texture features as well as ancillary
variables that represent human population patterns and mobility. Given their temporal
and spatial coverage, as well as their accessibility, Landsat data remain a good option for
regional remote sensing assessments of land conditions and offer the capability of long
time series due to the continuous operation of satellite missions [76]. The open-access
population proxy variables (100 x 100 m at equator) are derived from the WorldPop Project
and are processed under standardized protocols [77]. We address three research ques-
tions: (RQ1) Can Landsat satellite remote sensing data reliably contribute toward accurate
prediction of resource use intensity when trained with data derived from participatory
mapping? (RQ2) How useful are population proxy variables for predicting resource use
intensity in this region? (RQ3) How do prediction performance and predicted resource use
intensity patterns compare between resource types and communities? Although remotely
sensed data have been used to map and quantify valuable natural resources in commu-
nally managed areas [46,50,78], we are unaware of any attempt to spatially characterize
the intensity at which communities engage in these subsistence resource use activities.
Such information is critical in understanding how environmental and human factors may
influence subsistence-based livelihood activities now and in the future.

2. Study Area

We focus our analysis on a transboundary region of southern Africa encompassing
three CBOs. The Chobe Enclave Conservation Trust in Botswana (CECT, population: 4108;
area: 2990 km?) was established in 1994 [79,80]. The Mashi Conservancy in Namibia (LWZ
GMA, population: 2000; area: 297 km?) became an official CBO in 2003. The Lower West
Zambezi Game Management Area (population: 70,157; area: 19,300 km?) was established
in 1971, however, it was not established as a CBO until the 1990s [81]. While each CBO is
adjacent to a major river and has river-adjacent and inland villages, Mashi Conservancy
and the LWZ GMA are similar in that the more remote villages lie further inland from the
river, while the opposite occurs in CECT (Figure 1). People in these communities raise
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livestock and rely on collected natural resources for daily household needs such as fuel,
construction materials, wild foods, and medicines.
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Figure 1. Illustration of the full modeling extent, with mapped resource areas (A), as well as the locations of surveyed
villages within the Chobe Enclave Conservation Trust (B), Mashi Conservancy (C), and the Lower West Zambezi Game

Management Area (D).

According to the European Space Agency’s 2018 Land Cover Product [82] (Figure S1),
shrub and herbaceous vegetation cover are most abundant in CECT, while Mashi and the
Lower West Zambezi GMA have larger areas of forest cover. The Lower West Zambezi GMA
comprises the highest density of both closed and open forest cover, while Mashi contains
the largest proportion of classified cropland cover (Figure S1; Table A1 (Appendix A)).

3. Data
3.1. Field Data

We conducted household surveys and participatory mapping exercises in each CBO
and randomly sampled 5 villages in each (1 = 240 surveys x 3 CBO areas) for semi-
structured surveys during the 2016, 2017, and 2018 dry seasons. Among other questions
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related to food security and adaptive capacity, we asked respondents the following about
NTEFP collection and livestock grazing activities:

1.  “Name of the main area your livestock usually grazes in the wet/dry season in the
past 3 years?”

2. ”Did you collect any of the following natural resources during the wet/dry season in
the past 3 years?” (Listed resources were firewood, thatching grass, building poles,
fish, reeds, palm leaves, medicinal plants, and fruits and vegetables.)

3. “[What is the] Name of the main area where you usually collected [the resource] in
the wet/dry season in the past 3 years?”

4. “How do you usually travel there (walk, cart, canoe, etc.)?”

“Time taken to get to the area?”

6.  “Total quantity gathered during the wet/dry season since this time last year?”

o1

Resource area placenames were then aggregated from completed surveys, and the
resource areas whose names were frequently referenced in household surveys were priori-
tized for participatory mapping.

Key informants who had extensive knowledge of the area surrounding their village
aided in resource area mapping. These individuals guided researchers to each resource
area and gave detailed descriptions of the boundaries of each area. We recorded boundary
points using a Garmin GeoTrex handheld Global Positioning System (GPS). These GPS
points were then imported into ArcMap 10.6 and polygons were digitized for each resource
area through using the GPS boundary points, their boundary descriptions recorded in
the field, and high-resolution satellite imagery for reference. Natural resource collection
metrics were computed to reflect overall resource collection activity in each CBO (Table 1).
Further detail on household survey and participatory mapping research methods are
provided in [64].

Table 1. Summary statistics for all resource areas and households by country. Average values (standard deviation) are

displayed where applicable.

CBO Ave‘r age Average # Households # Resource Average Average
Resource Perime- . Amount Col- Amount Col-
(Coun- A Area Using Each Areas Used by lected/R lected/H hold
try) reas ter (km?) Resource Area  Each Household ected/Resource lected/Househo
(km) Area (kg) (kg)
LWz
GMA 77 112(9.7) 10.2(23.2) 3.2(74) 2.2(1.0) 9033 (25,162) 2117 (9658)
(Zambia)
CECT 53 7.3 (8.1) 4.4 (10.1) 5.8 (8.5) 2.6 (1.4) 907 (1351) 180 (370)
(Botswana) o ’ ’ T T
Mashi 84 3.6 (4.5) 1.2 (3.0) 3.3(.2) 2.5(1.2) 2145 (5084) 354 (1080)
(Namibia) 6 (4. 2(3. 3 (5. 5 (1.
Total 214 73(8.3) 5.22(15.3) 3.8(7) 24(1.2) 4095 (15,213) 907 (5772)

For this study, we used the household interview and participatory mapping data to
quantify household resource use in a standardized way in order to create resource use
intensity labels for classification. We summed the total number of wet season and dry
season use reports from all surveyed households to each resource area, referred to hereafter
as the Household Use value. Since we treated wet season and dry season resource use
reports separately, each contributed 1 count in the total Household Use value. This means
that if 1 household engaged in a resource use activity in both the wet and dry season,
a count of 2 was added to the total Household Use value for that given resource area and
resource use type. If a resource area was not reported being used for a given resource by any
surveyed households in either season, its Household Use value was “NA” for that resource
type. Counting the wet and dry season Household Use separately ensures that the derived
resource use intensity metric accounts for the seasonal variability in resource use patterns
that may arise between resource use types and households. We used this Household Use
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value to create resource use intensity classes for the training data in our analysis. While we
did compute the Household Use value for every resource type, in this paper, we focused
on modeling wood collection, building pole collection, and grazing intensity.

We also collected reference samples in the field using a Trimble Geo7x unit to validate
resource use activity predictions with on-the-ground observations. A total of 198 reference
sample points were recorded, 57 within Mashi, 88 within the Chobe Enclave, and 53
within the Lower West Zambezi GMA. Information recorded at each location included
observed evidence of human use by type, as well as dominant land cover, canopy closure,
and distance from nearest road.

3.2. Landsat Data

We utilized Landsat Collection 1-Level 2 surface reflectance products from USGS
EarthExplorer at the onset of the dry season (May/June) for 3 distinct years (Figure S2).
In determining the 3 years of satellite data to use for our analysis, we focused on capturing
a time period that meaningfully coincided with the change in community-based manage-
ment that occurred in our study communities from the 1990s to the present, while ensuring
minimal climatological differences between image years. We chose 2018 as the most recent
time step because it was the last year that we conducted fieldwork. We consulted the
National Oceanic and Atmospheric Association’s (NOAA) Oceanic Nifio Index (ONI) [83]
to evaluate which other 2 image years between 1990 and 2000, and 2000 and 2010 would
be most comparable climatologically to 2018. We chose 1994 and 2004 as the other 2 im-
age years, because they represent a time period before the establishment of communal
resource management in our study communities and a time period that is mid-way to the
contemporary 2018 image year. To further validate climatological comparability between
years, we produced a time series of each hydrologic year using Famine Early Warning
Systems Network (FEWS NET) Climate Hazards Group Infrared Precipitation with Stations
(CHIRPS) dekadal rainfall totals (Figure S3) [84].

3.3. Population Proxy Data

The WorldPop project provides open access to spatiotemporally harmonized gridded
geospatial data layers that aid in human population mapping at fine spatial scale [77,85].
The source data contributing to these various geospatial data layers are described fully
in [85], but pertinent sources include Viewfinder Panoramas topography data derived from
NASA Shuttle Radar Topography Mission (SRTM), the Globcover land cover product from
the European Space Agency (ESA) and Universite Catholique De Louvain (UCL), MODIS
MOD44W inland water bodies from University of Maryland and NASA, Landsat-derived
inland water bodies from the University of Maryland, and Open Street Map (OSM) for
general landscape mapping, among others.

The appeal of using these covariates is that they are standardized across countries and
have been vetted for their utility in population distribution estimates [86,87]. The WorldPop
global covariates are produced at 3 arc-second (100 m at equator) spatial resolution, which
is a medium resolution compatible with Landsat data and is appropriate for modeling
resource use activity across the transnational landscape of our study region.

Researchers commonly use geospatial covariates related to topography, land cover
features, and human infrastructure in remote sensing studies that aim to map human
population [88,89], land cover [90], and resource use [91]. Therefore, we used six WorldPop
geospatial covariate datasets related to road infrastructure, water bodies, and topography
(Table 2; Figure S4). We chose these because they collectively comprise a quantitative
representation of human settlement as well as people’s proximity and accessibility to their
surrounding landscape.
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Table 2. WorldPop geospatial covariates used in the model.

WorldPop Dataset Model Variable Name Data Sources

Distance to OSM Major Roads 2016 osm_dst_road_100 m Lloyd et al., 2017

Distance to OSM Major Road Intersections 2016 osm_dst_roadintersec_100 m Lloyd et al., 2017

Distance to OSM Major Waterways 2016 osm_dst_waterway_100 m Lloyd et al., 2017

Distance to ESA-CCI-LC inland water per country esaccilc_dst_water_100 m Lamarche, C. et al., 2017
SRTM-based slope per country 2000 srtm_slope_100 m de Ferranti, J., 2017
SRTM-based elevation per country 2000 srtm_topo_100 m de Ferranti, J., 2017
4. Methods

4.1. Preprocessing

For the purposes of random forest modeling, we preprocessed our Landsat variables,
population proxy variables, and resource use response variables into a stack of raster layers
with a spatial resolution of 100 m/pixel. We buffered the resource area vector dataset by
5 km and used its minimum bounding box as our modeling extent, as shown in Figure 1A.
Preprocessing steps were conducted with standalone R scripts, ArcGIS 10.7, and ERDAS

Imagine software (Figure 2).
Resource Area Resource Areas WorldPop Landsat Scenes
Vector Data 5 km buffer Covariates
Extent

Extent Clip Mosaic
—y | RasterConversion ) Mosaic Clip
Reproject Reproject

l WorldPop l l

Covariate Stack Calculate Vegetation
Indices
i . M=6
ndvi1994 savi1994
ndvi2004 savi2004

I ndvi2018 savi2018

-
Naming Scheme ex:
l “ndvi_94_04_c"

Resource Use Intensity
Predictors

Naming Scheme ex:
“MI_NDVI94_3x3"

Landsat
Covariate Stack
M=30

O Intermediate Dataset

D ArcGIS Analysis
- R Analysis

[] EerDASImagine Analysis

> Calculate Summary >

Figure 2. Workflow overview. Landsat-derived model variable names and variable naming schemes are given for reference.

Using the social survey-derived Household Use value described in Section 3.1, we ex-
perimented with several data standardization methods to create resource use intensity
response variables for each resource type. After constructing and assessing performance of
RF models in 3 formats, we chose a three-class, ordinal response variable for classification
over binary and continuous formats. We chose this categorization to standardize across
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resource use types while still accounting for meaningful differences in usage intensity after
aggregating among households.

To create the three-class resource use intensity classes to assign to each resource area,
we calculated the mean of Household Use values for each resource type. Resource areas
with Household Use values above the mean were assigned to class 2, below the mean
assigned to class 1, and NA values assigned to class 0. The classes are labeled as “Little
to No Use” (0), “Low Use” (1), and “High Use” (2). We then assigned each resource
area with its corresponding intensity label, creating a coded raster layer for each resource
type (Figures 2 and 3). Class-specific summary statistics were performed on the newly
aggregated data for each resource use type to illustrate distribution among class labels for
resource areas in each CBO, as provided in Table A2.

B

Intensity Class
I O (Little to No Use)

1 (Low Use)
B 2 (High Use)
[ | NoData
0 50 100
I 1Km

Figure 3. Resource use intensity labels assigned to pixels within each resource area for grazing (A), wood collection (B),

and building pole collection (C). Country boundaries overlaid for reference.

To create Landsat-derived variables related to vegetation condition, we computed
the Normalized Difference Vegetation Index (NDVI) and Soil-Adjusted Vegetation Index
(SAVI) from the May/June image composites. Vegetation indices from these months
specifically capture peak vegetation greenness at the onset of the dry season in this region
(Figure S3) [30,31,92,93], providing model variables that represent the fully borne-out
vegetated landscape that people engaged with in each image year. The NDVI is reliable in
proxy estimates of aboveground biomass and photosynthetically active vegetation across
a range of environmental monitoring applications [94-98]. The Soil-Adjusted Vegetation
Index (SAVI) is used in conjunction with NDVI because of its utility in open canopy
environments to mitigate background pixel brightness from dry soils [99]. In addition to
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using the NDVI and SAVI for each year as model variables (M = 6), we created 6 more
variables by performing an image difference calculation for each vegetation index between
the three time-steps from 1994 to 2004, 2004 to 2018, and 1994 to 2018 using Equation (1):

Chlll’lg(i’v[ = VITZ — VIT1 (1)

where for a given vegetation index (VI), T1 is the earlier year and T2 is the later year
(Figure S5).

Next, we applied the local Moran’s I of spatial autocorrelation on the NDVI and SAVI
of each year to provide measures of vegetation spatial patterns that may aid in boosting
model performance [100,101]. Moran’s I is a common spatial statistic for creating remote
sensing texture features [102-104] and has been applied to NDVI in similar heterogeneous
landscapes in southern Africa [105]. A bagged ensemble model such as random forest can
benefit from additional information contained from texture features created with different
focal window sizes but will be minimally affected by highly correlated variables [106,107].
Importantly, variable importance assessment will determine which window size, vegetation
index, and year provided the most valuable information for accurate classification, which
can be useful for feature selection and for making inferences about the most optimal scale
by which to discern spatial landscape patterns [108].

We computed local Moran’s I in R using the MoranLocal function in the raster pack-
age [109] for each vegetation index of each of our 3 years for 3 window sizes—
3 x 3,7 x7,and 11 x 11—similar to [110] (Figure S6). In total, we produced 30 Land-
sat covariates representing vegetation condition at the onset of the 1994, 2004, and 2018 dry
seasons (Table S1).

4.2. Random Forest Modeling

We constructed pixel-based RF classifiers to predict resource use intensity of the five
resource use types, using the pixels inside resource areas for training and validation. We as-
sessed each set of RF models using users’, producers’, and overall accuracies. Additionally,
we recorded variable importance for each model iteration. We utilized the raster and
randomForest package in R [109,111] to construct random forests models. All training and
validation protocols were consistent across model iterations and variants. Two important
parameters are most commonly tuned by the practitioner—the number of input covariates
to try at each tree node, and the number of trees to grow. In 2 comprehensive reviews on
RF applications of remote sensing [65,70], the authors recommended that the number of
trees per forest should generally be set to 500, which in most cases protects against overfit
yet is computationally efficient. We followed accordingly and used the random forest
algorithm’s automated tuning function to choose the optimal number of variables per split
for the lowest out-of-bag (OOB) error for every model.

Class imbalance was a consistent issue but was manifested differently between each
resource type. To address this, we stratified the pixel observations by country and class
value to use an area-proportional training sample allocation strategy supported by [69].
Because classes 1 and 2 were extremely rare in some resource types’ response variables
(Table A2), we merged them together into 1 sample group for the purpose of stratified
sampling (Table A3). We then used the common RF training strategy of taking 70% of the
pixels for training and 30% for validation [70,112].

We split modeling into 3 stages. In the first stage, we constructed separated RF
classifiers using only Landsat covariates (M = 30) and only WorldPop covariates (M = 6)
to assess prediction strength of each data source by their classification accuracies and
to investigate the relative importance of each variable within the same source. Second,
we combined all covariates together into RF classifiers to assess how all covariates behaved
together and determine feature selection strategy. Finally, we performed feature selection to
construct final random forests classifiers with an optimal set of covariates. Final prediction
surfaces were then generated to produce summary statistics and the final resource use
intensity maps.
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Feature selection best practices for RF are under continuous investigation and are
highly dependent on each dataset and application [113]. It is widely supported that the
embedded variable importance ranking capability in RF yields similar or more useful
feature selection results than external methods [66,68]. Still, the rationale behind how to
use variable importance ranks differ widely and are decided upon on a case-by-case basis
through data exploration. Because Landsat covariates were consistently less important than
WorldPop covariates in the first 2 stages of modeling, we kept all 6 WorldPop covariates,
then used the variable importance ranks from the Landsat RF models to select the top 5
most important (top 15%) Landsat features, similar to [114].

4.3. Comparing Resource Use Intensity Patterns

We calculated proportional area comprising each resource use intensity class for each
CBO within the study extent in ArcGIS and described the areas of predicted resource use
intensity in terms of the percentage of land predicted to each class. Last, we produced
resource use prediction maps covering the study area, using the prediction surfaces gener-
ated from each final RF classifier. These maps help facilitate our discussion of model results,
differences in resource use between the communities, and the challenges and consider-
ations related to our methods that are applicable in the greater field of interdisciplinary
remote sensing.

4.4. Validating Model Outputs

Because reference sample observations did not capture evidence of building pole
collection, we exclude this model from the reference sample validation, instead focusing on
grazing and firewood collection. We created 2 sub-groups of the field-collected reference
samples: those whose field notes indicated evidence of grazing and those whose indicated
evidence of firewood collection. We applied a 100-m buffer to each reference sample point,
then calculated the majority pixel value from the respective prediction surface contained
within the buffer. The majority pixel value along with photo validation allowed us to
summarize, for grazing and firewood collection individually, how the model prediction
surfaces spatially aligned with the reference sample observations.

5. Results
5.1. Landsat RF Models

Landsat RF classifiers performed poorly in overall accuracy across all resource use
models, ranging from 61 to 71% (Table 3). Variable importance patterns differed for each
resource type (Figures 4 and Al). In the grazing Landsat RF model, both 2004 vegetation
indices and their 11 x 11 Moran’s I texture derivatives exhibited high importance with
a mean decrease Gini (MDG) value of 15 and higher (Figure 4). Across all resource use
models, the 11 x 11 window size was more important than the other two window sizes
derived from the same year’s vegetation index in most instances, especially for those years
in the top half of the variable importance rankings (Figures 4 and Al).
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Table 3. Overall accuracies for each resource use type and model variant. Total variables available
(M) were consistent for each model variant but total variables to try at each node-split (m) was tuned
for lowest out-of-bag (OOB) error.

All Variables WorldPop Landsat Final Model
(M = 36) M=6) (M =30) M=11)

Grazing
m 36 4 7 6

Overall 91% 94% 64% 92%
Accuracy

Wood collection
m 22 4 7 9

Overall 88% 949 62% 92%
Accuracy

Building pole
collection
m 33 6 15 11

Overall 9% 95% 71% 94%
Accuracy
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Figure 4. Variable importance plots for Landsat RF (A) and WorldPop RF (B) grazing intensity models.

The time-step change variables contributed strongly to all models, particularly for
wood collection (Figures 4 and A1). The year 2004 was highly important across all models
in various forms, especially as the NDVI and SAVI covariates in the building pole collection
model (Figures 4 and A1), and Moran’s I covariates in the grazing model. Class accuracies
in the Landsat RF models were considerably different between the three intensity classes,
especially for producers” accuracy. Across all resource use types, the lowest intensity
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class (0) had high producers’ accuracy, between 96 and 99%. This was compared to low
producers’ accuracies of class 1 and 2, ranging between 1 and 11%, and 10 and 16%,
respectively (Table S2). Class 0 users’ accuracies were much lower than its producers’
accuracies, while classes 1 and 2 users’ accuracies were much higher than respective
producers’ accuracies, with a difference ranging from 36 to 59% (Table S2).

5.2. WorldPop RF Models

Overall accuracies of WorldPop RF models were high, ranging from 93 to 95% (Table 3).
The variable importance ranks of WorldPop covariates exhibited similar patterns between
resource types, with distance to road intersections having highest importance and distance
to roads ranking in the top three (Figures 4 and A2). Distance to water was ranked higher
in the grazing models than in the other two models (Figures 4 and A2). Importantly,
magnitude of variable importance was much higher in the WorldPop RF models compared
to that of the Landsat RF models (Figures 4 and A?2).

Producers’ accuracies of class 0 were high like in the Landsat RF models. However,
the user’s accuracies of class 0 increased considerably, approximately 30-40%. Both accu-
racy metrics for class 1 and 2 improved in comparison with the Landsat RF models, with
improvements from the Landsat RF metrics ranging from approximately 80 to 90% in pro-
ducers’ and 30 to 50% in users’ accuracies (Table S3). All class-specific accuracies improved
from the Landsat RF model, except for class 0 producers’ accuracy, which remained above
95% (Table S3).

5.3. All-Covariates RE, Feature Selection, and Final RF Models

When all 36 covariates were included in the all-variables RF models, WorldPop
covariates consistently received higher MDG values than Landsat covariates (Figure A3).
In general, importance values for all variables differed little from their values in the Landsat
RF and WorldPop RF models (Figure A3). Overall accuracies of the all-variables RF models
were lower than WorldPop RF models, ranging from a 3 to 6% decrease (Table 3). The large
discrepancy in MDG values between Landsat and WorldPop covariates led us to perform
feature selection on Landsat covariates in the final RF classifiers.

The five highest ranked Landsat covariates from the Landsat RF models were selected
to be included with the WorldPop covariates for the final RF models (Table S4). Among
the most common Landsat covariates were ndvi2004, savi2004, and the NDVI and SAVI
time-steps from 1994 to 2004 and 2004 to 2018. The 11 x 11-sized Moran’s I of 2004 NDVI
and SAVI were also in the top five for grazing and thatching grass collection.

Overall accuracies improved marginally from feature selection, with an improvement
of 1-4% compared to the all-variables RF models (Table 3). However, overall accuracies
of final RF models were still slightly lower than the WorldPop RF models, ranging from
a 1 to 3% decrease in overall accuracy (Table 3). Class-specific accuracies in the final RF
models were equal to, or slightly lower than, those of the WorldPop RF models (Table 4).
Producer’s accuracies declined by a range of 0-6%, while user’s accuracy declined by 1-3%
compared to the WorldPop RF models (Table 4). All final RF models produced overall
accuracies above 90% and there was minimal difference in overall performance between
the resource use types, within 2% (Table 3).

5.4. Predicted Resource Use Intensity

Grazing occurred at greater intensity over the largest amount of area in Mashi com-
pared to the other CBOs, with almost equal amounts of land predicted to be grazed at low
and high intensity (Figure 5). In the LWZ GMA, the least amount of intense grazing was
predicted to be occurring, with 84.8% of the land having been assigned to the “little to no
use” class (class 0). In CECT, low or high grazing intensity was predicted to be occurring
over much of the areas covering the five surveyed villages.
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Table 4. Confusion matrices for the final random forest (RF) models.

Class 0 1 2 User’s Accuracy
0 17,276 823 585 0.92
1 259 5304 269 0.91
Grazing 2 124 150 4087 0.94
Producer’s 0.98 0.84 0.83
Accuracy
Class 0 1 2 User’s Accuracy
0 16,548 778 571 0.92
1 503 5548 342 0.87
Wood collection 2 174 63 4350 0.95
Producer’s 0.96 0.87 0.83
Accuracy
Class 0 1 2 User’s Accuracy
0 19,701 801 503 0.94
s . 1 308 4297 52 0.92
Building pole collection ) 115 66 3034 0.94
Producer’s 0.98 0.83 0.85
Accuracy
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Figure 5. Grazing intensity prediction map and graphical summary.
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Only 0.3% of the area in Mashi was predicted to have high wood collection intensity,
with small amounts of high intensity wood collection in the other two CBOs; 9.9% and
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5.8% predicted in CECT and the LWZ GMA, respectively. Over 60% of the land in CECT
was predicted to have low wood collection intensity, with some of this land bordering the
Chobe Forest Reserve. Almost all land in Mashi was predicted to have little to no wood
collection (Figure 6).

Wood Collection Intensity
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Figure 6. Wood collection prediction intensity map and graphical summary.

Overall, building pole collection was predicted to occur in relatively small proportions
in all three CBOs, although the percentage of low and high use areas was largest in Mashi
(Figure 7). In CECT, only 0.9% of land was predicted to have high building pole collection
while 12.4% was to be under low use, mostly surrounding village centers, along roads,
and abutting the Chobe Forest Reserve. In Mashi, most of the high building pole collection
was in the southern portion of Mashi, toward Mudumu National Park (Figure 7). In LWZ
GMA, high building pole collection was predicted to be occurring closer to the Kapau
village center on the northeast boundary of Sioma Ngwezi National Park and in discrete
patches of woodland far from roads and village centers.
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Building Pole Collection Intensity
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Figure 7. Building pole collection prediction intensity map and graphical summary.

5.5. Validating Model Outputs

Of the total 198 reference samples, 135 samples indicated evidence of livestock grazing,
while 75 samples indicated firewood collection evidence. Slightly less than half of the
grazing-indicative reference samples were within low- and high-use prediction areas, while
over 70% of samples indicating firewood collection were in “little to no use” predicted
areas (Figure 8).
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Figure 8. Percent of grazing-indicative (A) and firewood collection-indicative (B) reference samples falling within each

predicted resource use intensity class.

6. Discussion
6.1. Population Proxy Predictors

From the high overall and class-specific accuracies of the WorldPop RF models
(Table 3 and Table S3) and the high variable importance values of WorldPop variables
(Figure A2), we can infer that the proximity and accessibility to resource areas from hu-
man settlements are extremely strong predictors for resource use intensity in our mapped
resource areas, regardless of the resource use type [115]. Distance to road intersections
and roads were two of the most important variables in all models (Figure 4, Figure A2,
and Figure A3). Both provide important context regarding human accessibility to the landscape.

Although some roads may be narrow and unpaved, they nonetheless are cleared
pathways into interior areas that would otherwise be difficult to travel through, an in-
fluential factor for natural resource extraction intensity in natural resource-dependent
communities [115,116]. Proximity to denser populated areas is commonly associated with
higher resource use intensity in natural resource-dependent regions [117,118]. Distance
from road intersections provides important context, as human settlement in this region
tends to be denser around road intersections in some instances, evidenced by several
village center locations in each CBO and along roads (Figure 1 and Figure S7). The rela-
tionship between higher intensity of resource use and proximity to denser populated areas
is illustrated in many of the final resource use intensity maps, where higher use intensity
(classes 1 and 2) is predicted in clusters around road intersections and concomitant village
centers (Figures 5-7).

6.2. Landsat Predictors

Overall Landsat RF accuracies were low in comparison to the other RF models (Table 3)
and lower than the commonly cited 85% overall and/or producer’s accuracy deemed
acceptable [119,120]. Class 0 accuracies were highest and contributed most to overall
accuracy (Table S2). However, the contrast in class 1 and 2 accuracies compared to class
0 illustrates that the Landsat RF models were largely unable to separate class signatures
related to resource use intensity, rather they often predicted the majority class—"little
to no use”—to optimize generalized accuracy, a common issue reported with machine
learning and imbalanced datasets (Table A3 and Table S2) [65,70,121]. Although it is worth
discussing why certain Landsat variables were more informative over others in each model,
we are careful to draw direct conclusions about their utility in predicting resource use
intensity given the stark performance differences between Landsat RF models and the
other two RF model sets using the geospatial proxy variables.
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The year 2004, represented in the NDVI, SAVI, time-step vegetation change, and Moran’s
I variables, was assessed by the model as more important than other years of Landsat
data (Table S4), which is interesting given it is the middle year of the time series and also
represents a point in time when all three CBOs had been formally established. During and
after establishment of each CBO, land was allocated for tourism and for other conservation-
related uses to facilitate freer wildlife movement [79,81]. Given that each CBO area has
experienced population growth (Figure S7) and a reduction in usable land since 1994,
the 2004 vegetation covariates may be discerning greater magnitude changes in areas of
each CBO due to natural resource use intensification.

It is equally plausible that the discrepancies in rainfall timing and amount between
years in the Landsat time series may be falsely exaggerating the year 2004’s importance.
Of the three years, rainfall was highest in March/April of 2004 (Figure S3). Given the
well-documented 1.5-2-month lag between rainfall time and green up, especially in the
floodplain areas [30,31,92,93], the 2004 covariates are possibly being ranked more important
because of a greater contrast between productive vegetation and senesced or non-vegetated
areas compared to the Landsat data from the other two years.

6.3. Feature Selection

Although the overall accuracies from the WorldPop RF models are slightly higher
than the final RF models (Table 3), users’ and producers’ accuracies differed as little as
0-6% (Table 4 and Table S3). While the Landsat data did not contribute significantly to the
mapping results, the variable importance values for Landsat variables in the all-variables
RF models were not zero (Figure A3). Given that each forest grew 500 trees with which to
produce the classification decision, some trees within the forest contained mostly (or all)
Landsat variables and resulted in accurate classification. Otherwise, the variable impor-
tance values for these variables would be zero. Moreover, class accuracies of the Landsat
RF models across all three intensity classes were above 50% (Table S2), indicating that there
likely are pixels that were accurately classified partially or fully due to the information
contributed by Landsat variables, which provide proxies of vegetation heterogeneity on
the landscape.

The improvement of the final RF accuracies over the all-variables RF model, although
minimal, justifies feature selection and inclusion of Landsat variables for the purposes
simplifying a multi-source dataset model (Table 3) [122]. However, it also indicates that at
a certain threshold of increasing dimensionality, including more Landsat covariates only
adds more complexity with no aid to performance, often called the curse of dimensionality
or the Hughes effect [123]. Because the difference in variable importance values between
Landsat covariates beyond the several most important variables became vanishingly small
(Figure 4, Figure A1, and Figure A3) and we understood that Landsat covariates were not
contributing greatly to class accuracy, we selected the top five most important Landsat
covariates for the final RF models. This demonstrates a common challenge encountered
by practitioners, where specific feature selection choices are not clear-cut, nor is the result
of feature selection consistent. Thus, this study is one among many that demonstrate the
case-by-case nature of feature selection.

6.4. Final Model Performance and Resource Use Patterns

The 2% margin of overall accuracy differences between all resource use types (Table 3)
and similarly small differences in class accuracies (Table 4) indicate that the final RF models
were able to predict resource use intensity at similar rates of success, regardless of the
resource use type. In general, spatial patterns of resource use intensity predictions were
similar in more ways than they were different across resource types, in that higher intensity
of resource use was concentrated near village centers and on either side of major roads in
each CBO. This suggests that people’s accessibility and proximity to core natural resource
areas—as mediated by distance from homes, distance from roads, and topography—greatly
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influence where natural resources are used and extracted. However, there were some
differences in the amount of land area predicted to each intensity class between CBOs.

Mashi and CECT each had much larger predicted areas of low and high intensity
grazing compared to LWZ GMA (Figure 5). Although this could be due to the dramatic
size differences of LWZ GMA to the other two CBOs, it could be that greater proportions
of land closest to surveyed villages are more ideal for grazing, especially in CECT (see
Section 2). The most interesting pattern in the wood collection model was that Mashi had
an overwhelming amount of little to no wood collection intensity predicted throughout
(Figure 6). Because there were few resource areas reported to have high wood collection in
Mashi compared to the other two CBOs (Table A2), it may be that people in Mashi more
often collect wood near their homes or in the adjacent forest reserve instead of the mapped
resource areas.

In addition to the common areas along roads and at village centers, high building
pole collection intensity was predicted in discrete patches inside known forest reserves
(Figure 7) and in other patches much further into the bush. Given that the building pole
collection model improved using all five of the selected Landsat covariates, indicated by
its m value in Table 3, vegetation condition may be more influential to spatial collection
patterns than for other types of resources. This may be due to the more specific woody
plant species sought after for building poles [124] and the unique growth or harvest pattern
these areas would exhibit in satellite-derived vegetation indices over time [125].

6.5. Validating Model Outputs with Reference Samples

Results from the reference sample validation illustrate the complexity of modeling
such nuanced, community-scale resource use patterns. A large percentage of firewood
collection and grazing reference samples were within areas predicted to be under little
to no use. Those reference samples that fell within areas predicted to be under low and
high use exhibited land cover characteristics that are ideal for the given resource use, such
as homogenous grasslands for grazing, or dense scrublands and woodlands for firewood
collection. We were not surprised that reference samples and model predictions were less
consistent for firewood than grazing. Firewood is a critical resource to rural people who
use it daily and in great volumes. This reliance on firewood necessitates households to
constantly gather firewood, which could occur in multiple resource areas or continuously
throughout the day. Therefore, detecting a unique signal of intense firewood collection will
be difficult, regardless if one is looking for an impact signal or a signal representing ideal
areas for the activity [126,127].

6.6. Participatory Mapping and Remote Sensing

Meaningful community participation in land use and natural resource planning
supports culturally relevant and equitable strategies that facilitate sustainable resource
use [128,129]. Further, including local communities in such planning enables more robust
climate adaptation and resilience through improved governance, trust building, legitimiza-
tion of local knowledge, and social learning [130,131]. Participatory mapping, therefore,
allows for the production of locally meaningful information that can be further incorpo-
rated with other spatial data for analysis-driven insights.

In our use-case, participatory mapping allowed us to probe the spatial relationships
between resource collection behavior and spatial patterns of the human and physical
landscape. Since all existing resource areas and resource collection activities could not
possibly be mapped in the field for each community, we utilize the mapped resource areas
as training data, similar to how other supervised land use/land cover classifications are
performed. Given this framework, and with further efforts on remote sensing analysis,
it should be possible to effectively map natural resource use activity both outside of
mapped resource areas in each community and in other similarly communally managed
areas nearby.
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As the resolution and robustness of remote sensing analyses become more refined,
the methods for collecting training and validation data must also be refined. Particularly
in land systems science and socio-ecological research, the push continues to be made for
fully integrated “people and pixels” approaches [34,37,49,53], but challenges remain in
matching spatial and temporal resolutions of remotely sensed and social data [35]. In this
study, we demonstrated an additional use case in which participatory mapping brought
added value to the social data integration problem. Unlike other types of commonly
available land use data, the spatial and tabular aspects of participatory mapping data
are co-produced by researchers and community members. This allows researchers to
ask questions whose potential answers are otherwise not verifiable, and in attempting to
answer them, provides opportunities to develop new applications for remotely sensed
data and to refine integrative analysis methods. Mapping NTFP collection and communal
grazing intensity are now underway and will continue to rely on participatory mapping to
benchmark the progress.

6.7. Challenges, Limitations, and Future Directions

To ensure that re-scaling the Landsat data to 100-m resolution did not distort or
otherwise cause the model to lose useful information, we modeled grazing and wood
collection at Landsat’s native 30-m resolution, downscaling the WorldPop covariates from
their native 100-m resolution to match. This produced little to no quantitative differences
in accuracies, between 0 and 2%, and similarly negligible qualitative differences in the
output prediction maps (Figure A4).

Of all freely available and low-cost imagery platforms, Landsat remains the priority
because it allows landscape analysis over time periods stretching as far back as the 1980s,
providing an opportunity to observe these community landscapes before they were in-
corporated into CBOs. Therefore, we believe the next step in this research pursuit should
utilize greater than 12 Landsat images per year—or monthly composites—for every year
in the current study’s time range. From there, several directions can be taken. First,
the Landsat spectral bands and additional texture derivatives from those bands and the
vegetation indices should be incorporated into a similarly constructed model to deter-
mine if temporal data densification adds greater value to Landsat in the current standing
methodology. Beyond this first experiment, another could produce multi-year land cover
products and subsequent land cover change metrics such as in [132], then apply them to
predict natural resource use intensity. A woody biomass change estimation could also be
explored [133,134], necessitating field measurements.

Although they lack longer historical analysis capabilities compared to Landsat, higher-
resolution imagery platforms that are freely available could produce greater success in
mapping these natural resource use types and should be explored in the same progressive
manner as with Landsat data discussed above. Recent studies have utilized a combination
of Sentinel (10 m/pixel), PlanetScope (3 m/pixel), and other high-resolution imagery to
answer questions related to land use and vegetation patterns. For example, the authors
of [135] found a correlation of increased anthropogenic pressure to observed greening of
woody vegetation and browning of non-woody vegetation in unprotected areas of the
Greater Massai Mara, leveraging WorldView3 and Sentinel2 multispectral data. Addition-
ally, the authors of [136] mapped land use-land cover types of smallholder agroecological
zones in Kenya by incorporating spectral and texture metrics from PlanetScope, Sentinel-2,
and Landsat image platforms into RF models. These studies support the value in ex-
ploring Sentinel-2 and PlanetScope platforms specifically, which are both freely available
to researchers.

Grazing in this region likely fluctuates in intensity and location according to seasonal
availability of pasture [137]. However, we did not account for seasonal differences of
vegetation within years. Instead, we provided the model with one consistent timestamp
per year at the onset of the dry season, which represents the time of year in which the most
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grazing resources should be available. To solely focus on mapping grazing intensity, more
intra-annual variation of vegetation should be incorporated into the model variables.

It was difficult to identify the best data standardization method for the model response
variables, since the Household Use values derived from household surveys were of a non-
normal distribution. Though we proceeded with the three-class ordinal response scheme
for modeling, it is worth investigating other avenues such as regression. Class imbalance
presented a challenge to the RF training process. Rarity of class 1 and 2 varied for each land
use (Table A3), but in general one or both of these classes were too rare to allow for other
class imbalance solutions to be feasible, such as over-sampling minority classes [121,138].
Proportionally sampling by class ensured that the training and validation sets were large
enough, but we also stratified sampling by country to prevent unintentional exclusion of
the rare class observations in Mashi and CECT (Tables A2 and A3).

The class rarity issue was illustrated in the wood collection predictions within Mashi
(Figure 6). It is unlikely that little to no wood collection is occurring in the majority
of Mashi, since firewood is a ubiquitous household necessity [126,127]. The household
survey statistics demonstrated extremely low proportions of the resource areas reporting
to be used at low or high intensity (Table A2). The RF model prediction underestimated
these proportions more severely than in most other models because random forest often
improves generalized accuracy by predicting the majority class [68,108]. The underlying
cause behind such small proportions of class 1 and 2 wood collection being reported in
Mashi was that two small resource areas had much higher household use than the rest,
thus skewing the distribution of the Household Use value mean for the wood collection
model (Figure 3; Table A2). This was likely related to Mashi community members relying
on nearby bush and forest reserve land for firewood collection, with the exception of those
select resource areas.

We did not map all resource areas that were listed on the surveys due to time and
geographic constraints. Therefore, we acknowledged that our models were trained only
with the variation of the landscape captured by the sampled areas. Additional natural
resource areas and resource use patterns exist in each CBO (and are estimated by models
outside of our mapped areas) but were not reflected in the training data and the subse-
quent model predictions. This offers an opportunity for additional future field work to
validate these predicted use areas. The overall spatial distribution of mapped resource
areas represents a clustering around village centers and roads; thus, the importance of prox-
imity and accessibility to resources for communal land use is unsurprising and intuitively
makes sense.

The nature of using participatory mapped data as training and validation data means
that model accuracies reflect only how well the models predicted resource use intensity
within the resource areas. Therefore, we do not condone the use of these maps for land
management outside of each CBO or in national parks and forest reserves. Last and
most importantly, we stress that any and all results from this research should be used
cooperatively by the local community members in each CBO and their local government
agencies. They should not be used as evidence-based support for top-down land manage-
ment decisions made without consent of the local communities. This analysis does not fully
reflect the complex land use history within each CBO area, nor does it take into account
implications of particular management policies as they relate to resource use activity on
the landscape.

7. Conclusions

This study presented a unique integration of remote sensing methods with participa-
tory mapping to map spatial patterns of natural resource use intensity in a communally
managed African landscape. We compared the utility of Landsat data and WorldPop
geospatial covariates in their ability to classify various non-timber forest product (NTFP)
collection and grazing activities. This study progresses the remote sensing methods com-
monly used in such integrated remote sensing studies by outlining a framework of in-
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tegrated, multi-source geospatial modeling, as well as by assessing the advantages and
challenges of using participatory mapped training data in a supervised machine learning-
based classifier. We make several important conclusions from this work:

(1) The covariates we derived from Landsat data were limited on their own in providing
an accurate model of resource use intensity in the current modeling methodology, but
Landsat may remain the best platform for this task because of its long operational
timespan. To further inquire into the utility of Landsat in this classification application,
we first suggest extracting variables from a denser time series (>12 images for every
year), using spectral bands and more textural metrics in a similarly constructed
classification model. If this is not fruitful, we suggest exploring other Landsat-based
approaches such as multi-year land cover change metrics or woody biomass proxies
to discern relevant vegetation trends for each natural resource activity. Additionally,
the utility of higher-resolution, freely available imagery platforms, such as Sentinel 2
and PlanetScope, ought to be explored in similar methodological frameworks.

(2) Covariates reflecting proxies of population density and mobility proved to be much
more powerful than expected and were responsible for the majority of model per-
formance. This supports our fundamental argument that in communally managed
landscapes such as these, patterns of accessibility and proximity to important natural
resource areas are strong predictors of where people will use natural resources and
at what level of intensity. Therefore, ancillary geospatial covariates such as the ones
used in this study should continue to be given high consideration when attempting
to map resource use intensity in rural heterogenous landscapes.

(3) The spatial patterns of resource use intensity surprisingly differed little between
resource use types, which we relate to the same common rules of the human landscape
being applied to resource use regardless of the resource type. Pattern differences of
resource use intensity between CBOs were therefore largely a reflection of the patterns
in which humans are settled within each community and the ways that they can most
efficiently travel.

(4) Challenges were numerous in deriving training data from the participatory mapped
resource area dataset. These challenges and our proposed solutions contribute in-
sights to the feasibility of integrating supervised machine learning-based remote
sensing analysis with participatory mapping and other survey-derived datasets going
forward.

(5) The results from this study suggest that mapping NTFP collection and grazing in-
tensity at the community scale pose a relatively new challenge for remote sensing
practitioners, but that participatory mapping can provide useful training and valida-
tion data for the analysis process.

The integration of participatory mapping expands the breadth of unique human—
environmental questions that researchers can apply remote sensing, which will inevitably
lead to innovations in remote sensing analysis techniques. Key insights from this study can
be used to further progress the integration of remote sensing for socio-ecological systems,
especially those that attempt to use participatory mapping and remote sensing technology
and methodologies. Further work should continue to investigate the capabilities of satellite
remote sensing in finer spatial and temporal resolutions and will especially take more
ancillary geographic variables into consideration. The maps are not intended for official
interpretation outside each CBO, and they should not be used in any way that excludes or
undermines community members within these CBOs.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com /2072-429
2/13/4/631/s1: Figure S1: ESA Copernicus 2018 Land Cover composition of each CBO. Figure S2:
Landsat footprints. Figure S3: CHIRPS rainfall timeseries. Figure S4: WorldPop population proxy
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Figure A1. Variable importance plots for Landsat RF wood collection (A) and building pole collection (B) models.

variable names. Table S2: Confusion matrices for Landsat RF models. Table S3: Confusion matrices
for WorldPop RF models. Table S4: Landsat variables selected for final RF models.
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Figure A2. Variable importance plots for WorldPop RF wood collection (A) and building pole collection (B) models.

Figure A3. Variable importance plots for All Covariates RF models
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Figure A4. Grazing intensity prediction outputs side-by-side at 100 meter and 30 meter resolution.

Table Al. Percent land cover within each CBO area, according to ESA Copernicus 2018 Land
Cover Product.

LAND COVER CECT MASHI LWZ GMA
SHRUBS 60.5% 27.2% 131%
HERBACEOUS ) . .
VEGETATION 7.0% 1.0% 2.2%
CROPLAND 0.4% 3.2% 1.7%
URBAN/BUILT . . .
\REA 0.2% 0.0% 0.1%
WATER BODIES 0.1% 0.0% 0.6%
HERBACEOUS . . .
WETLAND 9.3% 2.7% 0.9%
CLOSED FOREST 1.3% 0.6% 5.8%
OPEN FOREST 21.2% 65.2% 75.7%

Table A2. Percent area of resource area training dataset by each CBO and resource use intensity class.

Class CECT Mashi ILWZ GMA

0 10471 2573 48,740

(50.2%) (31.3%) (69.8%)

Grazing 1 8000 2262 10,768

(38.3%) (27.6%) (15.4%)

5 2398 3375 10,315

(11.5%) (41.1%) (14.8%)

0 13862 5057 48,872

o (66.4%) (61.6%) (72.6%)

Building

Pole 1 6984 1618 8228

Collection (33.50/0) (19.70/0) (1220/0)

5 20 1532 10,226

(0.1%) (18.7%) (15.2%)

0 6942 6807 46,074

(33.2%) (82.9%) (66.6%)

Wood Collection 1 8406 1086 11,731

(40.3%) (13.2%) (17.0%)

5 5536 317 11,327

(26.5%) (3.9%) (16.4%)
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Table A3. Training pixel counts within each resource use intensity class and each country. Bolded
value pairs of class 1 and 2 in each country group were merged before stratified sampling.

Country Class Pixel Count
1 0 10,540
1 1 7896
1 2 2475
2 0 2978
2 1 2766
2 2 3500
3 0 45,349
3 1 10,284
3 2 10,470
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