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Abstract: At present many researchers pay attention to a combination of spectral features and spatial
features to enhance hyperspectral image (HSI) classification accuracy. However, the spatial features
in some methods are utilized insufficiently. In order to further improve the performance of HSI
classification, the spectral-spatial joint classification of HSI based on the broad learning system (BLS)
(SSBLS) method was proposed in this paper; it consists of three parts. Firstly, the Gaussian filter is
adopted to smooth each band of the original spectra based on the spatial information to remove
the noise. Secondly, the test sample’s labels can be obtained using the optimal BLS classification
model trained with the spectral features smoothed by the Gaussian filter. At last, the guided filter is
performed to correct the BLS classification results based on the spatial contextual information for
improving the classification accuracy. Experiment results on the three real HSI datasets demonstrate
that the mean overall accuracies (OAs) of ten experiments are 99.83% on the Indian Pines dataset,
99.96% on the Salinas dataset, and 99.49% on the Pavia University dataset. Compared with other
methods, the proposed method in the paper has the best performance.

Keywords: hyperspectral image; classification; Gaussian filter; broad learning system; guided filter

1. Introduction

Hyperspectral images (HSI) are widely used in various fields [1–4] due to their many
characteristics, such as spectral imaging with high resolution, unity of spectral image
and spatial image, and rapid non-destructive testing. One of the important tasks of
HSI applications is HSI classification. At first, researchers only utilized spectral features
for classification because the spectral information is easily affected by some factors, for
example, light, noise, and sensors. The phenomenon of “same matter with the different
spectrum and the same spectrum with distinct matter” often appears. It increases the
difficulty of object recognition and seriously reduces the accuracy of classification. Then
researchers began to combine spectral characteristics and spatial features to improve the
classification accuracy.

The spectral feature extraction of HSI can be realized by unsupervised [5,6],
supervised [7,8], and semi-supervised methods [7,9,10]. Representative unsupervised meth-
ods include principal component analysis (PCA) [11], independent component analysis
(ICA) [12], and locality preserving projections (LPP) [13]. Some well-known unsupervised
feature extraction methods are based on PCA and ICA. The foundation of some supervised
feature extraction techniques for HSIs [14,15] is the well-known linear discriminant anal-
ysis (LDA). Many semi-supervised methods of spectral feature extraction often combine
supervised and unsupervised methods to classify HSIs using limited labeled samples and
unlabeled samples. For example, Cai et al. [16] proposed the semi-supervised discriminant
analysis (SDA), which adopts the graph Laplacian-based regularization constraint in LDA
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to capture the local manifold features from unlabeled samples and avoid overfitting while
the labeled samples are lacking. Sugiyama et al. [17] introduced the method of the semi-
supervised local fisher discriminant analysis (SELF). It consists of a supervised method
(local fisher discriminant analysis [8]) and PCA. These feature extraction methods (PCA,
ICA, and LDA) cannot describe the complex spectral features structure of HSIs. LPP, which
is essentially a linear model of Laplacian feature mapping, can describe the nonlinear man-
ifold structure of data and is widely used in the spectral feature extraction of HSIs [18,19].
He et al. [20] applied multiscale super-pixel-wise LPP to HSI classification. Deng et al. [21]
proposed the tensor locality preserving projection (TLPP) algorithm to reduce the dimen-
sionality of HSI. However, in LPP, it is difficult to fix the value of the quantity of nearest
neighbors used to construct the adjacency graph [22]. The above spectral feature extraction
methods are all realized by the dimensionality reduction, which results in losing some
spectral information. The Gaussian filter [23] can smooth the spectral information without
reduction of bands in order to remove the noise from HSI data. Because of the advantage
of removing the noise from data and liner calculation characteristic, the Gaussian filter
is widely used in the classification of HSIs [24,25]. Tu et al. [26] used the Gaussian pyra-
mid to capture the features of different scales by stepwise filtering and down-sampling.
Shao et al. [27] utilized the Gaussian filter to fit the trigger and echo signal waveforms for
coal/rock classification. The spectra of four-type coal/rock specimens are captured by the
91-channel hyperspectral light detection and ranging (LiDAR) (HSL).

In terms of spatial feature extraction, a Markov model was initially adopted to capture
spatial features [28]. However, it has two disadvantages, which are intractable computa-
tional problems and no enough samples to describe the desired object. Then the morpho-
logical profile (MP) model [29] was put forward. Even if MP has a strong ability to extract
spatial features, it cannot achieve the flexible structuring element (SE) shape, the ability
to characterize the information about the region’s grey-level features, and the less compu-
tational complexity [30]. Benediktsson et al. [31] proposed the extended morphological
profile (EMP) to classify the HSI with high spatial resolution from urban areas. In order to
solve the problems of MP, Mura et al. [32] proposed morphology attribute profile (MAP)
as a promotion of MP. The extended morphological profiles with partial reconstruction
(EMPP) [33] were introduced to achieve the classification of high-resolution HSIs in ur-
ban areas. Subsequently, the extended morphological attribute profiles (EMAP) [34] was
adopted to cut down the redundancy of MAP. The framework of morphological attribute
profiles with partial reconstruction [35] had gained better performance on the classification
of high-resolution HSIs. Geiss et al. [36] proposed the method of object-based MPs to get a
great improvement in terms of classification accuracy compared with standard MPs. Samat
et al. [37] used the extra-trees and maximally stable extremal region-guided morphological
profile (MSER_MP) to achieve the ideal classification effect. The broad learning system (BLS)
classification architecture based on LPP and local binary pattern (LBP)(LPP_LBP_BLS) [19]
was proposed to gain the high-precision classification. However, LBP only uses the local
features of pixels and needs to use an adjacency matrix, which requires a lot of calculation.
In recent years, the guided filter [38–42] has attracted much interest from many researchers
due to its low computational complexity and edge-preserving ability. The hierarchical
guidance filtering-based ensemble classification for hyperspectral images (HiFi-We) [42]
was proposed. The method obtains individual learners by spectral-spatial joint features
generated from different scales. The ensemble model, that is, the hierarchical guidance fil-
tering (HGF) and matrix of spectral angle distance (mSAD), can be achieved via a weighted
ensemble strategy.

Researchers have paid a great deal of work to build various classifiers for improving
the classification accuracy of HSIs [43], such as random forests [44], neural networks [45],
support vector machines (SVM) [46,47], and deep learning [48], reinforcement learning [49],
and broad learning systems [50]. Among these classifiers, the BLS classifier [51,52] has
attached more and more research attention due to the advantage of its simple structure, few
training parameters, and fast training process. Ye et al. [53] proposed a novel regularization
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deep cascade broad learning system (DCBLS) method to apply to the large-scale data. The
method is successful in image denoising. The discriminative locality preserving broad
learning system (DPBLS) [54] was utilized to capture the manifold structure between
neighbor pixels of hyperspectral images. Wang et al. [55] proposed the HSI classification
method based on domain adaptation broad learning (DABL) to solve the limitation or
absence of the available labeled samples. Kong et al. [56] proposed a semi-supervised BLS
(SBLS). It first used the HGF to preprocess HSI data, then the class-probability structure
(CP), and the BLS to classify. It achieved the semi-supervised classification of small samples.

In order to make full use of the spectral-spatial joint features for improving the HSI
classification performance, we put forward the method of SSBLS. It incorporates three
parts. First, the Gaussian filter is used to smooth spectral features on each band of the
original HSI based on the spatial information for removing the noise. The inherent spectral
characteristics of pixels are extracted. The first fusion of spectral information and spatial
information is realized. Second, inputting the pixel vector of spectral-spatial joint features
into the BLS, BLS extracts the sparse and compact features through a random weight
matrix fine-turned by a sparse auto encoder for predicting the labels of test samples.
The initial probability maps are constructed. In the last step, a guided filter corrects the
initial probability maps under the guidance of a grey-scale image, which is obtained
by reducing the spectral dimensionality of the original HSI to one via PCA. The spatial
context information is fully utilized in the operation process of the guided filter. In SSBLS,
the spatial information is used in the first and third steps. In the second step, BLS uses
the spectral-spatial joint features to classify. At the same time, in the third step, the
first principal component of spectral information is used to obtain the grey-scale image.
Therefore, in the proposed method, the full use of spectral-spatial joint features contributes
to better classification performance. The major contribution of our work can be summarized
as follows:

(1) We found the organic combination of the Gaussian filter and BLS could enhance the
classification accuracy. The Gaussian filter captures the inherent spectral information
of each pixel based on HSI spatial information. BLS extracts the sparse and compact
features using the random weights fine-turned by the sparse auto encoder in the
process of mapping feature. Sparse features can represent the low-level structures
such as edges and high-level structures such as local curvatures, shapes [57], these
contribute to the improvement of classification accuracy. The inherent spectral features
are input to BLS for training and prediction, thereby improving the classification
accuracy of the proposed method. Experimental data supports this conclusion.

(2) We take full advantage of spectral-spatial features in SSBLS. The Gaussian filter firstly
smooths each spectral band based on spatial information of HSI to achieve the first
fusion of spectral-spatial information. The guided filter corrects the results of BLS
classification based on the spatial context information again. The grey-scale guidance
image of the guided filter is obtained via the first PCA from the original HSI. These
three operations sufficiently join spectral information and spatial information together,
which is useful to improve the accuracy of SSBLS.

(3) SSBLS utilizes the guided filter to rectify the misclassified hyperspectral pixels based
on the spatial contexture information for obtaining the correct classification labels,
thereby improving the overall accuracy of SSBLS. The experimental results can also
support this point.

The rest of this paper is organized as follows. Section 2 describes the proposed method
in detail. Section 3 presents the experiments and analysis. The discussion of the proposed
method is in Section 4. Section 5 is the summary.
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2. Proposed Method of Spectral-Spatial Joint Classification of HSI Based on Broad
Learning System

The flowchart of SSBLS proposed in this paper is shown in Figure 1, which mainly
consists of three steps: (1) After inputting the original HSI data, the Gaussian filter with an
appropriate-sized window is performed to extract the inherent spectral features of samples
based on the spatial information. (2) The test samples labels are got using the optimal
BLS classification model trained with pixel vectors smoothed by the Gaussian filter. The
initial probability maps are constructed according to the results of BLS classification. (3) To
improve the classification accuracy of HSI, the guided filter is adopted to correct the initial
probability maps based on the spatial context information of HSI under the guiding of the
grey-scale guidance image. The guidance image is obtained via the first PCA.
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2.1. Spectral Feature Extraction of HSI Based on Gaussian Filter

The first step of the proposed method is that the 2-dimensional (2-D) Gaussian filter
smooths spectral features on each band based on the spatial information of HSI. The
Gaussian filter is one of the most widely used and effective window-based filtering methods.
It is usually used as a low-pass filter to suppress the high-frequency noise, and it can
repair the detected missing regions [58]. When the Gaussian filter is capturing the spectral
features of HSI, the weight of each hyperspectral pixel in the Gaussian filter window decays
exponentially according to the distance from the center pixel. The closer the distance of
the neighboring pixel from the center pixel is, the greater the weight is, and the farther
the distance is, the smaller the weight is. The weight of each pixel in the Gaussian filter
window is determined by the following 2-D Gaussian function

G(x, y) =
1

2πσ2 e−(x2+y2)/2σ2
(1)

where x and y are the coordinates of the pixels in the Gaussian filter window on each band
of HSI. The coordinate of the center pixel of the window is (0, 0). σ, is the standard deviation
of the Gaussian filter. It is used to control the degree of blurring spectral information. That
is to say, the greater the value of σ is, the smoother the blurred spectral features are. The
Gaussian function [59] has the characteristic of being separable, so that a larger-sized
Gaussian filter can be effectively realized. The 2-D Gaussian function convolution can be
performed in two steps. First, the spectral image on each band of HSI is convolved with the
1-D Gaussian function, and then, the convolution result is convolved using the same 1-D
Gaussian function in the way of rotating 90 degrees to the left. Therefore, the calculation
of 2-D Gaussian filtering increases linearly with the size of the filter window instead of
increasing squarely.

The original HSI data with n samples are denoted as X = (x1, x2, x3, · · · , xn), which
belongs to the m-D space. YGaF = (y1, y2, y3, · · · yn) ∈ Rm is gotten from X blurred by the
Gaussian filter. Here, m is the number of HSI band. The superscript “GaF” represents the
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Gaussian filter. The “OGaF” stands for the Gaussian filtering operation. The spectral feature
extraction of HSI based on the Gaussian filter can be represented as Equation (2).

YGaF = OGaF(X) (2)

2.2. HSI Classification Based on the Combination of Gaussian Filter and BLS

Chen and Liu put forward a BLS based on the rapid and dynamic learning features of
the functional-link network [60–62]. BLS is built as a flat network, in which the input data
first are mapped into mapped feature nodes, then all mapped feature nodes are mapped
into enhancement nodes for expansion. The BLS network expands through both mapped
feature nodes and enhancement nodes. Moreover, through rigorous mathematical methods,
Igelnik and Pao [63] have proven that enhancement nodes contribute to the improvement of
classification accuracy. BLS is built on the basis of the traditional random vector functional-
link neural network (RVFLNN) [64]. However, unlike the traditional RVFLNN, in which
the enhancement nodes are constructed though using a linear combination of the input
nodes and then applying a nonlinear activation function to them. BLS first maps the inputs
to construct a set of mapped feature nodes via some mapping functions and then maps all
mapped feature nodes into enhancement nodes through other activation functions.

The second step of the proposed method is to input HSI pixel vectors smoothed by
the Gaussian filter to train the BLS classification model. Then the test sample’s labels are
calculated by the optimal BLS classification model for constructing the initial probability
maps. The notation in Table 1 will be used to present the described HSI classification
procedure. The HSI samples smoothed by the Gaussian filter are split into a training set
and test set. The training pixel vectors are mapped into mapped feature nodes applying
the random weight matrix. In addition, the sparse auto encoder is used to fine-tune the
random weight matrix. Then, the mapped feature nodes are mapped into enhancement
nodes using other random weights. The optimal connection weights from all mapped
feature nodes and enhancement nodes to the output are gained through the normalized
optimization method of solving L2-norm by ridge regression approximation in order to
obtain the optimal BLS model. The test sample labels are predicted by the optimal model
to construct the initial probability maps.

Table 1. The meaning of notations in BLS classification procedure.

Notation Meaning

YGaF The HSI data smoothed by Gaussian filter

Zi The ith mapped features with e nodes

φi The ith mapping function for feature mapping

W f e
i The ith random weight matrix for feature mapping

β
f e
i The ith random bias for feature mapping

Zi The concatenation of all the first i groups of mapping features, i = 1, · · · , d

Zd all mapped feature nodes

Hl The lth group of enhancement nodes

ξl The lth function for computing the lth group of enhancement nodes

Wen
l The lth random weight matrix for computing the lth group of enhancement nodes

βen
l The lth random bias for computing the lth group of enhancement nodes

Hl The concatenation of all the first l groups of enhancement nodes

Wop The connecting weight matrix from all mapped feature nodes and enhancement
nodes to the output

YBLS The output of BLS
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First, the HSI data smoothed by the Gaussian filter, YGaF with n samples and m
dimensions, is mapped into mapped feature nodes. That is to say, YGaF ∈ Rn×m. YBLS ∈
Rn×C is the result of BLS classification, where C is the quantity of sample types. There are d
feature mappings, and each mapping has e nodes, can be represented as in Equation (3) [19]

Zi = φi

(
YGaFW f e

i + β
f e
i

)
, i = 1, · · · , d (3)

where φi is the mapping function, Zi is the ith mapped features, W f e
i is a random weight

matrix, which has an appropriate dimension, β
f e
i , which is randomly generated, is the bias,

“fe” represents the mapped feature operation. Zi = [Z1, · · · , Zi] is the concatenation of all
the first i groups of mapping features. Furthermore, φi and φk can be different functions
when i 6= k. Zd = [Z1, Z2, · · · , Zd] represents all mapped feature nodes. In order to capture
the sparse and compact features, we make use of the sparse auto encoder to fine-tune the
initial W f e

i [19].
Then, Equation (4) is utilized to compute enhancement nodes from mapped feature nodes

Hl = ξl

(
ZdWen

l + βen
l

)
(4)

where ξl is an activation function, furthermore, when l 6= k, ξl and ξk can be different func-
tions. Hl is the lth group of enhancement nodes, Wen

l , which has appropriate dimensions,
is a randomly generated weight matrix. βen

l , which is randomly generated, is the bias. The
process of mapping enhancement nodes is used the “en” to represent. Hl = [H1, · · · , Hl ] is
the concatenation of all the first l groups of enhancement nodes [19].

Combined with Equation (4), the output result of BLS can be expressed by Equation (5)

YBLS =
[
Z1, · · · , Zd

∣∣∣ξ1

(
ZdWen

1 + βen
1

)
, · · · , ξl

(
ZdWen

l + βen
l

)]
Wop

= [Z1, · · · , Zd|H1, · · · , Hl ]Wop

=
[
Zd
∣∣∣Hl

]
Wop

(5)

where Wop is the connecting weight matrix from all mapped feature nodes and all en-
hancement nodes to the output of the BLS. The superscript “op” represents the optimal
weight [19]. The optimal connecting weight matrix can be obtained using the L2-norm
regularized least square problem as shown in Equation (6)

arg min
Wop

: ‖
[
Zd
∣∣∣Hl

]
Wop − YGaF‖2

2
+ λ‖Wop‖2

2 (6)

where λ is applied to further restrict the squared of L2-norm of Wop. ‖ · ‖2 represents the
L2-norm, and ‖ · ‖2

2 stands for the square of L2-norm. Equation (7) is obtained by the ridge
regression approximation [19].

Wop =

(
λI +

[
Zd
∣∣∣Hl
][

Zd
∣∣∣Hl
]T
)−1[

Zd
∣∣∣Hl
]T

YGaF (7)

When λ→ 0 , Equation (7) can be converted into solving the least square problem. When
λ→ ∞ , the result of Equation (7) is finite and turns to zero. So, set λ→ 0 , and add

a positive number on the diagonal of
[
Zd
∣∣∣Hl

]T[
Zd
∣∣∣Hl

]
or
[
Zd
∣∣∣Hl

][
Zd
∣∣∣Hl

]T
to get the

approximate Moore-Penrose generalized inverse [19]. Consequently, we have Equation (8).

[
Zd
∣∣∣Hl
]+

= lim
λ→0

((
λI +

[
Zd
∣∣∣Hl
][

Zd
∣∣∣Hl
]T
)−1

)[
Zd
∣∣∣Hl
]T

(8)
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So we have:
Wop =

[
Zd
∣∣∣Hl
]+

YGaF (9)

Finally, the output of BLS is:

YBLS =
[
Zd
∣∣∣Hl

][
Zd
∣∣∣Hl
]+

YGaF (10)

After inputting the spectral features smoothed by the Gaussian filter into BLS, the
initial result of classification is YBLS =

(
yBLS

1 , yBLS
2 , · · · yBLS

n
)
. The probability maps of this

results are expressed as P = (p1, · · · , pC), here pc is the probability map that all pixels
belong to the c class. pi,c ∈ pc, i = 1, 2, · · · , n is the probability that the pixel i belongs to c
(c = 1, 2, · · ·C). Specifically, as followed Equation (11).

pi,c =

{
1 if yBLS

i = c
0 otherwize

(11)

2.3. Correction to the Results of BLS Classification Based on Guided Filter

In the third step of the proposed method, the guided filter is performed to correct
each probability map pc with the guidance of the grey-scale guidance image V, and get the
output qc (c = 1, 2, · · ·C). V is obtained by the first PCA method from the original HSI.
The output of the guided filter [38] is the local linear transformation of the guidance image
and has a good edge-preserving characteristic. At the same time, the output image will
become more structured and non-smooth than the input image under the guidance of the
guidance image. For grey-scale and high-dimensional images, the guided filter essentially
has the characteristic of low time complexity, regardless of the kernel size and the intensity
range. In this step, the filtering output is Q = (q1, q2, · · ·qC) (c = 1, 2, · · ·C). Here, qc is
the probability map that all pixels belong to the c class. qi,c ∈ qc, i = 1, 2, · · · , n, which is
the probability that the pixel i belongs to c (c = 1, 2, · · ·C), can be expressed as a linear
transformation of the guidance image in a window ωk centered at the pixel k, as shown in
Equation (12).

qi,c = akVi + bk, ∀i ∈ ωk (12)

(ak, bk) are some assumed linear coefficients to be restricted in ωk. ωk is a window, the
radius of which is r. This local linear model guarantees that qc has an edge only if V has an
edge, because ∇qc ≈ a∇V. The cost function in the window ωk is minimized as shown
in Equation (13), which can not only realize the linear model of Equation (12), but also
minimize the difference between qc and V.

E(ak, bk) = ∑
i∈ωk

(
(akVi + bk − pi,c)

2 + εa2
k

)
(13)

ε, which defines the degree of the guided filter blurring, is used to regularize the parameter
penalizing large ak. Equation (13) is the linear ridge regression model and is solved by
Equation (14).

ak =

1
|ω|∑i∈ωk

Vi pi,c − µk pk,c

σ2
k + ε

(14)

bk = pk,c − akµk (15)

Here µk and σ2
k are the mean and variance of the guidance image in ωk. |ω| is the quantity

of pixels in ωk. pk,c =
1
|ω|∑i∈ωk

pi,c is the mean of pc in ωk.
Pixel i is involved in all the overlapping windows, which cover pixel i; therefore,

the value of qi,c in Equation (12) is different in different windows. qi,c can be acquired
by averaging all the possible values which are computed in different windows. So, after
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calculating ak and bk for all windows ωk in V, the output is calculated by using Equation
(16) as follows:

qi,c =
1
|ω| ∑

k|i∈ωk

(akVi + bk) (16)

The window ωk is symmetrical, so ∑k|i∈ωk
ak = ∑k∈ωi

ak, Equation (16) can be ex-
pressed by Equation (17)

qi,c = aiV + bi (17)

where ai = 1
|ω|∑k∈ωi

ak and bi = 1
|ω|∑k∈ωi

bk are the mean coefficients of all windows
covering pixel i.

In fact, ak in Equation (14) can be rewritten as a weighted sum of input image pc:
ak = ∑j Ak,j(V)pj,c, Ai,j is the weight that only depends on the guiding image V. Similarly,
bk = ∑j Bk,j(V)pj,c. The kernel weight is explicitly expressed by:

θi,j(V) =
1

|ω|2 ∑
k∈ωi ,k∈ωj

(
1 +

(Vi − µk)
(
Vj − µk

)
σ2

k + ε

)
(18)

So, Equation (17) can be changed to Equation (19).

qi,c = ∑j θi,j(V)pj,c (19)

After the initial probability maps are corrected by the guided filter, the probability
of the pixel i has C values, that is to say, qi,c, c = 1, 2, · · · , C. We take the subscript of the
highest probability among the C probabilities as the label of the pixel i, namely:

yGuF
i = arg max

c
qi,c, c = 1, 2, · · · , C (20)

After the guided filter corrects the initial probability maps, the labels of all labeled
samples of HSI are YGuF =

(
yGuF

1 , yGuF
2 , · · · , yGuF

n
)
. The superscript “GuF” represents the

guided filtering operation.
In summary, the algorithmic steps of HSI classification based on SSBLS are summa-

rized in Algorithm 1.

Algorithm 1. Algorithmic details of SSBLS

1. Input: Original HSI Dataset, X; S is the size of the Gaussian filter window; σ is the standard
deviation of the Gaussian function; N is the number of training samples; M is the number of
mapped feature windows; F is the number of mapped feature nodes per window; E is the
number of enhancement nodes; r represents the radius of the guided filter window ωk; ε is
the penalty parameter of the guided filter.

2. Select the optimal parameters S and σ, perform Gaussian filter to smooth each spectral band
of original HSI data X and get YGaF.

3. Randomly select N samples from the labeled samples of each class of HSI as the training set
YGaF

train, and the remaining labeled samples are the test sample set YGaF
test .

4. Randomly produce W f e
i with F columns and β

f e
i , fine-tune W f e

i using the sparse auto

encoder, and get Ztrain,i according to the YGaF
train, Wi

f e, β
f e
i and Equation (3), where

i = 1, 2, · · · , M, F = e.
5. Set random weights W f e =

[
W f e

1 , · · · , W f e
M

]
, random bias β f e =

[
β

f e
1 , · · · , β

f e
M

]
, and the

feature mapping group Zd
train =

[
Ztrain,1, · · · , Ztrain,M

]
, where M = d.

6. Randomly produce Wen with F×M rows and E columns and βen, map Zd
train into Hl

train
using Equation (4).

7. Obtain the optimal connecting weights Wop according to Equations (8) and (9).
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8. Map YGaF
test into Zd

test with W f e, β f e using Equation (3), and map Zd
test into Hl

test by Equation
(4) with Wen and βen, compute the test samples labels YBLS

test with Wop and Equation (5).
9. Construct the initial probability maps of the entire HSI based on the labels of training

samples and test samples, namely P = (p1, p2, · · · , pC).
10. Based on the original HSI, the grey-level guidance map V is generated by the first PCA

method. According to Equations (18) and (19), and the optimal parameters r and ε, correct
each initial probability map pc respectively, then get the final probability graphs
q = (q1, q2, · · ·qC), where c = 1, 2, · · · , C.

11. According to Equations (20), based on the maximum probability principle, get YGuF, the
classification results of all samples, get the test samples labels after re-moving the training
samples.

12. Output: the test sample’s labels.

3. Experiment Results

We assess the proposed SSBLS through a lot of experiments. All experiments are
performed in MATLAB R2014a using a computer with 2.90 GHz Intel Core i7-7500U central
processing unit (CPU) and 32 GB memory and Windows 10.

3.1. Hyperspectral Image Dataset

The performance of SSBLS method and other comparison methods are evaluated on
the three public hyperspectral datasets, which are the Indian Pines, Salinas, and Pavia
University datasets (The three datasets are available at http://www.ehu.eus/ccwintco/
index.php?title=Hyperspectral_Remote_Sensing_Scenes accessed on 4 November 2018).

The Indian Pines dataset was acquired by the Airborne Visible Infrared Imaging
Spectrometer (AVIRIS) sensor when it was flying over North-west Indiana Indian Pine test
site. This scene has 21,025 pixels and 200 bands. The wavelength of bands is from 0.4 to
2.5 µm. Two-thirds agriculture and one-third forests or other perennial natural vegetation
constitute this image. There are two main two-lane highways, a railway line, some low-
density housing, other built structures, and pathways in this image. It has 16 types of
things. In our experiments, we selected the nine categories samples with a quantity greater
than 400. The original hyperspectral image and ground truth are given in Figure 2.
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category names with labeled samples.

The Salinas scene was obtained by a 224-band AVIRIS sensor, capturing over the
Salinas Valley, California, USA, with a high spatial resolution of 3.7 m. The HSI dataset has
512 × 217 pixels with 204 bands after the 20 water absorption bands were discarded. We
made use of 16 classes samples in the scene. The original hyperspectral image and ground
truth are given in Figure 3.

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes


Remote Sens. 2021, 13, 583 10 of 23

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 24 
 

 

to 2.5 μm. Two-thirds agriculture and one-third forests or other perennial natural vegeta-
tion constitute this image. There are two main two-lane highways, a railway line, some 
low-density housing, other built structures, and pathways in this image. It has 16 types of 
things. In our experiments, we selected the nine categories samples with a quantity greater 
than 400. The original hyperspectral image and ground truth are given in Figure 2. 

The Salinas scene was obtained by a 224-band AVIRIS sensor, capturing over the Sa-
linas Valley, California, USA, with a high spatial resolution of 3.7 m. The HSI dataset has 
512 × 217 pixels with 204 bands after the 20 water absorption bands were discarded. We 
made use of 16 classes samples in the scene. The original hyperspectral image and ground 
truth are given in Figure 3. 

(a)

 

(b) (c)

C1:Corn-notill

C2:Corn-mintill

C3:Grass-pasture

C4:Grass-trees

C5:Hay-windrowed

C6:Soybean-notill

C7:Soybean-mintill

C8:Soybean-clean

C9:Woods

 
Figure 2. Indian Pines dataset with (a) original hyperspectral image, (b) ground truth, and (c) cate-
gory names with labeled samples. 

(a)
 

 

(b) (c)

C1:Brocoli_green_weeds_1
C2:Brocoli_green_weeds_2 
C3:Fallow 
C4:Fallow_rough_plow
C5:Fallow_smooth
C6:Stubble
C7:Celery 
C8:Grapes_untrained
C9:Soil_vinyard_develop 
C10:Corn_senesced_green_weeds
C11:Lettuce_romaine_4wk
C12:Lettuce_romaine_5wk
C13:Lettuce_romaine_6wk 
C14:Lettuce_romaine_7wk
C15: Vinyard_untrained
C16:Vinyard_vertical_trellis

 
Figure 3. Salinas dataset with (a) original hyperspectral image, (b) ground truth, and (c) category 
names with labeled samples. 

The Pavia University dataset was collected by the Reflective Optics System Imaging 
Spectrometer (ROSIS) sensor over Pavia in northern Italy. The image has 610 × 340 pixels 
with 103 bands. Some pixels containing nothing in the image were removed. There were 
nine different sample categories used in our experiments. Figure 4 is the original hyper-
spectral image, category names with labeled samples, and ground truth. 

Figure 3. Salinas dataset with (a) original hyperspectral image, (b) ground truth, and (c) category
names with labeled samples.

The Pavia University dataset was collected by the Reflective Optics System Imaging
Spectrometer (ROSIS) sensor over Pavia in northern Italy. The image has 610 × 340 pixels
with 103 bands. Some pixels containing nothing in the image were removed. There
were nine different sample categories used in our experiments. Figure 4 is the original
hyperspectral image, category names with labeled samples, and ground truth.
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3.2. Parameters Analysis

After analyzing SSBLS, it was found that the adjustable parameters are the size of the
Gaussian filter window (S), the standard deviation of Gaussian function (σ), the number of
mapped feature windows in BLS (M), the number of mapped feature nodes per window in
BLS (F), the number of enhancement nodes (E), the radius of the guided filter window ωk
(r), and the penalty parameter of the guided filter (ε). The above parameters are analyzed
with overall accuracy (OA) to evaluate the performance of SSBLS.

3.2.1. Influence of Parameter S and σ on OA

In this section, the influence of S and σ on OA was analyzed in three datasets. S and σ
are took different values, and other parameters are fixed values, namely, M = 20, F = 40,
E = 1000, r = 2, ε = 0.001. S was chosen from [2, 4, 6, · · · , 30], and the value range of σ was
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chosen from [1, 2, 3, · · · , 15] in the Indian Pines and Salinas datasets. S and σ were chosen
from [1, 3, 5, · · · , 29] and [1, 2, 3, · · · , 15], respectively, in the Pavia University dataset. The
mean OAs of ten experiments are shown in Figure 5. It can be seen from this figure that as
the S and σ increased, the OAs gradually increased, and gradually decreased after reaching
the peak. If S is too small, the larger-sized target will divide into multiple parts distributing
in the diverse Gaussian filter windows. If S is too large, the window will contain multiple
small-sized targets. Both will cause misclassification. When σ is too small, the weights
change drastically from the center to the boundary. When σ gradually becomes larger, the
weights change smoothly from the center to the boundary, and the weights of pixels in
the window are relatively well-distributed, which is close to the mean filter. Therefore, for
different HSI datasets, the optimal values of S and σ were not identical. in the Indian Pines
dataset, when S = 18, σ = 7, the OA is the largest. So S and σ were 18 and 7 respectively in
the subsequent experiments. In the Salinas dataset, when S = 24, σ = 7, the performance
of SSBLS was the best. Therefore, S and σ were taken as 24 and 7 in the later experiments
severally. Similarly, the best values of S and σ were 21 and 4 respectively in the Pavia
University dataset.
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Figure 5. The relationship of the Gaussian filter window (S), standard deviation of the Gaussian
function (σ ), and overall accuracy (OA) in the three datasets. (a) Indian Pines; (b) Salinas; (c)
Pavia University.

3.2.2. Influence of Parameter M and F on OA

The experiments are carried out on the three datasets. The values of S and σ were the
optimal values obtained from the above analysis, and E = 1000, r = 2, ε = 0.001. In the
Indian Pines and Pavia University datasets, M and F were chosen from [2, 4, 6, · · · , 20] and
[2, 6, 10, · · · , 38]. The values range of M and F were [2, 4, 6, · · · , 20] and [4, 8, 12, · · · , 40]
in the Salinas dataset. As shown in Figure 6, we can see that as M and F were becoming
larger, the OAs of SSBLS gradually grew. When M and F were too small, the lesser feature
information was extracted and the lower the mean OA of ten experiments was. When M
and F were too large, although the performance of SSBLS was improved, the computation
and the consumed time also rose. Therefore, in the subsequent experiments, the best values
of M and F were 6 and 34 respectively in the Indian Pines dataset, 12 and 36 in the Salinas
dataset, and 8 and 26 in the Pavia University dataset.
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3.2.3. Influence of Parameter E on OA

In the three datasets, S, σ, M and F were the optimal values obtained from the above ex-
periments, r and ε were 2 and 10−3, respectively. E was chosen from [500, 550, 600, · · · , 1200]
in the Indian Pines dataset. The range of E was [50, 100, 150, · · · , 800] in the Salinas and
Pavia University datasets. In the three datasets, the average OAs of ten experiments had
an upward trend with the increase of E as shown in Figure 7. As E gradually grew, the
features extracted by BLS also increased, at the same time, the computation and consumed
time also grew. Therefore, the numbers of enhanced nodes were 1050 in the Indian Pines
dataset, and 700 in both the Salinas and Pavia University datasets.

Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 24 
 

 

3.2.3. Influence of Parameter E  on OA 
In the three datasets, S , σ , M and F  were the optimal values obtained from the 

above experiments, r and ε  were 2 and 10–3, respectively. E was chosen from 
[500, 550,600, ,1200]  in the Indian Pines dataset. The range of E was 
[50,100,150, ,800]  in the Salinas and Pavia University datasets. In the three datasets, the 

average OAs of ten experiments had an upward trend with the increase of E  as shown 
in Figure 7. As E  gradually grew, the features extracted by BLS also increased, at the 
same time, the computation and consumed time also grew. Therefore, the numbers of en-
hanced nodes were 1050 in the Indian Pines dataset, and 700 in both the Salinas and Pavia 
University datasets. 

500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200
0.9950

0.9955

0.9960

0.9965

0.9970

0.9975

O
ve

ra
ll 

A
cc

ur
ac

y

Number of enhancement nodes

(a)

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
0.9955

0.9960

0.9965

0.9970

0.9975

0.9980

0.9985

0.9990

O
ve

ra
ll 

A
cc

ur
ac

y

Number of enhancement nodes

(b)

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

O
ve

ra
ll 

A
cc

ur
ac

y

Number of enhancement nodes

(c)   
Figure 7. The relationship of the number of enchancement nodes ( E ) and OA in the three da-
tasets. (a) Indian Pines; (b) Salinas; (c) Pavia University. 

3.2.4. Influence of Parameter r  on OA 
The experiments were carried out on the three datasets. The values of S , σ , M, 

F  and E  were the optimal values analyzed previously, ε  is -310 , and r  is chosen 
from [1, 2, 3, 9] . Figure 8 indicates that as r  grew, the average OAs of ten experiments 
first increased, and then decreased. In the Indian Pines dataset, when = 3r , the mean OA 
was the largest, so r  is 3. In the Salinas dataset, when = 5r , the performance of SSBLS 
was the best, so the value of r  was 5. On the Pavia University dataset, while = 3r , the 
average OA was the greatest, so r  was 3. 

 

Figure 7. The relationship of the number of enchancement nodes (E) and OA in the three datasets.
(a) Indian Pines; (b) Salinas; (c) Pavia University.

3.2.4. Influence of Parameter r on OA

The experiments were carried out on the three datasets. The values of S, σ, M, F and
E were the optimal values analyzed previously, ε is 10−3, and r is chosen from [1, 2, 3, · · · 9].
Figure 8 indicates that as r grew, the average OAs of ten experiments first increased, and
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then decreased. In the Indian Pines dataset, when r = 3, the mean OA was the largest, so
r is 3. In the Salinas dataset, when r = 5, the performance of SSBLS was the best, so the
value of r was 5. On the Pavia University dataset, while r = 3, the average OA was the
greatest, so r was 3.
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3.2.5. Influence of Parameter ε on OA

In the three datasets, S, σ, M, F, E and r were the optimal values obtained in the above
experiments. The value range of ε was [10−7, 10−6, 10−5, · · · , 1]. In the Indian Pines and
Salinas datasets, as ε increased, the mean OAs first increased and then decreased, as shown
in Figure 9. In the Indian Pines dataset, when ε = 10−3, the average OA was the largest,
so ε was 10−3 in the subsequent compared experiments. On the Salinas dataset, while
ε = 10−1, the performance of SSBLS was the best, so the optimal value of ε was 10−1. In
the Pavia University dataset, as ε= 10−7, the classification effect was the best, then the best
value of ε was 10−7.

Figure 9. The relationship of OA and ε in the three datasets.

3.3. Ablation Studies on SSBLS

We have conducted several ablation experiments to investigate the behavior of SSBLS
on the three datasets. In these ablation experiments, we randomly took 200 labeled samples
as training samples and the remaining labeled samples as test samples from each class
sample. We utilized OA, average accuracy (AA), kappa coefficient (Kappa) to measure the
performance of different methods as shown Table 2, and the highest values of them are
shown in bold.
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First, we only used BLS to classify the original hyperspectral data. On the Salinas
dataset, the effect was good; the OA reached 91.98%. However, the results were unsatisfac-
tory when using the Indian Pines and Pavia University datasets.

Second, we disentangle the Gaussian filter influence on the classification results. We
used the Gaussian filter to smooth the original HSI, and then used BLS to classify, namely
the method of BLS based on the Gaussian filter (GBLS). In Indian Pines dataset, the OA was
about 20% higher than these of BLS, about 7% higher than that of BLS in the Salinas dataset,
and about 17% higher in the Pavia University dataset. These show that the Gaussian filter
can help to improve the classification accuracy.

Next, we used BLS to classify the original hyperspectral data and then applied the
guided filter to rectify the misclassified pixels of BLS. The results in terms of OA, AA, and
Kappa were also better than those of BLS. This shows that guided filter also plays a certain
role in improving classification performance.

Finally, we used the proposed method in the paper for HSI classification. This method
first uses the Gaussian filter to smooth the original spectral features based on the spatial
information of HSI. After using BLS classification, it finally applies the guided filter to
correct the pixels that are misclassified by BLS. The results are the best in the four methods.
This shows that both Gaussian filter and guided filter contribute to the improvement of
classification performance.

From the above analysis, we know that the combination of the Gaussian filtering and
BLS has a great effect on the improvement of classification performance, especially on
Indian Pines and Pavia University datasets. Although the classification accuracy after BLS
classification based on the Gaussian filter (GBLS) was relatively high, the classification
accuracy was still improved after adding the guided filter to GBLS. It indicates that the
guided filter can also help improve the classification accuracy.

3.4. Experimental Comparison

In order to prove the advantages of SSBLS on the three real datasets, we compare
SSBLS with SVM [65], HiFi-We [42], SSG [66], spectral-spatial hyperspectral image classi-
fication with edge-preserving filtering (EPF) [41], support vector machine based on the
Gaussian filter (GSVM), feature extraction of hyperspectral images with image fusion and
recursive filtering (IFRF) [67], LPP_LBP_BLS [19], BLS [50], and GBLS. All methods inputs
are the original HSI data. Furthermore, the experimental parameters are the optimal values.
In each experiment, the 200 labeled samples are randomly selected from per class sample as
the training set, and the rest labeled samples as the test samples set. We get the individual
classification accuracy (ICA), OA, AA, Kappa, overall consumed time (t), and test time (tt).
All results are the mean values of ten experiments as shown in Tables 3–5, and the highest
values of them are shown in bold.

Table 2. The results of ablation experiments on the three datasets in term of overall accuracy, OA (%),
average accuracy, AA (%), and kappa coefficient, Kappa (%).

Method BLS GaussianF+BLS BLS+GuidedF SSBLS

Indian Pines
OA 78.32 99.32 96.69 99.83
AA 80.66 99.19 96.84 99.86

Kappa 74.29 99.18 96.04 99.80

Salinas
OA 91.98 99.74 96.84 99.96
AA 96.26 99.80 98.82 99.97

Kappa 91.04 99.71 96.46 99.95

Pavia
University

OA 70.23 99.15 85.77 99.49
AA 70.21 98.77 81.50 99.35

Kappa 61.22 98.86 87.10 99.32
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Table 3. Classification results of all comparison methods on the Indian Pines dataset in term of individual classification
accuracy, ICA (%), overall accuracy, OA (%), average accuracy, AA (%), kappa coefficient, Kappa (%), overall consumed
time, t (s), and test time, tt (s). SVM: support vector machine; HiFi-We: hierarchical guidance filtering-based ensemble
classification for hyperspectral images; EPF: edge-preserving filtering; GSVM: Gaussian support vector machine; IFRF: image
fusion and recursive filtering; LLP_LBP_BLS: locality preserving projections local binary pattern broad learning system.

Class SVM HiFi-We SSG EPF GSVM IFRF LPP_LBP_BLS BLS GBLS SSBLS

ICA

C1 77.43 85.48 53.21 94.53 90.77 97.74 99.63 72.59 98.61 99.48
C2 77.75 82.32 60.81 95.47 95.89 98.18 99.68 59.56 99.72 100.00
C3 95.09 90.02 92.08 93.22 97.39 99.68 100.00 90.23 98.29 99.93
C4 98.66 96.47 97.96 96.17 99.08 99.10 100.00 97.22 97.79 99.63
C5 99.86 99.75 99.21 100.00 99.96 100.00 100.00 99.85 99.72 100.00
C6 81.04 69.56 71.58 86.35 95.23 96.40 99.79 60.94 99.10 99.95
C7 64.94 92.24 55.49 97.69 95.04 99.59 99.27 82.49 99.85 99.87
C8 83.56 60.79 60.28 92.90 99.49 98.74 100.00 63.52 99.85 99.90
C9 97.83 99.47 94.23 99.52 99.33 100.00 99.85 99.53 99.75 100.00

OA 80.31 86.14 69.09 95.38 95.84 98.80 99.74 78.32 99.32 99.83
AA 86.24 86.23 76.09 95.09 96.91 98.83 99.80 80.66 99.19 99.86

Kappa 76.79 83.61 63.80 94.48 95.00 98.56 99.64 74.29 99.18 99.80
t 2.15 83.26 440.71 160.70 2.26 27.73 113.45 0.80 1.25 1.42
tt 1.47 0.64 285.99 4.48 0.87 0.35 0.48 0.31 0.31 0.45

Table 4. Classification results of all comparison methods on the Salinas dataset in term of individual classification accuracy,
ICA (%), overall accuracy, OA (%), average accuracy, AA (%), kappa coefficient, Kappa (%), overall consumed time, t (s),
and test time, tt (s).

Class SVM HiFi-We SSG EPF GSVM IFRF LPP_LBP_BLS BLS GBLS SSBLS

ICA

C1 99.62 99.97 98.03 100.00 99.76 100.00 100.00 99.78 100.00 100.00
C2 99.74 99.25 92.31 99.92 99.74 100.00 100.00 99.91 100.00 100.00
C3 99.60 96.40 77.99 98.91 99.30 99.92 100.00 98.33 100.00 100.00
C4 99.61 97.70 99.45 98.87 97.31 98.20 100.00 98.84 98.84 99.85
C5 98.54 97.37 95.28 99.76 98.50 99.98 99.40 98.87 99.71 99.90
C6 99.78 100.00 99.60 99.97 99.22 99.98 99.48 99.88 99.85 99.97
C7 99.66 99.34 98.04 99.81 99.71 99.87 100.00 99.91 100.00 100.00
C8 84.47 84.44 58.46 91.46 88.38 99.73 99.73 84.95 100.00 100.00
C9 99.64 99.08 91.65 99.50 99.78 100.00 100.00 99.35 100.00 100.00

C10 95.64 90.56 75.36 96.42 99.28 99.98 99.97 97.35 100.00 100.00
C11 99.33 89.32 78.55 98.84 100.00 99.08 99.88 98.10 99.99 100.00
C12 99.97 94.34 99.52 99.90 99.63 100.00 99.94 98.77 100.00 99.96
C13 99.59 96.21 97.61 99.78 99.59 99.83 100.00 99.89 99.97 99.97
C14 98.21 85.68 91.84 97.57 99.83 98.92 100.00 95.28 99.87 100.00
C15 69.74 69.28 68.68 85.45 98.25 99.10 99.72 71.19 98.57 99.79
C16 98.87 97.97 88.19 99.24 99.99 99.97 100.00 99.82 100.00 100.00

OA 91.87 90.31 81.45 95.63 96.88 99.72 99.83 91.98 99.74 99.96
AA 96.38 93.56 88.16 97.84 98.74 99.66 99.88 96.26 99.80 99.97

Kappa 90.90 89.17 79.37 95.11 96.51 99.68 99.81 91.04 99.71 99.95
t 9.21 167.57 1308.90 317.40 9.53 57.13 217.34 4.11 5.06 6.10
tt 7.54 3.10 136.23 16.33 7.21 1.20 4.96 2.15 2.20 3.16
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Table 5. Classification results of all comparison methods on the Pavia University dataset in term of individual classification
accuracy, ICA (%), overall accuracy, OA (%), average accuracy, AA (%), kappa coefficient, Kappa (%), overall consumed
time, t (s), and test time, tt (s).

Class SVM HiFi-We SSG EPF GSVM IFRF LPP_LBP_BLS BLS GBLS SSBLS

ICA

C1 95.24 93.19 64.43 99.00 93.74 97.58 93.62 87.18 99.58 99.60
C2 95.56 93.57 59.47 99.59 97.07 99.74 97.81 88.33 99.72 99.87
C3 71.87 52.08 47.39 94.50 92.13 95.77 98.76 45.92 98.92 99.51
C4 77.88 63.23 97.40 98.22 94.14 94.71 89.09 63.76 96.83 97.81
C5 98.17 100.00 99.28 99.05 99.78 99.90 99.64 99.46 99.64 99.97
C6 70.47 56.20 79.35 93.05 99.35 98.93 99.90 46.75 99.48 99.68
C7 58.77 44.83 94.65 94.40 99.82 96.69 99.75 57.27 99.34 99.93
C8 85.38 71.20 79.43 92.24 93.55 94.00 99.74 51.03 96.88 98.13
C9 99.91 95.00 99.97 99.88 93.55 91.94 94.73 92.19 98.52 99.62

OA 86.79 76.87 69.20 97.52 96.17 97.99 97.14 70.23 99.15 99.49
AA 83.70 74.37 80.15 96.67 95.90 96.58 97.00 70.21 98.77 99.35

Kappa 82.62 70.33 61.72 96.67 94.88 97.31 95.95 61.22 98.86 99.32
t 4.22 92.92 473.09 97.94 4.49 39.17 189.01 2.19 3.78 3.97
tt 3.01 1.84 50.63 17.23 2.48 3.67 7.21 1.05 1.08 1.31

(1) Compared with the conventional classification method SVM—the effects of BLS
approximate to those of SVM methods on the Indian Pines and Salinas datasets. However,
when BLS and SVM make use of the HSI data filtered by the Gaussian filter, the performance
of GBLS was obviously better than that of GSVM. In the Pavia University dataset, the OA
of BLS was 16.56% lower than that of SVM. After filtering the Pavia University data using
the Gaussian filter, the OA of GBLS was about 3% higher than that of GSVM. SSBLS had the
best performance. From Tables 3–5, the experimental results illustrate that the combination
of the Gaussian filter and BLS contributes to improving the classification accuracy.

(2) HiFi-We firstly extracts different spatial context information of the samples by HGF,
which can generate diverse sample sets. As the hierarchy levels increased, the pixel spectra
features tended to be smooth, and the pixel spatial features were enhanced. Based on the
output of HGF, a series of classifiers could be obtained. Secondly, the matrix of spectral
angle distance was defined to measure the diversity among training samples in each
hierarchy. At last, the ensemble strategy was proposed to combine the obtained individual
classifiers and mSAD. This method achieved a good performance. But its performance in
terms of OA, AA, and Kappa were not as good as these of SSBLS. The main reasons are
that SSBLS adopts the advantages of spectral-spatial joint features sufficiently in the three
operations of the Gaussian filter, BLS, and guided filter; these are useful to improve the
accuracy of SSBLS.

(3) SSG assigns a label to the unlabeled sample based on the graph method, integrates
the spatial information, spectral information, and cross-information between spatial and
spectral through a complete composite kernel, forms a huge kernel matrix of labeled
and unlabeled samples, and finally applies the Nystróm method for classification. The
computational complexity of the huge kernel matrix is large, resulting in increasing the
consumed time of the classification. On the contrary, SSBLS not only has higher OA than
SSG, but also takes lesser time than SSG.

(4) The EPF method adopts SVM for classification, constructs the initial probability
map, and then utilizes the bilateral filter or the guided filter to collect the initial probability
map for improving the final classification accuracy. The results of it were very good in the
real three hyperspectral datasets. However, SSBLS had better performance compared with
EPF. This is mainly because SSBLS firstly utilizes the Gaussian filter to extract the inherent
spectral features based on spatial information, moreover, applies the guided filter to rectify
the misclassification pixels of BLS based on the spatial context information.
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(5) IFRF divides the HSI samples into multiple subsets according to the neighboring
hyperspectral band, then applies the mean method to fuse each subset, finally makes use
of the transform domain recursive filtering to extract features from each fused subset for
classification using SVM. This method works very well. But the performance of SSBLS
was better than that of IFRF. Specifically, the mean OA of SSBLS was 1.03% higher than
that of IRRF in the Indian dataset, 0.24% higher in the Salinas dataset, and 1.5% higher
in the Pavia University dataset. There were three reasons for the analysis results. Firstly,
when SSBLS used the Gaussian filter to smooth the HSI spectral features based on the
spatial information, the weight of each neighboring pixel decreased with the increase of the
distance between it and the center pixel in the Gaussian filter window. The Gaussian filter
operation could remove the noise. Secondly, in the SSBLS method, the integration of the
Gaussian filter and BLS contributed to extracting the sparse and compact spectral features
fusing the spatial features and achieved outstanding classification accuracy. Thirdly, SSBLS
applied the guided filter based on the spatial context information to rectify the misclassified
hyperspectral pixels for improving the final classification accuracy.

(6) The LPP_LBP_BLS method uses LPP to reduce the dimensionality of HSI in the
spectral domain, then utilized LBP to extract spatial features in the spatial domain, and
finally makes use of BLS to classify. The performance of LPP_LBP_BLS was very nice. But
it has two disadvantages. First, the LBP operation led to an increase in the number of
processed spectral-spatial features greatly. For example, the number of spectral bands after
dimensionality reduction of each pixel was 50, and the number of each pixel spectral-spatial
features after the LBP operation was 2950. Second, LPP_LBP_BLS worked very well on
the Indian Pines and Salinas datasets, but the mean OA only reached 97.14% in the Pavia
University dataset. It indicates that this method has a certain data selectivity and is not
robust enough. The average OAs of SSBLS in the three datasets are all above 99.49%. In
the Indian dataset, the mean OA is 99.83%, and the highest OA we obtained during the
experiments is 99.97%. In the Salinas dataset, the average OA is 99.96%, and the highest
OA can reach 100% sometimes. It shows that the robustness of SSBLS is better, especially
on the Pavia University dataset. As the parameters change, the OAs change regularly, as
shown in Figures 5c and 6c.

(7) Compared with BLS and GBLS. It can be seen in Tables 3–5 that BLS had an
unsatisfactory classification effect only using the original HSI data; however, when the
GBLS adopted the spectral features smoothed by the Gaussian filter, its OA was greatly
improved. It indicates that the combination of the Gaussian filtering and BLS contributed
to the improvement of classification accuracy. The classification accuracy of SSBLS was
higher than those of BLS and GBLS. This was because SSBLS applied the guided filter based
on the spatial contextual information to rectify the misclassified pixels, further improving
the classification accuracy.

In summary, using the three datasets, the OA, AA, and Kappa of SSBLS were better
than those of nine other comparison methods, as can be clearly seen from Figures 10–12.
From Tables 3–5, it can be seen that the execution time of SSBLS was lesser than these meth-
ods (SVM, HiFi-We, SSG, EPF, GSVM, IFPF, and LPP_LBP_BLS), and the pretreatment time
and the training time of SSBLS was lesser than HiFi-We, SSG, EPF, IFPF, and LPP_LBP_BLS.
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4. Discussion

The experimental results of the three public datasets indicate that SSBLS had the best
performance in terms of three measurements (OA, AA, and Kappa) in all the compared
methods. There were three main reasons for this, as follows. Firstly, the combination
of the Gaussian filter and BLS contributed to the improvement of SSBLS classification
accuracy. The Gaussian filter could fuse spectral features and spatial features of HSI
effectively to extract the inherent spectral characteristics of each pixel. BLS expressed
the smoothed spectral information into the sparse and compact features in the process of
mapping feature using random weight matrixes fine-turned by the sparse auto encoder.
It also improved the classification accuracy. It can be clearly seen from Tables 3–5 that
the performances of GBLS and SSBLS using the HSI data smoothed by the Gaussian filter
were greatly improved. Secondly, SSBLS takes full advantage of spectral-spatial joint
features to improve its performance. The Gaussian filter firstly smooths each band in the
spectral domain based on the spatial information to achieved the first fusion of spectral
and spatial information. The guided filter corrects the results of BLS classification under
the guidance of the grey-scale guidance image, which is obtained by the first PCA based on
the spectral information from the original HSI. These operations join spectral features and
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spatial information together sufficiently. At last, SSBLS applies the guided filter to rectify
the misclassification HSI pixels to further enhance its classification accuracy.

5. Conclusions

To take full advantage of the spectral-spatial joint features for the improvement of
HSI classification accuracy, we proposed the method of SSBLS in this paper. The method is
divided into three parts. Firstly, the Gaussian filter smooths each spectral band to remove
the noise in spectral domain based on the spatial information of HSI and fuse the spectral
information and spatial information. Secondly, the optimal BLS models were obtained
by training the BLS using the spectral features smoothed by the Gaussian filter. The test
sample labels were computed for constructing the initial probability maps. Finally, the
guided filter is applied to rectify the misclassification pixels of BLS based on the HSI spatial
context information to improve the classification accuracy. The results of experiments
of the three public datasets show that the proposed method outperforms other methods
(SVM, HiFi-We, SSG, EPF, GSVM, IFRF, LPP_LBP_BLS, BLS, and GBLS) in terms of OA,
AA, and Kappa.

This proposed method is a supervised learning classification that requires more labeled
samples. However, the number of HSI labeled samples were very limited, and a high
cost is required to label the unlabeled samples. Therefore, the next step is to study a
semi-supervised learning classification method to improve the semi-supervised learning
classification accuracy of HSI.
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