Using Sentinel-2 Images for Soil Organic Carbon Content Mapping in Croplands of Southwestern France. The Usefulness of Sentinel-1/2 Derived Moisture Maps and Mismatches between Sentinel Images and Sampling Dates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Samples
2.3. Dataset Acquisition
2.3.1. Sentinel-2 Time Series
2.3.2. Soil Moisture Products and Climate Data
2.3.3. Digital Terrain Attributes
2.4. SOC Content Prediction Models
3. Results
3.1. Sentinel-2 Prediction Performance Variability and Relationships with Soil Attributes
3.2. S2 and SMP Prediction Performance
3.3. Spatial Prediction and Characteristics of SOC Maps
4. Discussion
4.1. Optimal Dates and Characteristics of S2 Images and Sampling Periods for SOC Prediction
4.2. Impact of Soil Moisture
4.3. Influence of Digital Terrain Attributes on the Predicted SOC Map
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO; ITPS. Global Soil Organic Map V1.5: Technical Report; FAO: Quebec City, QC, Canada; ITPS: Den Haag, The Netherlands, 2020; ISBN 9789251321447. [Google Scholar]
- Smith, P.; Bustamante, M.; Ahammad, H.; Clark, H.; Dong, H.; Elsiddig, E.A.; Haberl, H.; Harper, H.; House, J.; Jafari, M.; et al. Agriculture, Forestry and Other Land Use (AFOLU). Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2014 Mitigation of Climate Change; IPCC: Geneva, Switzerland, 2014; pp. 811–922. [Google Scholar]
- Schlesinger, W. Soil organic matter: A source of atmospheric CO2. Role Terr. Veg. Glob. Carbon Cycle Meas. Remote Sens. 1984, 4, 111–127. [Google Scholar]
- Arrouays, D.; Pelissier, P. Changes in carbon storage in temperate humic loamy soils after forest clearing and continuous corn cropping in France. Plant Soil 1994, 160, 215–223. [Google Scholar] [CrossRef]
- Jolivet, C.; Arrouays, D.; Andreux, F.; Lévêque, J. Soil organic carbon dynamics in cleared temperate forest spodosols converted to maize cropping. Plant Soil 1997, 191, 225–231. [Google Scholar] [CrossRef]
- Minasny, B.; Malone, B.P.; McBratney, A.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.-S.; Cheng, K.; Das, B.S.; et al. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Costa, C.; Seabauer, M.; Schwarz, B.; Dittmer, K.; Wollenberg, E. Scaling Soil Organic Carbon Sequestration for Climate Change Mitigation; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Wageningen, The Netherlands, 2021. [Google Scholar]
- Smith, P.; Soussana, J.-F.; Angers, D.; Schipper, L.; Chenu, C.; Rasse, D.P.; Batjes, N.H.; van Egmond, F.; McNeill, S.; Kuhnert, M.; et al. How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Glob. Chang. Biol. 2020, 26, 219–241. [Google Scholar] [CrossRef] [Green Version]
- Hengl, T.; Heuvelink, G.B.M.; Kempen, B.; Leenaars, J.G.B.; Walsh, M.G.; Shepherd, K.D.; Sila, A.; Macmillan, R.A.; De Jesus, J.M.; Tamene, L.; et al. Mapping soil properties of Africa at 250 m resolution: Random forests significantly improve current predictions. PLoS ONE 2015, 10, e0125814. [Google Scholar] [CrossRef]
- Mulder, V.; Lacoste, M.; Richer-De-Forges, A.; Martin, M.; Arrouays, D. National versus global modelling the 3D distribution of soil organic carbon in mainland France. Geoderma 2016, 263, 16–34. [Google Scholar] [CrossRef]
- Poggio, L.; de Sousa, L.M.; Batjes, N.H.; Heuvelink, G.B.M.; Kempen, B.; Ribeiro, E.; Rossiter, D. SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. SOIL 2021, 7, 217–240. [Google Scholar] [CrossRef]
- Guevara, M.; Arroyo, C.; Brunsell, N.; Cruz, C.O.; Domke, G.; Equihua, J.; Etchevers, J.; Hayes, D.; Hengl, T.; Ibelles, A.; et al. Soil Organic Carbon Across Mexico and the Conterminous United States (1991–2010). Glob. Biogeochem. Cycles 2020, 34, e2019GB006219. [Google Scholar] [CrossRef]
- Hengl, T.; De Jesus, J.M.; MacMillan, R.A.; Batjes, N.H.; Heuvelink, G.B.M.; Ribeiro, E.; Samuel-Rosa, A.; Kempen, B.; Leenaars, J.G.; Walsh, M.G.; et al. SoilGrids1km—Global Soil Information Based on Automated Mapping. PLoS ONE 2014, 9, e105992. [Google Scholar] [CrossRef] [Green Version]
- Stevens, A.; van Wesemael, B.; Bartholomeus, H.; Rosillon, D.; Tychon, B.; Ben-Dor, E. Laboratory, field and airborne spectroscopy for monitoring organic carbon content in agricultural soils. Geoderma 2008, 144, 395–404. [Google Scholar] [CrossRef] [Green Version]
- Gomez, C.; Lagacherie, P.; Coulouma, G. Regional predictions of eight common soil properties and their spatial structures from hyperspectral Vis–NIR data. Geoderma 2012, 189–190, 176–185. [Google Scholar] [CrossRef]
- Stevens, A.; Udelhoven, T.; Denis, A.; Tychon, B.; Lioy, R.; Hoffmann, L.; van Wesemael, B. Measuring soil organic carbon in croplands at regional scale using airborne imaging spectroscopy. Geoderma 2010, 158, 32–45. [Google Scholar] [CrossRef]
- Ou, D.; Tan, K.; Lai, J.; Jia, X.; Wang, X.; Chen, Y.; Li, J. Semi-supervised DNN regression on airborne hyperspectral imagery for improved spatial soil properties prediction. Geoderma 2020, 385, 114875. [Google Scholar] [CrossRef]
- Castaldi, F.; Chabrillat, S.; Don, A.; Van Wesemael, B. Soil Organic Carbon Mapping Using LUCAS Topsoil Database and Sentinel-2 Data: An Approach to Reduce Soil Moisture and Crop Residue Effects. Remote Sens. 2019, 11, 2121. [Google Scholar] [CrossRef] [Green Version]
- Salazar, D.F.; Demattê, J.A.; Vicente, L.E.; Guimarães, C.C.; Sayão, V.M.; Cerri, C.E.; Padilha, M.C.D.C.; Mendes, W.D.S. Emissivity of agricultural soil attributes in southeastern Brazil via terrestrial and satellite sensors. Geoderma 2019, 361, 114038. [Google Scholar] [CrossRef]
- Vaudour, E.; Gomez, C.; Fouad, Y.; Lagacherie, P. Sentinel-2 image capacities to predict common topsoil properties of temperate and Mediterranean agroecosystems. Remote Sens. Environ. 2019, 223, 21–33. [Google Scholar] [CrossRef]
- Vaudour, E.; Gomez, C.; Loiseau, T.; Baghdadi, N.; Loubet, B.; Arrouays, D.; Ali, L.; Lagacherie, P. The Impact of Acquisition Date on the Prediction Performance of Topsoil Organic Carbon from Sentinel-2 for Croplands. Remote Sens. 2019, 11, 2143. [Google Scholar] [CrossRef] [Green Version]
- Vaudour, E.; Gomez, C.; Lagacherie, P.; Loiseau, T.; Baghdadi, N.; Urbina-Salazar, D.; Loubet, B.; Arrouays, D. Temporal mosaicking approaches of Sentinel-2 images for extending topsoil organic carbon content mapping in croplands. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102277. [Google Scholar] [CrossRef]
- Castaldi, F.; Hueni, A.; Chabrillat, S.; Ward, K.; Buttafuoco, G.; Bomans, B.; Vreys, K.; Brell, M.; van Wesemael, B. Evaluating the capability of the Sentinel 2 data for soil organic carbon prediction in croplands. ISPRS J. Photogramm. Remote Sens. 2018, 147, 267–282. [Google Scholar] [CrossRef]
- Vaudour, E.; Gilliot, J.M.; Bel, L.; Lefevre, J.; Chehdi, K. Regional prediction of soil organic carbon content over temperate croplands using visible near-infrared airborne hyperspectral imagery and synchronous field spectra. Int. J. Appl. Earth Obs. Geoinf. 2016, 49, 24–38. [Google Scholar] [CrossRef]
- Žížala, D.; Minařík, R.; Zádorová, T. Soil Organic Carbon Mapping Using Multispectral Remote Sensing Data: Prediction Ability of Data with Different Spatial and Spectral Resolutions. Remote Sens. 2019, 11, 2947. [Google Scholar] [CrossRef]
- Biney, J.K.; Saberioon, M.; Boruvka, L.; Houška, J.; Vašát, R.; Chapman Agyeman, P.; Coblinski, J.; Klement, A. Exploring the Suitability of UAS-Based Multispectral Images for Estimating Soil Organic Carbon: Comparison with Proximal Soil Sensing and Spaceborne Imagery. Remote Sens. 2021, 13, 308. [Google Scholar]
- Silvero, N.E.Q.; Demattê, J.A.M.; Amorim, M.T.A.; dos Santos, N.V.; Rizzo, R.; Safanelli, J.L.; Poppiel, R.R.; Mendes, W.D.S.; Bonfatti, B.R. Soil variability and quantification based on Sentinel-2 and Landsat-8 bare soil images: A comparison. Remote Sens. Environ. 2020, 252, 112117. [Google Scholar] [CrossRef]
- Zhou, T.; Geng, Y.; Chen, J.; Pan, J.; Haase, D.; Lausch, A. High-resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms. Sci. Total Environ. 2020, 729, 138244. [Google Scholar] [CrossRef] [PubMed]
- El Hajj, M.; Baghdadi, N.; Zribi, M.; Bazzi, H. Synergic Use of Sentinel-1 and Sentinel-2 Images for Operational Soil Moisture Mapping at High Spatial Resolution over Agricultural Areas. Remote Sens. 2017, 9, 1292. [Google Scholar] [CrossRef] [Green Version]
- Bazzi, H.; Baghdadi, N.; El Hajj, M.; Zribi, M.; Belhouchette, H. A Comparison of Two Soil Moisture Products S2MP and Copernicus-SSM Over Southern France. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3366–3375. [Google Scholar] [CrossRef]
- Guiresse, A.; Cambou, E.; Collin Bellier, C.; Denjean, A.; Falba, P.; Guigues, E.; Mouclier, M.; Muller, N.; Nesling, E.; Party, J.-P.; et al. Les Pédo-paysages des plaines centrales de Midi-Pyrénées. Etude Gest. Des Sols 2014, 21, 77–84. [Google Scholar]
- Redon, P.-O.; Bur, T.; Guiresse, M.; Probst, J.-L.; Toiser, A.; Revel, J.-C.; Jolivet, C.; Probst, A. Modelling trace metal background to evaluate anthropogenic contamination in arable soils of south-western France. Geoderma 2013, 206, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Arrouays, D.; Richer-De-Forges, A.C.; Héliès, F.; Mulder, V.L.; Saby, N.P.; Chen, S.; Martin, M.P.; Dobarco, M.R.; Follain, S.; Jolivet, C.; et al. Impacts of national scale digital soil mapping programs in France. Geoderma Reg. 2020, 23, e00337. [Google Scholar] [CrossRef]
- Jones, A.; Fernandez Ugalde, O.; Scarpa, S. LUCAS 2015 Topsoil Survey; EUR 30332 EN, JRC121325; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-76-21080-1. (online). [Google Scholar] [CrossRef]
- Moeys, J. The Soil Texture Wizard: R Functions for Plotting, Classifying, Transforming and Exploring Soil Texture Data. R Pack-Age, Version 1.2.13, R Vignette; 2018, p. 104. Available online: https://cran.r-project.org/web/packages/soiltexture/vignettes/soiltexture_vignette.pdf (accessed on 12 December 2021).
- Boiffin, J. La Dégradation Structurale des Couches Superficielles des Sols Sous l’action des Pluies. Ph.D. Thesis, Sciences du Vi-vant [q-bio]. Institut National Agronomique Paris Grignon, Paris, France, 1984. (In French). [Google Scholar]
- Baetens, L.; Desjardins, C.; Hagolle, O. Validation of Copernicus Sentinel-2 Cloud Masks Obtained from MAJA, Sen2Cor, and FMask Processors Using Reference Cloud Masks Generated with a Supervised Active Learning Procedure. Remote Sens. 2019, 11, 433. [Google Scholar] [CrossRef] [Green Version]
- Baghdadi, N.; El Hajj, M.; Zribi, M.; Bousbih, S. Calibration of the Water Cloud Model at C-Band for Winter Crop Fields and Grasslands. Remote Sens. 2017, 9, 969. [Google Scholar] [CrossRef] [Green Version]
- Baghdadi, N.; Holah, N.; Zribi, M. Calibration of the Integral Equation Model for SAR data in C-band and HH and VV polarizations. Int. J. Remote Sens. 2006, 27, 805–816. [Google Scholar] [CrossRef]
- Dilts, T.E. Topography Tools for ArcGIS 10.3 and Earlier. Available online: https://www.arcgis.com/home/item.html?id=b13b3b40fa3c43d4a23a1a09c5fe96b9 (accessed on 10 September 2021).
- Geladi, P.; Kowalski, B.R. Partial least-squares regression: A tutorial. Anal. Chim. Acta 1986, 185, 1–17. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Wold, S. Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models. Technometrics 1978, 20, 397–405. [Google Scholar] [CrossRef]
- Mevik, B.-H.; Wehrens, R. The pls package: Partial least squares and principal component regression. J. Stat. Softw. 2007, 18, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Arrouays, D.; Saby, N.; Walter, C.; Lemercier, B.; Schvartz, C. Relationships between particle-size distribution and organic carbon in French arable topsoils. Soil Use Manag. 2006, 22, 48–51. [Google Scholar] [CrossRef]
- Loiseau, T.; Chen, S.; Mulder, V.L.; Dobarco, M.R.; Richer-De-Forges, A.C.; Lehmann, S.; Bourennane, H.; Saby, N.P.A.; Martin, M.P.; Vaudour, E.; et al. Satellite data integration for soil clay content modelling at a national scale. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101905. [Google Scholar] [CrossRef]
- Arrouays, D.; Girardin, C. Modelling organic carbon turnover in cleared temperate forest soils converted to maize cropping by using 13C natural abundance measurements. Plant Soil 1995, 173, 191–196. [Google Scholar] [CrossRef]
- Zhou, T.; Geng, Y.; Ji, C.; Xu, X.; Wang, H.; Pan, J.; Bumberger, J.; Haase, D.; Lausch, A. Prediction of soil organic carbon and the C:N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images. Sci. Total Environ. 2020, 755, 142661. [Google Scholar] [CrossRef]
- Demattê, J.A.M.; Fongaro, C.T.; Rizzo, R.; Safanelli, J.L. Geospatial Soil Sensing System (GEOS3): A powerful data mining procedure to retrieve soil spectral reflectance from satellite images. Remote Sens. Environ. 2018, 212, 161–175. [Google Scholar] [CrossRef]
- Diek, S.; Fornallaz, F.; Schaepman, M.E.; De Jong, R. Barest Pixel Composite for Agricultural Areas Using Landsat Time Series. Remote Sens. 2017, 9, 1245. [Google Scholar] [CrossRef] [Green Version]
- Silvero, N.E.Q.; Raimo, L.A.D.L.D.; Pereira, G.S.; de Magalhães, L.P.; Terra, F.D.S.; Dassan, M.A.A.; Salazar, D.F.U.; Demattê, J.A. Effects of water, organic matter, and iron forms in mid-IR spectra of soils: Assessments from laboratory to satellite-simulated data. Geoderma 2020, 375, 114480. [Google Scholar] [CrossRef]
- Rienzi, E.A.; Mijatovic, B.; Mueller, T.G.; Matocha, C.J.; Sikora, F.J.; Castrignanò, A. Prediction of Soil Organic Carbon under Varying Moisture Levels using Reflectance Spectroscopy. Soil Sci. Soc. Am. J. 2014, 78, 958–967. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.; Bellon-Maurel, V.; Roger, J.-M.; Gobrecht, A.; Ferrand, L.; Joalland, S. Removing the effect of soil moisture from NIR diffuse reflectance spectra for the prediction of soil organic carbon. Geoderma 2011, 167–168, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.; Jiang, Q.; Yu, L.; Liu, H.; Zhang, B. Reducing the Moisture Effect and Improving the Prediction of Soil Organic Matter with VIS-NIR Spectroscopy in Black Soil Area. IEEE Access 2021, 9, 5895–5905. [Google Scholar] [CrossRef]
- Meliyo, J.L.; Msanya, M.B.; Kimaro, D.N.; Massawe, J.B.H.; Hieronimo, P.; Mulungu, L.S.; Deckers, J.; Gulinck, H. Variability of soil organic carbon with landforms and land use in the Usambara Mountains of Tanzania. J. Soil Sci. Environ. Manag. 2016, 7, 123–132. [Google Scholar] [CrossRef]
- Patton, N.R.; Lohse, K.A.; Seyfried, M.S.; Godsey, S.E.; Parsons, S.B. Topographic controls of soil organic carbon on soil-mantled landscapes. Sci. Rep. 2019, 9, 6390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arrouays, D.; Vion, I.; Kicin, J.L. Spatial analysis and modeling of topsoil carbon storage in forest humic loamy soils of France. Soil Sci. 1995, 159, 191–198. [Google Scholar] [CrossRef]
- Besnard, E.; Chenu, C.; Balesdent, J.; Puget, P.; Arrouays, D. Fate of particulate organic matter in soil aggregates during cultivation. Eur. J. Soil Sci. 1996, 47, 495–503. [Google Scholar] [CrossRef]
- Arrouays, D.; Baize, D.; Hardy, M. Les sols de “touyas” issus d’alluvions anciennes des gaves pyrénéens: Veracrisols. In-tégration au Référentiel Pédologique. Sci. Du Sol. 1992, 30, 227–247. [Google Scholar]
- Martin, M.P.; Dimassi, B.; Dobarco, M.R.; Guenet, B.; Arrouays, D.; Angers, D.A.; Blache, F.; Huard, F.; Soussana, J.; Pellerin, S. Feasibility of the 4 per 1000 aspirational target for soil carbon: A case study for France. Glob. Chang. Biol. 2021, 27, 2458–2477. [Google Scholar] [CrossRef] [PubMed]
- Mello, F.A.O.; Demattê, J.A.M.; Rizzo, R.; Dotto, A.C.; Poppiel, R.R.; Mendes, W.D.S.; Guimarães, C.C.B. Expert-based maps and highly detailed surface drainage models to support digital soil mapping. Geoderma 2020, 384, 114779. [Google Scholar] [CrossRef]
- Thompson, J.A.; Pena-Yewtukhiw, E.M.; Grove, J.H. Soil–landscape modeling across a physiographic region: Topographic patterns and model transportability. Geoderma 2006, 133, 57–70. [Google Scholar] [CrossRef]
- Minasny, B.; Whelan, B.M.; Triantafilis, J.; McBratney, A.B. Pedometrics Research in the Vadose Zone-Review and Perspectives. Vadose Zone J. 2013, 12, vzj2012.0141. [Google Scholar] [CrossRef]
- Aubert, M.; Baghdadi, N.; Zribi, M.; Douaoui, A.; Loumagne, C.; Baup, F.; El Hajj, M.; Garrigues, S. Analysis of TerraSAR-X data sensitivity to bare soil moisture, roughness, composition and soil crust. Remote Sens. Environ. 2011, 115, 1801–1810. [Google Scholar] [CrossRef] [Green Version]
- de Jong, S.; Addink, E.; van Beek, L.; Duijsings, D. Physical characterization, spectral response and remotely sensed mapping of Mediterranean soil surface crusts. CATENA 2011, 86, 24–35. [Google Scholar] [CrossRef]
- LE Bissonnais, Y.; Arrouays, D. Aggregate stability and assessment of soil crustability and erodibility: II. Application to humic loamy soils with various organic carbon contents. Eur. J. Soil Sci. 1997, 48, 39–48. [Google Scholar] [CrossRef]
Image Date | S2 Tile | Time of Acquisition (u.t gmt) | Viewing Incidence Zenith Angle (°) | Sun Azimuth (°) | Sun Elevation (°) | Cloud/Shadow Cover by Tuile (%) | Cloud/Shadow Cover of Study Area (%) |
---|---|---|---|---|---|---|---|
6 April 2017 | T30TYN | 10:53:17 | <4,5 | 154.6 | 51.2 | 4 | 13.12 |
T30TYP | 10:53:17 | <5.9 | 155.1 | 50.5 | 6 | ||
T31TCH | 10:53:17 | <4.3 | 156.3 | 51.6 | 3 | ||
T31TCJ | 10:53:17 | <3.3 | 156.6 | 50.7 | 11 | ||
16 May 2017 | T30TYN | 10:53:22 | <4.5 | 148.8 | 63.5 | 23 | 5.51 |
T30TYP | 10:53:22 | <5.7 | 149.7 | 62.8 | 0 | ||
T31TCH | 10:53:22 | ≤4.3 | 151.0 | 63.9 | 18 | ||
T31TCJ | 10:53:22 | ≤3.3 | 151.7 | 63.1 | 2 | ||
26 May 2017 | T30TYN | 10:55:18 | <4.5 | 146.5 | 65.3 | 9 | 7.15 |
T30TYP | 10:55:18 | ≤5.8 | 147.5 | 64.5 | 0 | ||
T31TCH | 10:55:18 | ≤4.3 | 148.8 | 65.7 | 21 | ||
T31TCJ | 10:55:18 | ≤3.3 | 149.6 | 64.9 | 1 | ||
21 April 2018 | T30TYN | 10:56:29 | <4.4 | 153.1 | 56.6 | 14 | 4.79 |
T30TYP | 10:56:29 | <5.7 | 153.7 | 55.8 | 1 | ||
T31TCH | 10:56:29 | <4.2 | 155.0 | 59.9 | 3 | ||
T31TCJ | 10:56:29 | <3.2 | 155.4 | 56.0 | 4 | ||
11 May 2018 | T30TYN | 10:58:04 | <4.4 | 149.9 | 62.4 | 3 | 2.33 |
T30TYP | 10:58:04 | <5.7 | 150.7 | 61.6 | 0 | ||
T31TCH | 10:58:04 | <4.2 | 152.0 | 62.7 | 4 | ||
T31TCJ | 10:58:04 | <3.2 | 152.7 | 61.9 | 0 | ||
21 May 2018 | T30TYN | 10:57:02 | <4.4 | 147.7 | 64.5 | 71 | 30.09 |
T30TYP | 10:57:02 | <5.7 | 148.7 | 63.7 | 11 | ||
T31TCH | 10:57:02 | <4.2 | 150.0 | 64.9 | 72 | ||
T31TCJ | 10:57:02 | <3.2 | 150.7 | 64.0 | 20 |
Spectral Band | Spectral Domain | Central Wavelength (nm) | Bandwidth (nm) | Spatial Resolution (m) |
---|---|---|---|---|
B2 | Vis (blue) | 490 | 65 | 10 |
B3 | Vis (Green) | 560 | 35 | 10 |
B4 | Vis (Red) | 665 | 30 | 10 |
B5 | R-edge | 705 | 15 | 20 |
B6 | R-edge | 740 | 15 | 20 |
B7 | R-edge | 783 | 20 | 20 |
B8 | NIR | 842 | 115 | 10 |
B8A | NIR | 865 | 20 | 20 |
B11 | SWIR | 1610 | 90 | 20 |
B12 | SWIR | 2190 | 180 | 20 |
S2 Acquisition Date (ds2) | SM Date (DSM) | DSM—DS2 (Days) | SMP Cover in the Study Area (%) | Total SMP Cover * (%) | Rainfall S2 (mm) ** | Previous Rain Events (mm) *** | Rainfall SMP (mm) **** |
---|---|---|---|---|---|---|---|
6 April 2017 | 7 April 2017 | 1 | 32.62 | 2.40 | 0 | 2.9 | 0 |
16 May 2017 | 19 May 2017 | 3 | 22.64 | 2.13 | 0 | 6.3 | 59 |
26 May 2017 | 25 May 2017 | 1 | 32.61 | 2.48 | 0 | 0 | 0 |
21 April 2018 | 19 April 2018 | 2 | 12.05 | 1.98 | 0 | 0 | 0 |
11 May 2018 | 13 May 2018 | 2 | 18.14 | 2.72 | 0 | 0 | 58 |
21 May 2018 | 20 May 2018 | 1 | 23.53 | 2.90 | 1.2 | 2 | 1 |
SOC (g.kg−1) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S-2 Date | Soil Sampling Periods | NS | R2CV | RMSECV (g.kg−1) | RPDCV | RPIQCV | NC | Min | Me | Max | SD | Skw | Kr | |
6 April 2017 | 2005–2018 | 187 | 0.48 | 6.74 | 1.4 | 1.07 | 6 | 2.4 | 10.1 | 13.7 | 53.1 | 9.45 | 2 | 6.95 |
2010–2018 | 165 | 0.52 | 6.82 | 1.46 | 1.08 | 6 | 2.4 | 10 | 14 | 53.1 | 9.94 | 1.92 | 6.2 | |
2015–2018 | 132 | 0.64 | 5.42 | 1.7 | 1.25 | 7 | 2.4 | 9.4 | 13.1 | 53.1 | 9.13 | 2 | 6.9 | |
2016–2018 | 98 | 0.7 | 5.58 | 1.83 | 1.68 | 7 | 5.03 | 9.1 | 14.14 | 53.1 | 10.2 | 1.73 | 5.26 | |
16 May 2017 | 2005–2018 | 195 | 0.36 | 6.48 | 1.26 | 0.96 | 4 | 0.94 | 9.6 | 12.6 | 53.1 | 8.15 | 2.28 | 8.7 |
2010–2018 | 163 | 0.45 | 6.32 | 1.36 | 0.9 | 6 | 2.4 | 9.5 | 12.84 | 53.1 | 8.6 | 2.25 | 8.15 | |
2015–2018 | 130 | 0.58 | 5.93 | 1.55 | 0.95 | 6 | 2.4 | 9.2 | 12.89 | 53.1 | 9.2 | 2.2 | 7.6 | |
2016–2018 | 95 | 0.68 | 5.82 | 1.78 | 1.43 | 6 | 5.03 | 9.16 | 14 | 53.1 | 10.3 | 1.84 | 5.6 | |
26 May 2017 | 2005–2018 | 199 | 0.4 | 6.51 | 1.3 | 1.06 | 4 | 0.94 | 9.62 | 13.09 | 53.1 | 8.5 | 1.95 | 6.8 |
2010–2018 | 169 | 0.48 | 6.39 | 1.4 | 1.17 | 4 | 2.4 | 9.5 | 13.45 | 53.1 | 8.9 | 1.87 | 6.21 | |
2015–2018 | 134 | 0.59 | 6.12 | 1.56 | 1.24 | 4 | 2.4 | 9.32 | 13.57 | 53.1 | 9.5 | 1.81 | 5.71 | |
2016–2018 | 100 | 0.65 | 6.17 | 1.7 | 1.75 | 5 | 5 | 9.33 | 14.7 | 53.1 | 10.5 | 1.51 | 4.4 | |
21 April 2018 | 2005–2018 | 204 | 0.35 | 9.16 | 1.25 | 0.72 | 6 | 0.8 | 10 | 13.9 | 89.8 | 11.4 | 3.24 | 16.8 |
2010–2018 | 182 | 0.37 | 8.72 | 1.27 | 0.75 | 6 | 0.8 | 10 | 13.8 | 89.8 | 11 | 3.15 | 16.7 | |
2015–2018 | 148 | 0.56 | 5.78 | 1.51 | 1.12 | 5 | 2.4 | 9.8 | 13 | 53.1 | 8.71 | 2.15 | 7.66 | |
2016–2018 | 122 | 0.6 | 5.7 | 1.6 | 1.14 | 5 | 5.01 | 9.9 | 13.5 | 53.1 | 9.22 | 2 | 6.82 | |
11 May 2018 | 2005–2018 | 236 | 0.37 | 6.09 | 1.27 | 1.07 | 4 | 0.8 | 10.42 | 12.84 | 53.1 | 7.73 | 2.09 | 8.35 |
2010–2018 | 208 | 0.42 | 6 | 1.32 | 1.07 | 4 | 0.8 | 10.3 | 12.96 | 53.1 | 7.98 | 2.1 | 8.13 | |
2015–2018 | 171 | 0.58 | 5.42 | 1.56 | 1.26 | 5 | 2.4 | 10.3 | 13.2 | 53.1 | 8.43 | 2.07 | 7.56 | |
2016–2018 | 135 | 0.66 | 5.22 | 1.73 | 1.53 | 6 | 4.21 | 10.6 | 13.98 | 53.1 | 9 | 1.89 | 6.46 | |
21 May 2018 | 2005–2018 | 202 | 0.36 | 6.47 | 1.26 | 1 | 4 | 2.4 | 10.7 | 13.45 | 53.1 | 8.13 | 2.11 | 7.93 |
2010–2018 | 183 | 0.36 | 6.6 | 1.26 | 1 | 6 | 2.4 | 10.6 | 13.5 | 53.1 | 8.36 | 2.11 | 7.72 | |
2015–2018 | 152 | 0.47 | 6.44 | 1.38 | 1.15 | 6 | 2.4 | 10.6 | 13.85 | 53.1 | 8.9 | 1.9 | 6.87 | |
2016–2018 | 123 | 0.55 | 6.35 | 1.5 | 1.36 | 6 | 5.25 | 10.8 | 14.63 | 53.1 | 9.5 | 1.8 | 5.85 |
SOC (g.kg−1) | Soil Moisture (Vol.%) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SM Date | NS | MD | R2CV | RMSECV (g.kg−1) | RPDCV | RPIQCV | NC | Min | Me | Max | SD | Skw | Kr | Min | Me | Max | ||
7 April 2017 | 84 | No | 0.66 | 5.67 | 1.75 | 1.52 | 7 | 5.48 | 9.1 | 14 | 53.1 | 9.9 | 1.82 | 5.8 | 6.8 | 17.8 | 17.2 | 24.6 |
Yes | 0.66 | 5.66 | 1.75 | 1.53 | 8 | |||||||||||||
19 May 2017 | 69 | No | 0.67 | 6.07 | 1.77 | 1.77 | 5 | 5.03 | 10.5 | 15 | 53.1 | 10.7 | 1.63 | 4.9 | 9 | 22.2 | 21.6 | 28 |
Yes | 0.67 | 6.1 | 1.76 | 1.75 | 6 | |||||||||||||
25 May 2017 | 87 | No | 0.64 | 6.45 | 1.67 | 1.73 | 5 | 5.48 | 10.2 | 15 | 53.1 | 10.7 | 1.44 | 4.1 | 5.4 | 13 | 12.6 | 19.2 |
Yes | 0.63 | 6.54 | 1.65 | 1.7 | 7 | |||||||||||||
19 April 2018 | 66 | No | 0.62 | 6.72 | 1.63 | 1.46 | 4 | 5.01 | 13.6 | 17 | 53.1 | 10.9 | 1.26 | 3.8 | 8.8 | 19.3 | 19.3 | 26.4 |
Yes | 0.6 | 6.82 | 1.6 | 1.44 | 5 | |||||||||||||
13 May 2018 | 79 | No | 0.76 | 5 | 2.06 | 1.9 | 3 | 4.21 | 13.8 | 17 | 53.1 | 10.4 | 1.27 | 4.1 | 17.4 | 28 | 27.6 | 35.2 |
Yes | 0.76 | 5.1 | 2.03 | 1.87 | 4 | |||||||||||||
20 May 2018 | 89 | No | 0.55 | 6.37 | 1.5 | 1.58 | 7 | 5.25 | 12.3 | 15 | 53.1 | 9.5 | 1.7 | 5.9 | 9.8 | 22.4 | 22.3 | 29 |
Yes | 0.58 | 6.12 | 1.56 | 1.65 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbina-Salazar, D.; Vaudour, E.; Baghdadi, N.; Ceschia, E.; Richer-de-Forges, A.C.; Lehmann, S.; Arrouays, D. Using Sentinel-2 Images for Soil Organic Carbon Content Mapping in Croplands of Southwestern France. The Usefulness of Sentinel-1/2 Derived Moisture Maps and Mismatches between Sentinel Images and Sampling Dates. Remote Sens. 2021, 13, 5115. https://doi.org/10.3390/rs13245115
Urbina-Salazar D, Vaudour E, Baghdadi N, Ceschia E, Richer-de-Forges AC, Lehmann S, Arrouays D. Using Sentinel-2 Images for Soil Organic Carbon Content Mapping in Croplands of Southwestern France. The Usefulness of Sentinel-1/2 Derived Moisture Maps and Mismatches between Sentinel Images and Sampling Dates. Remote Sensing. 2021; 13(24):5115. https://doi.org/10.3390/rs13245115
Chicago/Turabian StyleUrbina-Salazar, Diego, Emmanuelle Vaudour, Nicolas Baghdadi, Eric Ceschia, Anne C. Richer-de-Forges, Sébastien Lehmann, and Dominique Arrouays. 2021. "Using Sentinel-2 Images for Soil Organic Carbon Content Mapping in Croplands of Southwestern France. The Usefulness of Sentinel-1/2 Derived Moisture Maps and Mismatches between Sentinel Images and Sampling Dates" Remote Sensing 13, no. 24: 5115. https://doi.org/10.3390/rs13245115
APA StyleUrbina-Salazar, D., Vaudour, E., Baghdadi, N., Ceschia, E., Richer-de-Forges, A. C., Lehmann, S., & Arrouays, D. (2021). Using Sentinel-2 Images for Soil Organic Carbon Content Mapping in Croplands of Southwestern France. The Usefulness of Sentinel-1/2 Derived Moisture Maps and Mismatches between Sentinel Images and Sampling Dates. Remote Sensing, 13(24), 5115. https://doi.org/10.3390/rs13245115