Spectral-Spatial Joint Classification of Hyperspectral Image Based on Broad Learning System
Abstract
:1. Introduction
- (1)
- We found the organic combination of the Gaussian filter and BLS could enhance the classification accuracy. The Gaussian filter captures the inherent spectral information of each pixel based on HSI spatial information. BLS extracts the sparse and compact features using the random weights fine-turned by the sparse auto encoder in the process of mapping feature. Sparse features can represent the low-level structures such as edges and high-level structures such as local curvatures, shapes [57], these contribute to the improvement of classification accuracy. The inherent spectral features are input to BLS for training and prediction, thereby improving the classification accuracy of the proposed method. Experimental data supports this conclusion.
- (2)
- We take full advantage of spectral-spatial features in SSBLS. The Gaussian filter firstly smooths each spectral band based on spatial information of HSI to achieve the first fusion of spectral-spatial information. The guided filter corrects the results of BLS classification based on the spatial context information again. The grey-scale guidance image of the guided filter is obtained via the first PCA from the original HSI. These three operations sufficiently join spectral information and spatial information together, which is useful to improve the accuracy of SSBLS.
- (3)
- SSBLS utilizes the guided filter to rectify the misclassified hyperspectral pixels based on the spatial contexture information for obtaining the correct classification labels, thereby improving the overall accuracy of SSBLS. The experimental results can also support this point.
2. Proposed Method of Spectral-Spatial Joint Classification of HSI Based on Broad Learning System
2.1. Spectral Feature Extraction of HSI Based on Gaussian Filter
2.2. HSI Classification Based on the Combination of Gaussian Filter and BLS
2.3. Correction to the Results of BLS Classification Based on Guided Filter
Algorithm 1. Algorithmic details of SSBLS |
|
3. Experiment Results
3.1. Hyperspectral Image Dataset
3.2. Parameters Analysis
3.2.1. Influence of Parameter and on OA
3.2.2. Influence of Parameter and on OA
3.2.3. Influence of Parameter on OA
3.2.4. Influence of Parameter on OA
3.2.5. Influence of Parameter on OA
3.3. Ablation Studies on SSBLS
3.4. Experimental Comparison
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dicker, D.; Lerner, J.; Van Belle, P.; Barth, S.F.; Guerry, D.; Herlyn, M.; El-Deiry, W.S. Differentiation of normal skin and melanoma using high resolution hyperspectral imaging. Cancer Biol. Ther. 2006, 5, 1033–1038. [Google Scholar] [CrossRef]
- Chawira, M.; Dube, T.; Gumindoga, W. Remote sensing based water quality monitoring in Chivero and Manyame lakes of Zimbabwe. Phys. Chem. Earth 2013, 66, 38–44. [Google Scholar] [CrossRef]
- Polak, A.; Kelman, T.; Murray, P.; Marshall, S.; Stothard, D.J.M.; Eastaugh, N.; Eastaugh, F. Hyperspectral imaging combined with data classification techniques as an aid for artwork authentication. J. Cult. Herit. 2017, 26, 1–11. [Google Scholar] [CrossRef]
- Wu, T.; Cheng, Q.; Wang, J.; Cui, S.; Wang, S. The discovery and extraction of Chinese ink characters from the wood surfaces of the Huangchangticou tomb of Western Han Dynasty. Archaeol. Anthropol. Sci. 2019, 11, 4147–4155. [Google Scholar] [CrossRef]
- Slavkovikj, V.; Verstockt, S.; De, N.W.; Van, H.S.; Rik, V.D.W. Unsupervised spectral sub-feature learning for hyperspectral image classification. Int. J. Remote Sens. 2016, 37, 309–326. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.I.; Du, Q.; Sun, T.L.; Althouse, M.L.G.A. Joint Band Prioritization and Band-Decorrelation Approach to Band Selection for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2631–2641. [Google Scholar] [CrossRef] [Green Version]
- Samat, A.; Persello, C.; Gamba, P.; Liu, S.; Abuduwaili, J.; Li, E. Supervised and Semi-Supervised Multi-View Canonical Correlation Analysis Ensemble for Heterogeneous Domain Adaptation in Remote Sensing Image Classification. Remote Sens. 2017, 9, 337. [Google Scholar] [CrossRef] [Green Version]
- Sugiyama, M. Dimensionality Reduction of Multimodal Labeled Data by Local Fisher Discriminant Analysis. J. Mach. Learn. Res. 2007, 8, 1027–1061. [Google Scholar] [CrossRef]
- Shao, Z.; Zhang, L. Sparse Dimensionality Reduction of Hyperspectral Image Based on Semi-Supervised Local Fisher Discriminant Analysis. Int. J. Appl. Earth Obs. Geoinf. 2014, 31, 122–129. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, D. Semisupervised Dimensionality Reduction with Pairwise Constraints for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2011, 8, 369–373. [Google Scholar] [CrossRef]
- Prasad, S.; Bruce, L.M. Limitations of principal components analysis for hyperspectral target recognition. IEEE Geosci. Remote Sens. Lett. 2008, 5, 625–629. [Google Scholar] [CrossRef]
- Wang, J.; Chang, C.I. Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2601–2616. [Google Scholar] [CrossRef]
- He, X.; Niyogi, P. Locality Preserving Projections. Advances in Neural Information Processing Systems. In Proceedings of the 17th Annual Conference on Neural Information Processing Systems (NIPS), Vancouver, BC, Canada, 8 December 2003; Thrun, S., Saul, K., Scholkopf, B., Eds.; MIT Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Bandos, T.V.; Bruzzone, L.; Camps-Valls, G. Classification of hyperspectral images with regularized linear discriminant analysis. IEEE Trans. Geosci. Remote Sens. 2009, 47, 862–873. [Google Scholar] [CrossRef]
- Li, J.; Qian, Y. Dimension Reduction of Hyperspectral Images with Sparse Linear Discriminant Analysis. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; IEEE: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Cai, D.; He, X.; Han, J. Semi-Supervised Discriminant Analysis. In Proceedings of the International Conference on Computer Vision 2007 IEEE 11th International Conference on Computer Vision, Rio de Janeiro, Brazil, 14–21 October 2007; IEEE: New York, NY, USA, 2007. [Google Scholar]
- Sugiyama, M.; Idé, T.; Nakajima, S.; Sese, J. Semi-Supervised Local Fisher Discriminant Analysis for Dimensionality Reduction. Mach. Learn. 2010, 78, 35–61. [Google Scholar] [CrossRef] [Green Version]
- Kianisarkaleh, A.; Ghassemian, H. Spatial-spectral locality preserving projection for hyperspectral image classification with limited training samples. Int. J. Remote Sens. 2016, 37, 5045–5059. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, X.; Cheng, Y. Hyperspectral Image Classification based on Local Binary Pattern and Broad Learning System. Int. J. Remote Sens. 2020, 44, 9393–9417. [Google Scholar] [CrossRef]
- He, L.; Chen, X.; Li, J.; Xie, X. Multiscale Superpixelwise Locality Preserving Projection for Hyperspectral Image Classification. Appl. Sci. 2019, 9, 2161. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Li, H.; Pan, L.; Shao, L.; Du, Q.; Emery, W.J. Modified Tensor Locality Preserving Projection for Dimensionality Reduction of Hyperspectral Images. IEEE Geosci. Remote Sens. Lett. 2018, 15, 277–281. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhang, L.; Wang, N.; Yi, G.; Tong, Q. A Modified Locality-Preserving Projection Approach for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1059–1063. [Google Scholar] [CrossRef]
- Dong, W.; Xiao, S.; Li, Y. Hyperspectral pansharpening based on guided filter and Gaussian filter. J. Vis. Commun. Image Represent. 2018, 53, 171–179. [Google Scholar] [CrossRef]
- Kishore, R.K.; Saradhi, V.G.P.; Rajya, L.D. Spatial residual clustering and entropy based ranking for hyperspectral band selection. Int. J. Remote Sens. 2020, 53 (Suppl. 1), 82–89. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhu, Q.; Wang, Y.; Zhang, Z.; Zhou, X.; Lin, A.; Fan, J. Feature extraction method based on spectral dimensional edge preservation filtering for hyperspectral image classification. Int. J. Remote Sens. 2019, 41, 90–113. [Google Scholar] [CrossRef]
- Tu, B.; Li, N.; Fang, L.; He, D.; Ghamisi, P. Hyperspectral Image Classification with Multi-Scale Feature Extraction. Remote Sens. 2019, 11, 534. [Google Scholar] [CrossRef] [Green Version]
- Shao, H.; Chen, Y.; Yang, Z.; Jiang, C.; Li, W.; Wu, H.; Wen, Z.; Wang, S.; Puttonen, E.; Hyyppa, J. A 91-Channel Hyperspectral LiDAR for Coal/Rock Classification. IEEE Geosci. Remote Sens. Lett. 2019, 17, 1052–1056. [Google Scholar] [CrossRef] [Green Version]
- Moser, G.; Serpico, S.B.; Benediktsson, J.A. Land-cover mapping by Markov modeling of spatial-contextual information in very-high-resolution remote sensing images. Proc. IEEE. 2013, 101, 631–651. [Google Scholar] [CrossRef]
- Pesaresi, M.; Benediktsson, J.A. A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 309–320. [Google Scholar] [CrossRef] [Green Version]
- Ghamisi, P.; Muraand, M.D.; Benediktsson, J.A. A Survey on Spectral-Spatial Classification Techniques Based on Attribute Profiles. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2335–2353. [Google Scholar] [CrossRef]
- Benediktsson, J.A.; Palmason, J.A.; Sveinsson, J.R. Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 2005, 43, 480–491. [Google Scholar] [CrossRef]
- Mura, M.D.; Benediktsson, J.A.; Waske, B.; Bruzzone, L. Morphological attribute profiles for the analysis of very high resolution images. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3747–3762. [Google Scholar] [CrossRef]
- Liao, W.; Bellens, R.; Pizurica, A.; Philips, W.; Pi, Y. Classification of Hyperspectral Data over Urban Areas Based on Extended Morphological Profile with Partial Reconstruction. Advanced Concepts for Intelligent Vision Systems. In Proceedings of the 14th International Conference on Advanced Concepts for Intelligent Vision Systems, Brno, Czech Republic, 4–7 September 2012; BlancTalon, J., Philips, W., Popescu, D., Scheunders, P., Zemcik, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Xia, J.; Mura, M.D.; Chanussot, J.; Du, P.; He, X. Random Subspace Ensembles for Hyperspectral Image Classification with Extended Morphological Attribute profiles. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4768–4786. [Google Scholar] [CrossRef]
- Liao, W.; Dalla Mura, M.; Chanussot, J.; Bellens, R.; Philips, W. Morphological attribute profiles with partial reconstruction. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1738–1756. [Google Scholar] [CrossRef]
- Geiss, C.; Klotz, M.; Schmitt, A.; Taubenbock, H. Object-Based Morphological Profiles for Classification of Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5952–5963. [Google Scholar] [CrossRef]
- Samat, A.; Persello, C.; Liu, S.; Li, E.; Miao, Z.; Abuduwaili, J. Classification of VHR Multispectral Images Using ExtraTrees and Maximally Stable Extremal Region-Guided Morphological Pofile. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2018, 11, 3179–3195. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1397–1409. [Google Scholar] [CrossRef] [PubMed]
- Farbman, Z.; Fattal, R.; Lischinski, D.; Szeliski, R. Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. 2008, 27, 67. [Google Scholar] [CrossRef]
- Rhemann, C.; Hosni, A.; Bleyer, M.; Rother, C.; Gelautz, M. Fast cost-volume filtering for visual correspondence and beyond. Trans. Pattern Anal. Mach. Intell. 2013, 35, 504–511. [Google Scholar] [CrossRef]
- Kang, X.; Li, S.; Bendiktsson, J.A. Spectral-spatial hyperspectral image classification with edge-preserving filtering. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2666–2677. [Google Scholar] [CrossRef]
- Pan, B.; Shi, Z.; Xu, X. Hierarchical Guidance Filtering-Based Ensemble Classification for Hyperspectral Images. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4177–4189. [Google Scholar] [CrossRef]
- Plaza, A.; Benediktsson, J.A.; Boardman, J.W.; Brazile, J.; Bruzzone, L.; Camps-Valls, G.; Chanussot, J.; Mathieu, F.; Paolo, G.; Anthony, G.; et al. Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 2009, 113, S110–S122. [Google Scholar] [CrossRef]
- Jain, V.; Phophalia, A. Exponential Weighted Random Forest for Hyperspectral Image Classification. In Proceedings of the IEEE International Symposium on Geoscience and Remote Sensing IGARSS, 2019 IEEE International Geoscience and Remote Sensing Symposium Conference, Yokohama, Japan, 28 July–2 August 2019; IEEE: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Marpu, P.R.; Gamba, P.; Niemeyer, I. Hyperspectral data classification using an ensemble of class-dependent neural networks. In Proceedings of the 2009 First Workshop on Hyperspectral Image and Signal Processing-Evolution in Remote Sensing, 1st Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Grenoble, France, 26–28 August 2009; IEEE: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Peng, J.; Zhou, Y.; Chen, C.L.P. Region-Kernel-Based Support Vector Machines for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4810–4824. [Google Scholar] [CrossRef]
- Samat, A.; Du, P.; Liu, S.; Li, J.; Cheng, L. E2LMs: Ensemble extreme learning machines for hyperspectral image classification. IEEE J. Sel. Topics. Appl. Earth Observ. Remote Sens. 2014, 7, 1060–1069. [Google Scholar] [CrossRef]
- Wang, W.; Dou, S.; Jiang, Z.; Sun, L. A Fast Dense Spectral–Spatial Convolution Network Framework for Hyperspectral Images Classification. Remote Sens. 2018, 10, 1068. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Generative adversarial networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5046–5063. [Google Scholar] [CrossRef]
- Chen, C.L.P.; Liu, Z. Broad learning system: An effective and efficient incremental learning system without the need for deep architecture. IEEE Trans. Neural Netw. Learn. Syst. 2017, 29, 10–24. [Google Scholar] [CrossRef]
- Yao, H.; Zhang, Y.; Wei, Y.; Tian, Y. Broad Learning System with Locality Sensitive Discriminant Analysis for Hyperspectral Image Classification. Math. Probl. Eng. 2020, 2020, 1–16. [Google Scholar] [CrossRef]
- Chen, P. Minimum class variance broad learning system for hyperspectral image classification. IET Image Process. 2020, 14, 3039–3045. [Google Scholar] [CrossRef]
- Ye, H.; Li, H.; Chen, C.L.P. Adaptive Deep Cascade Broad Learning System and Its Application in Image Denoising. IEEE Trans. Cybern. 2020. [Google Scholar] [CrossRef]
- Chu, Y.; Lin, H.; Yang, L.; Zhang, D.; Diao, Y.; Fan, X.; Shen, C. Hyperspectral image classification based on discriminative locality broad. Knowl. Based Syst. 2020, 206, 1–17. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Chen, C.L.P.; Cheng, Y. Hyperspectral Image Classification Based on Domain Adaptation Broad Learning. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2020, 13, 3006–3018. [Google Scholar] [CrossRef]
- Kong, Y.; Wang, X.; Cheng, Y.; Chen, C.L.P. Hyperspectral Imagery Classification Based on Semi-Supervised Broad Learning System. Remote Sens. 2018, 10, 685. [Google Scholar] [CrossRef] [Green Version]
- Ji, N.N.; Zhang, J.S.; Zhang, C.X. A sparse-response deep belief network based on rate distortion theory. Pattern Recognit. 2014, 47, 3179–3191. [Google Scholar] [CrossRef]
- Teng, Y.; Zhang, Y.; Chen, Y.; Ti, C. Adaptive Morphological Filtering Method for Structural Fusion Restoration of Hyperspectral Images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2016, 9, 655–667. [Google Scholar] [CrossRef]
- Guo, H. A simple algorithm for fitting a Gaussian function [DSP tips and tricks]. IEEE Signal Process. Mag. 2011, 28, 134–137. [Google Scholar] [CrossRef]
- Chen, C.L.P.; Wan, J.Z. A rapid learning and dynamic stepwise updating algorithm for flat neural networks and the application to time-series prediction. IEEE Trans. Syst. Man Cybern. Part B 1999, 29, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Pao, Y.H.; Takefuji, Y. Functional-Link net computing, theory, system architecture, and functionalities. Computer 1992, 25, 76–79. [Google Scholar] [CrossRef]
- Chen, C.L.P. A rapid supervised learning neural network for function interpolation and approximation. IEEE Trans. Neural Netw. 1996, 7, 1220–1230. [Google Scholar] [CrossRef]
- Igelnik, B.; Pao, Y.H. Stochastic choice of basis functions in adaptive function approximation and the functional-link net. IEEE Trans. Neural Netw. 1995, 6, 1320–1329. [Google Scholar] [CrossRef] [Green Version]
- Pao, Y.H.; Park, G.H.; Sobajic, D.J. Learning and generalization characteristics of the random vector functional-link net. Neurocomputing 1994, 6, 163–180. [Google Scholar] [CrossRef]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef] [Green Version]
- Camps-Valls, G.; Marsheva, T.V.B.; Zhou, D. Semi-supervised graph-based hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3044–3054. [Google Scholar] [CrossRef]
- Kang, X.; Li, S.; Bendiktsson, J.A. Feature Extraction of Hyperspectral Images with Image Fusion and Recursive Filtering. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3742–3752. [Google Scholar] [CrossRef]
Notation | Meaning |
---|---|
The HSI data smoothed by Gaussian filter | |
The mapped features with nodes | |
The mapping function for feature mapping | |
The random weight matrix for feature mapping | |
The random bias for feature mapping | |
The concatenation of all the first i groups of mapping features, | |
all mapped feature nodes | |
The group of enhancement nodes | |
The function for computing the group of enhancement nodes | |
The random weight matrix for computing the group of enhancement nodes | |
The random bias for computing the group of enhancement nodes | |
The concatenation of all the first groups of enhancement nodes | |
The connecting weight matrix from all mapped feature nodes and enhancement nodes to the output | |
The output of BLS |
Method | BLS | GaussianF+BLS | BLS+GuidedF | SSBLS | |
---|---|---|---|---|---|
Indian Pines | OA | 78.32 | 99.32 | 96.69 | 99.83 |
AA | 80.66 | 99.19 | 96.84 | 99.86 | |
Kappa | 74.29 | 99.18 | 96.04 | 99.80 | |
Salinas | OA | 91.98 | 99.74 | 96.84 | 99.96 |
AA | 96.26 | 99.80 | 98.82 | 99.97 | |
Kappa | 91.04 | 99.71 | 96.46 | 99.95 | |
Pavia University | OA | 70.23 | 99.15 | 85.77 | 99.49 |
AA | 70.21 | 98.77 | 81.50 | 99.35 | |
Kappa | 61.22 | 98.86 | 87.10 | 99.32 |
Class | SVM | HiFi-We | SSG | EPF | GSVM | IFRF | LPP_LBP_BLS | BLS | GBLS | SSBLS | |
---|---|---|---|---|---|---|---|---|---|---|---|
ICA | C1 | 77.43 | 85.48 | 53.21 | 94.53 | 90.77 | 97.74 | 99.63 | 72.59 | 98.61 | 99.48 |
C2 | 77.75 | 82.32 | 60.81 | 95.47 | 95.89 | 98.18 | 99.68 | 59.56 | 99.72 | 100.00 | |
C3 | 95.09 | 90.02 | 92.08 | 93.22 | 97.39 | 99.68 | 100.00 | 90.23 | 98.29 | 99.93 | |
C4 | 98.66 | 96.47 | 97.96 | 96.17 | 99.08 | 99.10 | 100.00 | 97.22 | 97.79 | 99.63 | |
C5 | 99.86 | 99.75 | 99.21 | 100.00 | 99.96 | 100.00 | 100.00 | 99.85 | 99.72 | 100.00 | |
C6 | 81.04 | 69.56 | 71.58 | 86.35 | 95.23 | 96.40 | 99.79 | 60.94 | 99.10 | 99.95 | |
C7 | 64.94 | 92.24 | 55.49 | 97.69 | 95.04 | 99.59 | 99.27 | 82.49 | 99.85 | 99.87 | |
C8 | 83.56 | 60.79 | 60.28 | 92.90 | 99.49 | 98.74 | 100.00 | 63.52 | 99.85 | 99.90 | |
C9 | 97.83 | 99.47 | 94.23 | 99.52 | 99.33 | 100.00 | 99.85 | 99.53 | 99.75 | 100.00 | |
OA | 80.31 | 86.14 | 69.09 | 95.38 | 95.84 | 98.80 | 99.74 | 78.32 | 99.32 | 99.83 | |
AA | 86.24 | 86.23 | 76.09 | 95.09 | 96.91 | 98.83 | 99.80 | 80.66 | 99.19 | 99.86 | |
Kappa | 76.79 | 83.61 | 63.80 | 94.48 | 95.00 | 98.56 | 99.64 | 74.29 | 99.18 | 99.80 | |
t | 2.15 | 83.26 | 440.71 | 160.70 | 2.26 | 27.73 | 113.45 | 0.80 | 1.25 | 1.42 | |
tt | 1.47 | 0.64 | 285.99 | 4.48 | 0.87 | 0.35 | 0.48 | 0.31 | 0.31 | 0.45 |
Class | SVM | HiFi-We | SSG | EPF | GSVM | IFRF | LPP_LBP_BLS | BLS | GBLS | SSBLS | |
---|---|---|---|---|---|---|---|---|---|---|---|
ICA | C1 | 99.62 | 99.97 | 98.03 | 100.00 | 99.76 | 100.00 | 100.00 | 99.78 | 100.00 | 100.00 |
C2 | 99.74 | 99.25 | 92.31 | 99.92 | 99.74 | 100.00 | 100.00 | 99.91 | 100.00 | 100.00 | |
C3 | 99.60 | 96.40 | 77.99 | 98.91 | 99.30 | 99.92 | 100.00 | 98.33 | 100.00 | 100.00 | |
C4 | 99.61 | 97.70 | 99.45 | 98.87 | 97.31 | 98.20 | 100.00 | 98.84 | 98.84 | 99.85 | |
C5 | 98.54 | 97.37 | 95.28 | 99.76 | 98.50 | 99.98 | 99.40 | 98.87 | 99.71 | 99.90 | |
C6 | 99.78 | 100.00 | 99.60 | 99.97 | 99.22 | 99.98 | 99.48 | 99.88 | 99.85 | 99.97 | |
C7 | 99.66 | 99.34 | 98.04 | 99.81 | 99.71 | 99.87 | 100.00 | 99.91 | 100.00 | 100.00 | |
C8 | 84.47 | 84.44 | 58.46 | 91.46 | 88.38 | 99.73 | 99.73 | 84.95 | 100.00 | 100.00 | |
C9 | 99.64 | 99.08 | 91.65 | 99.50 | 99.78 | 100.00 | 100.00 | 99.35 | 100.00 | 100.00 | |
C10 | 95.64 | 90.56 | 75.36 | 96.42 | 99.28 | 99.98 | 99.97 | 97.35 | 100.00 | 100.00 | |
C11 | 99.33 | 89.32 | 78.55 | 98.84 | 100.00 | 99.08 | 99.88 | 98.10 | 99.99 | 100.00 | |
C12 | 99.97 | 94.34 | 99.52 | 99.90 | 99.63 | 100.00 | 99.94 | 98.77 | 100.00 | 99.96 | |
C13 | 99.59 | 96.21 | 97.61 | 99.78 | 99.59 | 99.83 | 100.00 | 99.89 | 99.97 | 99.97 | |
C14 | 98.21 | 85.68 | 91.84 | 97.57 | 99.83 | 98.92 | 100.00 | 95.28 | 99.87 | 100.00 | |
C15 | 69.74 | 69.28 | 68.68 | 85.45 | 98.25 | 99.10 | 99.72 | 71.19 | 98.57 | 99.79 | |
C16 | 98.87 | 97.97 | 88.19 | 99.24 | 99.99 | 99.97 | 100.00 | 99.82 | 100.00 | 100.00 | |
OA | 91.87 | 90.31 | 81.45 | 95.63 | 96.88 | 99.72 | 99.83 | 91.98 | 99.74 | 99.96 | |
AA | 96.38 | 93.56 | 88.16 | 97.84 | 98.74 | 99.66 | 99.88 | 96.26 | 99.80 | 99.97 | |
Kappa | 90.90 | 89.17 | 79.37 | 95.11 | 96.51 | 99.68 | 99.81 | 91.04 | 99.71 | 99.95 | |
t | 9.21 | 167.57 | 1308.90 | 317.40 | 9.53 | 57.13 | 217.34 | 4.11 | 5.06 | 6.10 | |
tt | 7.54 | 3.10 | 136.23 | 16.33 | 7.21 | 1.20 | 4.96 | 2.15 | 2.20 | 3.16 |
Class | SVM | HiFi-We | SSG | EPF | GSVM | IFRF | LPP_LBP_BLS | BLS | GBLS | SSBLS | |
---|---|---|---|---|---|---|---|---|---|---|---|
ICA | C1 | 95.24 | 93.19 | 64.43 | 99.00 | 93.74 | 97.58 | 93.62 | 87.18 | 99.58 | 99.60 |
C2 | 95.56 | 93.57 | 59.47 | 99.59 | 97.07 | 99.74 | 97.81 | 88.33 | 99.72 | 99.87 | |
C3 | 71.87 | 52.08 | 47.39 | 94.50 | 92.13 | 95.77 | 98.76 | 45.92 | 98.92 | 99.51 | |
C4 | 77.88 | 63.23 | 97.40 | 98.22 | 94.14 | 94.71 | 89.09 | 63.76 | 96.83 | 97.81 | |
C5 | 98.17 | 100.00 | 99.28 | 99.05 | 99.78 | 99.90 | 99.64 | 99.46 | 99.64 | 99.97 | |
C6 | 70.47 | 56.20 | 79.35 | 93.05 | 99.35 | 98.93 | 99.90 | 46.75 | 99.48 | 99.68 | |
C7 | 58.77 | 44.83 | 94.65 | 94.40 | 99.82 | 96.69 | 99.75 | 57.27 | 99.34 | 99.93 | |
C8 | 85.38 | 71.20 | 79.43 | 92.24 | 93.55 | 94.00 | 99.74 | 51.03 | 96.88 | 98.13 | |
C9 | 99.91 | 95.00 | 99.97 | 99.88 | 93.55 | 91.94 | 94.73 | 92.19 | 98.52 | 99.62 | |
OA | 86.79 | 76.87 | 69.20 | 97.52 | 96.17 | 97.99 | 97.14 | 70.23 | 99.15 | 99.49 | |
AA | 83.70 | 74.37 | 80.15 | 96.67 | 95.90 | 96.58 | 97.00 | 70.21 | 98.77 | 99.35 | |
Kappa | 82.62 | 70.33 | 61.72 | 96.67 | 94.88 | 97.31 | 95.95 | 61.22 | 98.86 | 99.32 | |
t | 4.22 | 92.92 | 473.09 | 97.94 | 4.49 | 39.17 | 189.01 | 2.19 | 3.78 | 3.97 | |
tt | 3.01 | 1.84 | 50.63 | 17.23 | 2.48 | 3.67 | 7.21 | 1.05 | 1.08 | 1.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, G.; Wang, X.; Kong, Y.; Cheng, Y. Spectral-Spatial Joint Classification of Hyperspectral Image Based on Broad Learning System. Remote Sens. 2021, 13, 583. https://doi.org/10.3390/rs13040583
Zhao G, Wang X, Kong Y, Cheng Y. Spectral-Spatial Joint Classification of Hyperspectral Image Based on Broad Learning System. Remote Sensing. 2021; 13(4):583. https://doi.org/10.3390/rs13040583
Chicago/Turabian StyleZhao, Guixin, Xuesong Wang, Yi Kong, and Yuhu Cheng. 2021. "Spectral-Spatial Joint Classification of Hyperspectral Image Based on Broad Learning System" Remote Sensing 13, no. 4: 583. https://doi.org/10.3390/rs13040583
APA StyleZhao, G., Wang, X., Kong, Y., & Cheng, Y. (2021). Spectral-Spatial Joint Classification of Hyperspectral Image Based on Broad Learning System. Remote Sensing, 13(4), 583. https://doi.org/10.3390/rs13040583