Landslide Extraction from High-Resolution Remote Sensing Imagery Using Fully Convolutional Spectral–Topographic Fusion Network
Abstract
:1. Introduction
2. Methods
2.1. Encoder–Decoder
2.1.1. Resnet and Atrous Spatial Pyramid Pooling
2.1.2. Decoder
2.2. Proposed FSTF-Net
2.2.1. Fusion of Multiple Sources
2.2.2. Spectral–Topographic Fusion Network
2.3. Dropout and Batch Normalization
3. Experiment and Comparison
3.1. Study Area
3.2. Datasets
3.3. Training and Metrics
3.4. Experimental Results
4. Discussion
4.1. Importance of Multi-Source Data Fusion
4.2. Analysis of Landslide Change Detection
4.3. Applications of Proposed Approach
5. Conclusions
- Based on the atrous convolution, pyramid pooling, and encoding–decoding structure, the multi-scale feature and the contextual information of the fully convolutional network model were effectively integrated to improve the performance of the network. The multi-source data, including topographical factors (slope and aspect) and NDVI, were input into the network and integrated with the feature extracted by remote sensing images. Through the improvement and optimization of the network structure, the end-to-end FSTF-Net model based on multi-source data was obtained. Comparison with other existing networks showed that the FSTF-Net model achieved accurate landslide extraction and the detailed recovery of different types of ground objects in complex scenes. Based on the existing multi-source data, the model effectively increased the accuracy of landslide extraction. The overall classification accuracy reached 89% and the accuracy of the landslide detection was 85%.
- Taking the geological disaster caused by the Jiuzhaigou earthquake in 2017 as an example, high-resolution remote sensing satellite images were collected from Google Earth. Based on these images, the trained FSTF-Net model from the Mangkam dataset was used to extract the information of landslides and surrounding ground objects after the Jiuzhaigou earthquake. The accuracy of the landslide detection was 81%. The method not only greatly reduced labor costs and time but also ensured the accuracy and reliability of the interpretation of the surface environment, providing a reference for subsequent research on the automatic extraction of landslide information.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turner, A.K. Social and environmental impacts of landslides. Innov. Infrastruct. Solut. 2018, 3, 70. [Google Scholar] [CrossRef]
- Piralilou, S.T.; Shahabi, H.; Jarihani, B.; Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Meena, S.R.; Aryal, J. Landslide detection using multi-scale image segmentation and different machine learning models in the higher Himalayas. Remote Sens. 2019, 11, 2575. [Google Scholar] [CrossRef] [Green Version]
- Heleno, S.; Matias, M.; Pina, P.; Sousa, A.J. Semiautomated object-based classification of rain-induced landslides with VHR multispectral images on Madeira Island. Nat. Hazards Earth Syst. Sci. 2016, 16, 1035–1048. [Google Scholar] [CrossRef] [Green Version]
- Prakash, N.; Manconi, A.; Loew, S. Mapping landslides on EO data: Performance of deep learning models vs. traditional machine learning models. Remote Sens. 2020, 12, 346. [Google Scholar] [CrossRef] [Green Version]
- Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Meena, S.R.; Tiede, D.; Aryal, J. Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection. Remote Sens. 2019, 11, 196. [Google Scholar] [CrossRef] [Green Version]
- Sameen, M.I.; Pradha, B. Landslide detection using residual networks and the fusion of spectral and topographic information. IEEE Access 2019, 7, 114363–114373. [Google Scholar] [CrossRef]
- Lei, T.; Zhang, Q.; Xue, D.; Chen, T.; Meng, H.; Nandi, A.K. End-to-end Change Detection Using a Symmetric Fully Convolutional Network for Landslide Mapping. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 3027–3031. [Google Scholar]
- Martha, T.R.; Kerle, N.; Jetten, V.; Van Westen, C.; Kumar, K.V. Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology 2010, 116, 24–36. [Google Scholar] [CrossRef]
- Mondini, A.; Guzzetti, F.; Reichenbach, P.; Rossi, M.; Cardinali, M.; Ardizzone, F. Semi-automatic recognition and mapping of rainfall induced shallow landslides using optical satellite images. Remote Sens. Environ. 2011, 115, 1743–1757. [Google Scholar] [CrossRef]
- Stumpf, A.; Kerle, N. Object-oriented mapping of landslides using Random Forests. Remote Sens. Environ. 2011, 115, 2564–2577. [Google Scholar] [CrossRef]
- Wessel, M.; Brandmeier, M.; Tiede, D. Evaluation of different machine learning algorithms for scalable classification of tree types and tree species based on Sentinel-2 data. Remote Sens. 2018, 10, 1419. [Google Scholar] [CrossRef] [Green Version]
- Ghorbanzadeh, O.; Blaschke, T. Optimizing sample patches selection of cnn to improve the miou on landslide detection. In Proceedings of the 5th International Conference on Geographical Information Systems Theory, Applications and Management: GISTAM, Heraklion, Greece, 3–5 May 2019; pp. 3–5. [Google Scholar]
- Yong, W.; Yang, S.; Zhang, L.; Yang, M.; Geomatics, F.O. Landslide information extraction based on the optimal segmentation scale. Sci. Surv. Mapp. 2017, 42, 120–125. [Google Scholar]
- Chen, F.; Yu, B.; Li, B. A practical trial of landslide detection from single-temporal Landsat8 images using contour-based proposals and random forest: A case study of national Nepal. Landslides 2018, 15, 453–464. [Google Scholar] [CrossRef]
- Ma, H.-R.; Cheng, X.; Chen, L.; Zhang, H.; Xiong, H. Automatic identification of shallow landslides based on Worldview2 remote sensing images. J. Appl. Remote Sens. 2016, 10, 016008. [Google Scholar] [CrossRef]
- Karantanellis, E.; Marinos, V.; Vassilakis, E.; Christaras, B. Object-Based Analysis Using Unmanned Aerial Vehicles (UAVs) for Site-Specific Landslide Assessment. Remote Sens. 2020, 12, 1711. [Google Scholar] [CrossRef]
- Roodposhti, M.S.; Aryal, J.; Bryan, B.A. A novel algorithm for calculating transition potential in cellular automata models of land-use/cover change. Environ. Model. Softw. 2019, 112, 70–81. [Google Scholar] [CrossRef]
- Peng, L.; Hui, Z.; Eom, K.B. Active Deep Learning for Classification of Hyperspectral Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 712–724. [Google Scholar]
- Hong, D.; Gao, L.; Yao, J.; Zhang, B.; Plaza, A.; Chanussot, J. Graph Convolutional Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5966–5978. [Google Scholar] [CrossRef]
- Feng, J.; Yu, H.; Wang, L.; Cao, X.; Zhang, X.; Jiao, L. Classification of Hyperspectral Images Based on Multiclass Spatial–Spectral Generative Adversarial Networks. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5329–5343. [Google Scholar] [CrossRef]
- Hu, W.-S.; Li, H.-C.; Pan, L.; Li, W.; Tao, R.; Du, Q. Spatial–Spectral Feature Extraction via Deep ConvLSTM Neural Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4237–4250. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, L.; Wei, W.; Zhang, Y. When Low Rank Representation Based Hyperspectral Imagery Classification Meets Segmented Stacked Denoising Auto-Encoder Based Spatial-Spectral Feature. Remote Sens. 2018, 10, 284. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Jiao, L.; Liu, F.; Yang, S.; Wang, J. Residual Spectral-Spatial Attention Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2020, 59, 449–462. [Google Scholar] [CrossRef]
- Sun, H.; Li, S.; Zheng, X.; Lu, X. Remote Sensing Scene Classification by Gated Bidirectional Network. IEEE Trans. Geosci. Remote Sens. 2019, 58, 82–96. [Google Scholar] [CrossRef]
- Ding, A.; Zhang, Q.; Zhou, X.; Dai, B. Automatic recognition of landslide based on CNN and texture change detection. In Proceedings of the 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), Wuhan, China, 11–13 November 2016; pp. 444–448. [Google Scholar]
- Yu, H.; Ma, Y.; Wang, L.; Zhai, Y.; Wang, X. A landslide intelligent detection method based on CNN and RSG_R. In Proceedings of the 2017 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, 6–9 August 2017; pp. 40–44. [Google Scholar]
- Lei, T.; Zhang, Y.; Lv, Z.; Li, S.; Liu, S.; Nandi, A.K. Landslide Inventory Mapping from Bitemporal Images Using Deep Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2019, 16, 982–986. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Yin, K.; Luo, H.; Li, J. Landslide identification using machine learning. Geosci. Front. 2021, 12, 351–364. [Google Scholar] [CrossRef]
- Li, C.; Yi, B.; Gao, P.; Li, H.; Sun, J.; Chen, X.; Zhong, C. Valuable Clues for DCNN-Based Landslide Detection from a Comparative Assessment in the Wenchuan Earthquake Area. Sensors 2021, 21, 5191. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Guo, X.; Sun, J.; Qiao, S.; Zhang, L.; Yao, J.; Cheng, Q.; Zhang, Y. Landslide Detection from Open Satellite Imagery Using Distant Domain Transfer Learning. Remote Sens. 2021, 13, 3383. [Google Scholar] [CrossRef]
- Fanos, A.; Pradhan, B.; Mansor, S.; Yusoff, Z.M.; bin Abdullah, A.F. A hybrid model using machine learning methods and GIS for potential rockfall source identification from airborne laser scanning data. Landslides 2018, 15, 1833–1850. [Google Scholar] [CrossRef]
- Xu, Q.; Ouyang, C.; Jiang, T.; Fan, X.; Cheng, D. DFPENet-geology: A Deep Learning Framework for High Precision Recognition and Segmentation of Co-Seismic Landslides. arXiv 2019, arXiv:1908.10907. [Google Scholar]
- Liu, P.; Wei, Y.; Wang, Q.; Chen, Y.; Xie, J. Research on Post-Earthquake Landslide Extraction Algorithm Based on Improved U-Net Model. Remote Sens. 2020, 12, 894. [Google Scholar] [CrossRef] [Green Version]
- Xia, W.; Ma, C.; Liu, J.; Liu, S.; Chen, F.; Yang, Z.; Duan, J. High-Resolution Remote Sensing Imagery Classification of Imbalanced Data Using Multistage Sampling Method and Deep Neural Networks. Remote Sens. 2019, 11, 2523. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liang, B.; Ding, M.; Li, J. Dense Semantic Labeling with Atrous Spatial Pyramid Pooling and Decoder for High-Resolution Remote Sensing Imagery. Remote Sens. 2018, 11, 20. [Google Scholar] [CrossRef] [Green Version]
- Drozdzal, M.; Vorontsov, E.; Chartrand, G.; Kadoury, S.; Pal, C. The importance of skip connections in biomedical image segmentation. In Proceedings of the Deep Learning and Data Labeling for Medical Applications, Athens, Greece, 17–21 October 2016; pp. 179–187. [Google Scholar]
- Eitel, A.; Springenberg, J.T.; Spinello, L.; Riedmiller, M.; Burgard, W. Multimodal deep learning for robust RGB-D object recognition. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 681–687. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6230–6239. [Google Scholar]
- Mortensen, E.N.; Barrett, W.A. Intelligent scissors for image composition. In Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 6–11 August 1995; pp. 191–198. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning ICML 2015, Lille, France, 7–9 July 2015; pp. 448–456. [Google Scholar]
- Scarpa, G.; Gargiulo, M.; Mazza, A.; Gaetano, R. A CNN-Based Fusion Method for Feature Extraction from Sentinel Data. Remote Sens. 2018, 10, 236. [Google Scholar] [CrossRef] [Green Version]
- Chatziantoniou, A.; Psomiadis, E.; Petropoulos, G.P. Co-Orbital Sentinel 1 and 2 for LULC Mapping with Emphasis on Wetlands in a Mediterranean Setting Based on Machine Learning. Remote Sens. 2017, 9, 1259. [Google Scholar] [CrossRef] [Green Version]
- Keys, R.G. Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 2003, 29, 1153–1160. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 833–851. [Google Scholar]
- Tian, Y.; Xu, C.; Ma, S.; Xu, X.; Wang, S.; Zhang, H. Inventory and Spatial Distribution of Landslides Triggered by the 8th August 2017 M W 6.5 Jiuzhaigou Earthquake, China. J. Earth Sci. 2019, 30, 206–217. [Google Scholar] [CrossRef]
Date | Satellite | Resolution (m) | Band Number | Size (Pixels) | Samples |
---|---|---|---|---|---|
January 2018 | Beijing-2 | 0.8 | 3 | 3200 ∗ 3200 | 347 |
January 2018 | WorldView-3 | 0.3 | 3 | 3200 ∗ 3200 | 479 |
March 2018 | SuperView-1 | 0.5 | 3 | 3200 ∗ 3200 | 60 |
Datasets | Date | Data | Data Format | Size (Pixels) |
---|---|---|---|---|
Geological Disaster Distribution map | January 2018–March 2018 | Landslide point | Point | — |
Landsat8 | April 2018 | NDVI | Raster image | 0.3 m |
DEM | February 2018 | Slope aspect | Raster image | 0.3 m |
Method | Bare Land | Veg | Water | Building | Road | Landslide | Avg Recall | Avg F1-Score | OA |
---|---|---|---|---|---|---|---|---|---|
Basic FCN | 0.83 | 0.79 | 0.72 | 0.57 | 0.51 | 0.69 | 0.72 | 0.70 | 0.77 |
FCN-8s | 0.90 | 0.83 | 0.80 | 0.63 | 0.62 | 0.79 | 0.74 | 0.76 | 0.81 |
ASPP | 0.87 | 0.84 | 0.81 | 0.71 | 0.69 | 0.80 | 0.82 | 0.80 | 0.84 |
DeepLab_v3+ | 0.91 | 0.85 | 0.84 | 0.78 | 0.73 | 0.82 | 0.85 | 0.86 | 0.87 |
RAE-D | 0.91 | 0.87 | 0.85 | 0.80 | 0.78 | 0.83 | 0.86 | 0.86 | 0.88 |
FSTF-Net | 0.90 | 0.89 | 0.87 | 0.81 | 0.78 | 0.86 | 0.87 | 0.88 | 0.89 |
Method | DP | QP | OE | CE |
---|---|---|---|---|
BasicFCN | 0.73 | 0.53 | 0.26 | 0.31 |
FCN-8s | 0.77 | 0.67 | 0.23 | 0.21 |
ASPP | 0.79 | 0.70 | 0.21 | 0.20 |
DeepLab_v3+ | 0.80 | 0.72 | 0.20 | 0.18 |
RAE-D | 0.81 | 0.71 | 0.19 | 0.17 |
FSTF-Net | 0.85 | 0.76 | 0.15 | 0.14 |
Date | Source | Data | Resolution (m) | Band Number |
---|---|---|---|---|
August 2017 | Google Earth | Google Earth | 0.3 | 3 |
August 2017 | Landslide Vector File [47] | Landslide PLOGY | 0.3 | 1 |
August 2018 | Landsat8 Image | NDVI | 0.3 | 1 |
August 2017 | SRTM | DEM | 0.3 | 1 |
Method | Bare Land | Veg | Landslide | Water | Building | Road | Avg Recall | Avg F1-Score | OA |
---|---|---|---|---|---|---|---|---|---|
FSTF-Net | 0.82 | 0.88 | 0.79 | 0.87 | 0.68 | 0.64 | 0.80 | 0.79 | 0.82 |
Method | DP | QP | OE | CE |
---|---|---|---|---|
MUS2+FSTF-Net | 0.81 | 0.73 | 0.19 | 0.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, W.; Chen, J.; Liu, J.; Ma, C.; Liu, W. Landslide Extraction from High-Resolution Remote Sensing Imagery Using Fully Convolutional Spectral–Topographic Fusion Network. Remote Sens. 2021, 13, 5116. https://doi.org/10.3390/rs13245116
Xia W, Chen J, Liu J, Ma C, Liu W. Landslide Extraction from High-Resolution Remote Sensing Imagery Using Fully Convolutional Spectral–Topographic Fusion Network. Remote Sensing. 2021; 13(24):5116. https://doi.org/10.3390/rs13245116
Chicago/Turabian StyleXia, Wei, Jun Chen, Jianbo Liu, Caihong Ma, and Wei Liu. 2021. "Landslide Extraction from High-Resolution Remote Sensing Imagery Using Fully Convolutional Spectral–Topographic Fusion Network" Remote Sensing 13, no. 24: 5116. https://doi.org/10.3390/rs13245116
APA StyleXia, W., Chen, J., Liu, J., Ma, C., & Liu, W. (2021). Landslide Extraction from High-Resolution Remote Sensing Imagery Using Fully Convolutional Spectral–Topographic Fusion Network. Remote Sensing, 13(24), 5116. https://doi.org/10.3390/rs13245116