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Abstract: Dense semantic labeling is significant in high-resolution remote sensing imagery research
and it has been widely used in land-use analysis and environment protection. With the recent
success of fully convolutional networks (FCN), various types of network architectures have largely
improved performance. Among them, atrous spatial pyramid pooling (ASPP) and encoder-decoder
are two successful ones. The former structure is able to extract multi-scale contextual information and
multiple effective field-of-view, while the latter structure can recover the spatial information to obtain
sharper object boundaries. In this study, we propose a more efficient fully convolutional network
by combining the advantages from both structures. Our model utilizes the deep residual network
(ResNet) followed by ASPP as the encoder and combines two scales of high-level features with
corresponding low-level features as the decoder at the upsampling stage. We further develop
a multi-scale loss function to enhance the learning procedure. In the postprocessing, a novel
superpixel-based dense conditional random field is employed to refine the predictions. We evaluate
the proposed method on the Potsdam and Vaihingen datasets and the experimental results
demonstrate that our method performs better than other machine learning or deep learning methods.
Compared with the state-of-the-art DeepLab_v3+ our model gains 0.4% and 0.6% improvements in
overall accuracy on these two datasets respectively.

Keywords: remote sensing imagery; dense semantic labeling; fully convolutional networks; atrous
spatial pyramid pooling; encoder-decoder; superpixel-based DenseCRF

1. Introduction

High-resolution remote sensing imagery captured by satellite or unmanned aerial vehicle
(UAV) contains rich information and is significant in many applications, including land-use analysis,
environment protection and urban planning [1]. Due to the rapid development of remote sensing
technology, especially the improvement of imaging sensors, a massive number of high-quality images
are available to be utilized [2]. With the support of sufficient data, dense semantic labeling, also known
as semantic segmentation in computer vision, is now an essential aspect in research and is playing an
increasingly critical role in many applications [3].

To better understand the scene, dense semantic labeling aims at segmenting the objects of given
categories from the background of the images at the pixel-level, such as buildings, trees and cars [4].
In the past decades, a vast number of algorithms have been proposed. These algorithms can be divided
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into two major parts, that is, traditional machine learning methods and convolutional neural network
(CNN) methods [5].

Traditional machine learning methods usually adopt a two-stage architecture consisting of
a feature extractor and a classifier [6]. The feature extractor aims at extracting spatial and textural
features from local portions of the image, encoding the spatial arrangements of pixels into a high-
dimensional representation [7]. Many powerful feature extractors have been presented before, such as
Histogram of oriented gradients (HOG) [8], Scale invariant Feature Transform (SIFT) [9] and Speeded
up robust features (SURF) [10]. Meanwhile, the classifier makes the prediction of every pixel in
the image based on the extracted features. Support vector machines [11], Random forests [12] and
K-means [13] are usually employed. However, these traditional machine learning methods cannot
achieve a satisfactory result, due to massive changes in illumination in the images and the strong
similarity of shape and color with different categories of objects. It is challenging to have a robust
prediction [14].

In recent years, convolutional neural networks have achieved extreme success in many domains of
computer vision tasks, including dense semantic labeling [15,16]. CNNs learn the network parameters
directly from data using backpropagation and have more hidden layers which means a more powerful
nonlinear fitting ability [17]. In the early stage, CNNs focused on classification tasks, significantly
outperformed the traditional machine learning methods on ImageNet large scale visual recognition
competition (ILSVRC) [18]. Afterwards, many excellent networks were proposed, such as VGG [19],
Deep residual network (ResNet) [20] and DenseNet [21]. However, dense semantic labeling is
a pixel-level classification task [22]. To retain the spatial structure, fully convolutional networks
(FCN) [23] replace the fully connected layers with upsampling layers. Through the upsampling
operations, the downsampled feature maps can be restored to the original resolution of the input
image. The FCN model is the first end-to-end, pixels-to-pixels network and most further networks are
based on it [24].

Nowadays, the classification accuracy of FCN-based models is relatively high. The primary
objective in dense semantic labeling tasks is to obtain a more accurate boundary of objects and deal
with the misclassification problem of small objects. The challenge comes from two aspects. First,
the pooling layers or convolution striding used between convolution layers can augment the receptive
field; meanwhile, they can also downsample the resolution of feature maps which cause the loss of
spatial information. Second, objects of the same category exist in multiple scales of shape and small
objects are hard to classify correctly [25]. Therefore, simply employing upsampling operations such as
deconvolution or bilinear interpolation after the feature extractor parts of a network cannot guarantee
a fine prediction result. Many network structures have been proposed to handle these problems;
among them, atrous spatial pyramid pooling (DeepLab) [26] and encoder-decoder (U-net) [27] are the
state-of-art structures.

The atrous spatial pyramid pooling (ASPP) network structure from the DeepLab model has been
well-known for achieving robust and efficient dense semantic labeling performance and it aims at
handling the problem of segmenting objects at multiple scales [28]. The network structure consists
of several branches of atrous convolution operations and each branch has a different rate of the
convolution kernels to probe an incoming feature map at specific effective field-of-view. Therefore,
ASPP shows better performance on detecting objects at different scales of shape, especially the small
objects. But DeepLab model only utilized a simple bilinear interpolation after ASPP to restore the
resolution of feature maps that lead to a bad impact on getting fine boundary of the objects.

The encoder-decoder structure from U-net has been widely used in the dense semantic labeling
tasks of remote sensing imageries [14,29]. It adopts several skip connections between top layers and
bottom layers at the upsampling stage. Due to the combination of contextual information at scales of 1,
1/2, 1/4, 1/8 of the input resolution, spatial information damaged by the pooling operations can be
better restored, so objects in the final prediction have a sharper boundary after the decoder. However,
U-net has no consideration for the extraction of multiple scales of features.
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These two powerful network structures only focus on the two problems in dense semantic labeling
respectively and no works have taken them into account simultaneously before. Therefore, a model
employing both of them could further improve the performance. Figure 1 shows details of alternative
network structures of dense semantic labeling.
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Figure 1. Alternative network structures in dense semantic labeling (a) The classic FCN-32s, (b) The
classic FCN-8s (with skip architecture), (c) Encoder-Decoder, (d) Atrous Spatial Pyramid Pooling and
(e) Ours.

Inspired by the analysis above, we propose a novel architecture of the fully convolutional network
that aims at not only detecting objects of different shapes but also restoring sharper object boundaries
simultaneously. Our model adopts the deep residual network (ResNet) as the backbone, followed
by atrous spatial pyramid pooling (ASPP) structure to extract multi-scale contextual information;
these two parts constitute the encoder. Then we design the decoder structures by fusing two
scales of low-level feature maps from ResNet with the corresponding predictions to restore the
spatial information. To make this two structure fusion effective, we append a multi-scale softmax
cross-entropy loss function with corresponding weights at the end of networks. Different from the
loss function in Reference [29], our proposed loss function guides every scale of prediction during the
training procedure which helps better optimize the parameters in the intermediate layers. After the
networks, we improve the dense conditional random field (DenseCRF) using a superpixel algorithm
in post-processing that gives an additional boost to performance. Experiments on the Potsdam and
Vaihingen datasets demonstrate that our model outperformed other state-of-art networks and achieved
88.4% and 87.0% overall accuracy respectively with the calculation of the boundary pixels of objects.
The main contributions of our study are listed as follows:

1. We propose a novel convolutional neural network that combines the advantages of ASPP and
encoder-decoder structures.

2. We enhance the learning procedure by employing a multi-scale loss function.
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3. We improve the dense conditional random field with a superpixel algorithm to optimize the
prediction further.

The remainder of this paper is organized as follows: Section 2 describes our dense semantic
labeling system which includes the proposed model and the superpixel-based DenseCRF. Section 3
presents the datasets, preprocessing methods, training protocol and results. Section 4 is the discussion
of our method and Section 5 concludes the whole study.

2. Methods

In this paper, a dense semantic labeling system to extract categorized objects from high-resolution
remote sensing imagery is proposed. The system involves in the following stages. First, the imageries
including red, green, blue (RGB), infrared radiation (IR) and normalized digital surface model
(DSM) channels and groundtruth are sliced into small patches to generate the training and test data.
Meanwhile, some data augmentation methods are employed to increase the complexity of data, such
as flipping and rescaling the imageries randomly and so forth. Then, our proposed fully convolutional
network is trained using the training data; the training procedure is based on the gradient descent
algorithm that uses the updated parameters calculated by the loss function to improve the performance
of the network. After that, the trained model with the best parameters will be chosen to generate
predictions on the test data. Finally, we introduce a superpixel-based DenseCRF to optimize the
predictions further. The pipeline of our dense semantic labeling system is illustrated in Figure 2.
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training, testing and post-processing.

2.1. Encoder with ResNet and Atrous Spatial Pyramid Pooling

In this section, we introduce the encoder part of the proposed fully convolutional network. Our
model adopts ResNet as the backbone, followed by the atrous spatial pyramid pooling structure. These
two parts constitute the encoder to extract multiple scales of contextual information.

2.1.1. ResNet-101 as the Backbone

The backbone is the basic structure to extract features from input imageries in FCN-based
models [30]. Nowadays, most works adopt classic classification networks such as VGG, ResNet
without the fully connected parts. The reason is two-fold. First, these networks have excellent
performance on ImageNet large scale visual recognition competition. Second, we can fine-tune our
network with the pre-trained model. In this study, we choose ResNet as the backbone of our model.
ResNet solved the vanishing-gradient problem [31] by employing the bottleneck unit and achieved
better accuracy and smaller model size with deeper layers. Figure 3 shows details of ResNet and the
bottleneck unit.
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Figure 3. The structure of ResNet50/101 which consists of one convolution layer and four Blocks. Each
Block has several Bottleneck units. Inside the bottleneck unit, there is a shortcut connection between
the input and output. In this study, we choose ResNet101 as the backbone of our model.

2.1.2. Atrous Spatial Pyramid Pooling

In this study, we utilize ASPP after ResNet to extract multi-scale contextual information further.
ASPP is a parallel structure of several branches that operate to the same feature map and fuse the
outputs in the end and it was first introduced in DeepLab_v2 network. ASPP employs the atrous
convolution [32] in each branch. Different from standard convolution, atrous convolution has a rate
parameter which adds the corresponding quantity of zeros between the parameters in the convolution
filter. This operation equals the downsampling, convolution and upsampling process but has much
better performance without increasing the number of parameters that maintains the efficiency of
the network. The ASPP structure has two versions. The original one in DeepLab_v2 includes four
branches of atrous convolution with rate 6, 12, 18, 24. But the convolution filter with rate 24 is close to
the size of input feature maps, only the center of it takes effect. In DeepLab_v3 [33], it was replaced
by a 1 × 1 convolution. Moreover, an image pooling branch is also appended to incorporate global
context information. In our model, we employ the advanced ASPP structure.

2.2. Decoder and the Multi-scale Loss Function

In this section, we introduce the decoder part of our model. Based on the encoder structure
mentioned above, we propose a two-step decoder structure at the upsampling stage to refine the
boundary of objects in the final predictions and fuse the ASPP and encoder-decoder structure together.
We also present a multi-scale loss function to solve the optimization problem caused by an excessive
number of intermediate layers and to make the whole network more effective.

2.2.1. Proposed Decoder

The decoder structure is to restore the spatial information and improve the final prediction by
fusing the multi-scale high-level features with the corresponding scales of low-level features at the
upsampling stage. In our model, the resolution of feature maps extracted by ResNet and ASPP
is 16 times smaller than the input imageries. Here we propose a two-step decoder structure to
restore the feature maps to the original resolution with the fusion of features from ResNet. First,
the features maps from the encoder are bilinearly upsampled by a factor of 2 and concatenated with
the corresponding low-level features in ResNet that have the same resolution (Conv1 of Bottleneck4 in
Block2). Meanwhile, to prevent the corresponding low-level features (512 channels) from outweighing
the importance of the high-level encoder features (only 256 channels), we apply a 1× 1 convolution to
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reduce the number of channels to 48. After the concatenation, another 1× 1 convolution is applied
to reduce the number of channels to 256. Then we repeat this process to concatenate the lower-level
features in ResNet (Conv1 of Bottleneck3 in Block1). In the end, two 3× 3 convolutions and one
1× 1 convolution are applied to refine the features followed by a bilinear upsampling by a factor of 4.
Figure 4 shows details of our decoder structure.
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Figure 4. The architecture of our proposed fully convolutional network with the fusion of ASPP and
encoder-decoder structures. ResNet101 followed by ASPP is the encoder part to extract multiple scale
contextual information. While the proposed decoder shown as the purple blocks refines the boundary
of object. In the end, the multi-scale loss function guides the training procedure.

2.2.2. Multi-scale Loss Function

The loss function is a necessary component in the deep learning model to calculate the deviation
value between the prediction and groundtruth and optimize the parameters through backpropagation.
Traditional FCN-based models adopt a single softmax cross-entropy loss function at the end of the
network. For our model, we adopt the encoder structure which consists of ResNet101 and ASPP
and propose a decoder structure of two-scale low-level features fusion. There is a large number of
intermediate layers and their corresponding parameters, so one single loss function [34] is insufficient
to optimize all the layers especially the layers in the encoder part (far from the loss function). To solve
this, we apply a multi-scale softmax cross-entropy loss function at different scales of prediction. First,
we append a loss function at the end of the network after the 4 times upsampling with the groundtruth
of the original resolution. Then, we apply a 3 × 3 convolution followed by 1 × 1 convolution to
the 2 times upsampled feature maps from ASPP and append another loss function with the 8 times
downsampled groundtruth. The former loss function at the end guides the whole network training
as the traditional method, while the latter one in the middle can further enhance the optimization of
the parameters in the encoder. We also put corresponding weights for these two losses as λ1 and λ2.
The overall loss function is:
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Loverall = λ1 × Lsub1 + λ2 × Lsub2 (1)

During the training phase, our model is trained by the stochastic gradient descent (SGD)
algorithm [35] to minimize the overall loss. The best performance was achieved using λ1 = 0.5
and λ2 = 0.5. As more constraints were applied, the ASPP and encoder-decoder structure fusion could
be more effective. The multi-scale loss function is shown in Figure 4 and the detailed configurations of
the proposed network is shown in Table 1.

Table 1. Configurations of the proposed network.

Layer Type Kernel Size Resolution Connect to

ResNet 101

conv_1 convolution 3× 3, 128 256× 256 block1
block1 residual_block ×3 -, 256 128× 128 block2 & conv2_2
block2 residual_block ×4 -, 512 64× 64 block3 & conv1_2
block3 residual_block ×23 -, 1024 32× 32 block4
block4 residual_block ×3 -, 2048 32× 32 ASPP

ASPP

branch1 convolution 1× 1, 256 32× 32 concat_1
branch2 atrous_conv 3× 3, rate = 6, 256 32× 32 concat_1
branch3 atrous_conv 3× 3, rate = 12, 256 32× 32 concat_1
branch4 atrous_conv 3× 3, rate = 18, 256 32× 32 concat_1
branch5 global_pooling -, 256 32× 32 concat_1
concat_1 concatenation -, 1280 32× 32 conv1_1
conv1_1 convolution 1× 1, 256 32× 32 up_1

Decoder

up_1 upsample -, 256 64× 64 concat_2 & conv1_3
conv1_2 convolution 1× 1, 48 64× 64 concat_2
conv1_3 convolution 3× 3, 256 64× 64 conv1_4
conv1_4 convolution 1× 1, 6 64× 64 Lsub1
concat_2 concatenation -, 304 64× 64 conv2_1
conv2_1 convolution 1× 1, 256 64× 64 up_2

up_2 upsample -, 256 128× 128 concat_3
conv2_2 convolution 1× 1, 48 128× 128 concat_3
concat_3 concatenation -, 304 128× 128 conv3_1
conv3_1 convolution ×2 3× 3, 256 128× 128 conv3_2
conv3_2 convolution 1× 1, 6 128× 128 up_3

up_3 upsample -, 6 512× 512 Lsub2

2.3. Dense Conditional Random Fields Based on Superpixel

For dense semantic labeling tasks, post-processing after the deep learning model is a common
method to optimize the predictions additionally. The most widely used one is Dense Conditional
Random Fields (CRF) [36,37]. As a graph theory-based algorithm, pixel-level labels can be considered
as random variables and the relationship between pixels in the image can be considered as edges, these
two factors constitute a conditional random field. The energy function employed in CRF is:

E(x) = ∑
i

θi(xi) + ∑
ij

φij
(

xi, xj
)

(2)

where x is the label for the pixels in input image, θi(xi) is the unary potential that represents the
probability at pixel i and φij

(
xi, xj

)
is the pairwise potentials that represent the cost between labels xi,

xj at pixels i, j. The expression of pairwise potential is:

φij
(

xi, xj
)
= µ

(
xi, xy

)[
ω1 exp

(
−
‖pi − pj‖2

2σ2
α

−
‖Ii − Ij‖2

2σ2
β

)
+ ω2 exp

(
−
‖pi − pj‖2

2σ2
γ

)]
(3)

where µ
(

xi, xy
)
= 1 if x1 6= x2 and µ

(
xi, xy

)
= 0 otherwise, as shown in Potts model [38]. The other

expressions are two Gaussian kernels. The first one represents both pixel positions and color, the
second one represents only pixel positions. Ii and pi are color vector and pixel position at pixel i.
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The common inputs for CRF are prediction map and RGB image. In our study, we employ
a superpixel algorithm (SLIC) [39,40] to boost the performance of CRF. Superpixel algorithm can
segment the image into a set of patches and each patch consists of several pixels that are similar in
color, location and so forth. The superpixel algorithm has the ability to detect the boundaries of the
object in images. The process of our superpixel-based CRF is as follows:

Algorithm 1. The process of CRF based on superpixel

1. Input RGB image I and prediction map from our model L. All the J categories of object in dataset
denoted as C =

{
c1, c2, . . . , cJ

}
.

2. Apply SLIC algorithm to I, generate M superpixels S = {s1, s2, . . . , sM}, si is the i th superpixel region.
3. Loop: For i = 1 : M

(1) All the N pixels in si denoted as Pi = {pi1, pi2, . . . , piN}.
(2) Each pixel pij has a prediction lij in L and lij ∈ C, where C is all the categories of object in dataset.

(3) Count the number of predictions in every category,
{

count(c1), count(c2), . . . , count
(
cJ
)}

.

(4) The new prediction for the whole superpixel is l̃si = max
(
count(c1), count(c2), . . . , count

(
cJ
))

.
End

4. Update the prediction map as L̃.
5. Apply DenseCRF to I and L̃, output the final prediction L f inal .

3. Results

3.1. Datasets

We evaluate our dense semantic labeling system on the ISPRS 2D high-resolution remote sensing
imageries which include the Potsdam and Vaihingen datasets. These two datasets are open online (http:
//www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html) and captured by airborne
sensors with 6 categories: impervious surfaces (white), building (blue), low vegetation (cyan), tree
(green), car (yellow), cluster/background (red). Their ground sampling distance are 5 cm and 9 cm.
The Potsdam dataset contains 38 imageries with 5 channel data of red, green, blue, infrared and digital
surface model (DSM) [41] at resolution of 6000× 6000; all the imageries have corresponding pixel-level
groundtruth, 24 imageries are for training and 14 imageries are for testing. While the Vaihingen dataset
includes 33 imageries with 4 channel data of red, green, infrared and DSM at approximate resolution
of 2500 × 2500. Similar to the Potsdam dataset, all the imageries have corresponding pixel-level
groudtruth. 16 imageries are for training and 17 imageries are for testing. For DSM in these two
datasets, we utilize the normalized DSM in our evaluation. Figure 5 shows a sample of the imagery.
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3.2. Preprocessing the Datasets

All the imageries in datasets need be preprocessed before feeding to our model and the
preprocessing operation consists of two parts, slicing and data augment.

The resolution of the imageries is too high. Due to the memory limit of the GPU hardware, feeding
them directly to FCN-based model is impossible. To deal with this problem, there are two common
methods, namely slicing and downsampling [42]. Downsampling will destroy the spatial structure
of objects especially small size objects such as cars and low vegetation, so slicing is the better choice.
In this study, according to the capacity of GPU memory, we slice the training imageries into 512× 512
patches with an overlay of 64 pixels (striding 448 pixels) and slice the test imageries with the same size
without overlay.

Deep learning is a data-driven method, acquiring accurate results rely on the diversity and quality
of the datasets. Data augment is an effective way to improve performance with the same amount of
data [43]. In this study, we employ several specific methods. The problem of color imbalance, which is
usually caused by the change of seasons and the incidence angle of sunlight has a significant influence
in remote sensing imagery research. To solve this problem, we change the brightness, saturation
hue and contrast randomly to augment the datasets. Object rotation is another problem to deal with.
Unlike the general images, remote sensing imageries are captured in the air with different shooting
angles. In order to solve it, we flip the imageries in horizontal and vertical directions randomly. For the
problem of objects with multiple scales, we rescale the imageries from a factor of 0.5 to 2 and apply
padding or cropping to restore the original resolution.

3.3. Training Protocol and Metrics

Our proposed model is deployed on the TensorFlow deep learning platform [44] with one NVIDIA
GTX1080Ti GPU (11GB RAM). Because of the limit of memory, the batch size of input imageries is set
to 6. For the learning rate, we have explored different policies, including fixed policy and step policy.
The results show that ‘poly’ learning rate policy is the best one. The formula is:

learning_rate = initial_learning_rate
(

1− iteration
max_iteration

)power
(4)

where initial_learning_rate = 0.007, power = 0.9 and max_iteration = 100000 in this study. The
training time of the proposed network is 21 hours. The optimizer that we employed is stochastic
gradient descent (SGD) with a momentum of 0.9. Our post-processing method of superpixel-based
DenseCRF was implemented based on Matlab and the open source PyDenseCRF package.

The metrics to evaluate our dense semantic labeling system involve 4 different criteria: overall
accuracy (OA), F1 score, precision and recall. They have the high frequency to be employed in the
former works. The formula is as follows:

OA =
TP + TN

P + N
(5)

precision =
TP

TP + FP
(6)

recall =
TP

TP + FN
(7)

F1 = 2× precision× recall
precision + recall

(8)

where P is the number of Positive samples, N is the number of negative samples, TP is the true positive,
FP is the false positive and FN is the false negative.
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3.4. Experimental Results

To better evaluate our Dense semantic labeling system, U-net, DeepLab_v3 and even the newest
version DeepLab_v3+ [29] are adopted as the baseline for the comparison to our proposed model.
Moreover, classic DenseCRF is employed to make a contrast with our superpixel-based DenseCRF.
It should be noted that all of the metric scores are computed with the pixels of the object boundary.

Our proposed model achieves 88.3% overall accuracy on the Potsdam dataset and 86.7% overall
accuracy on the Vaihingen dataset. Figure 6 shows a sample of the result of our proposed model on the
Potsdam dataset and Figure 7 shows a sample of the result on the Vaihingen dataset. The first column
is the input high-resolution remote sensing imageries; the second column is their corresponding
groudtruth; and the last column represents the prediction maps of our model. The detailed results in
these two datasets are shown in Tables 2 and 3.

Table 2. The metric scores of overall accuracy, precision, recall, F1 score for dense semantic labeling on
the Potsdam dataset.

Metrics Imp_surf Building Low_veg Tree Car Average

OA N/A N/A N/A N/A N/A 0.883
precision 0.889 0.946 0.827 0.853 0.912 0.885

recall 0.916 0.972 0.853 0.840 0.881 0.893
F1 0.902 0.959 0.839 0.843 0.896 0.888

Table 3. The metric scores of overall accuracy, precision, recall, F1 score for dense semantic labeling on
the Vaihingen dataset.

Metrics Imp_surf Building Low_veg Tree Car Average

OA N/A N/A N/A N/A N/A 0.867
precision 0.877 0.912 0.790 0.838 0.785 0.840

recall 0.887 0.826 0.766 0.873 0.712 0.833
F1 0.881 0.917 0.776 0.852 0.739 0.833
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4. Evaluation and Discussion

4.1. The Importance of Multi-scale Loss Function

Encoder-decoder and ASPP are two powerful network structures that have been demonstrated
by former works. The objective of our proposed model is to fuse them to achieve a better labeling
performance. Experiments show that simply assembling the proposed encoder and decoder with the
traditional single loss function at the end of the network cannot obtain any improvement compared
with DeepLab_v3+ model. Due to the complexity of the network after fusion, the amount of parameters
increases significantly, so additional guidance is needed to make gradient optimization smoother.
Different from the single loss function, the multi-scale loss function can better guide the network
during the training procedure. As shown in Table 4, the overall accuracy of the Potsdam and Vaihingen
datasets have been improved by 0.33% and 0.82% respectively. Meanwhile, the precision, recall and F1

score have also been improved.

Table 4. The Comparison result of our proposed model trained with the single loss function or the
multi-scale loss function.

Potsdam Precision Recall F1 OA

single loss 0.884 0.888 0.886 0.879
multi-scale loss 0.885 0.893 0.888 0.883

Vaihingen Precision Recall F1 OA

single loss 0.837 0.827 0.830 0.858
multi-scale loss 0.840 0.833 0.833 0.867



Remote Sens. 2019, 11, 20 12 of 18

The improvement indicates that the proposed decoder structure of two scales feature fusion can
take effect with the multi-scale loss function. Both the decoder structure and the multi-scale loss
function are essential to our model.

4.2. Comparison to DeepLab_v3+ and Other the State-of-art Networks

DeepLab is a series of models that consist of v1 [45], v2, v3 and v3+ versions. Each of them
achieved the best performance on several datasets such as Pascal voc2012 [46] and Cityscapes [47] at
different time points in the computer vision field and it can be said that DeepLab is the most successful
model in the dense semantic labeling tasks which are also called semantic segmentation tasks. Among
them, DeepLab_v3+ is the newest version, published in early 2018. On the basis of the improved
ASPP structure, DeepLab_v3+ model employed a simple encoder-decoder structure which only fused
one scale of low-level feature maps after ASPP. Different from it, our proposed model adopts a more
complex encoder-decoder structure with the fusion of two scales of low-level feature maps and an
additional multi-scale loss function to enhance the learning procedure. Results on the Potsdam and
the Vaihingen (Table 5) demonstrate that our model slightly improves the performance on remote
sensing imageries.

Table 5. Comparison with DeepLab_v3+ model on the Potsdam and the Vaihingen datasets.

Potsdam Precision Recall F1 OA

DeepLab_v3+ [44] 0.882 0.889 0.884 0.880
Ours 0.885 0.893 0.888 0.883

Vaihingen Precision Recall F1 OA

DeepLab_v3+ [44] 0.837 0.829 0.830 0.864
Ours 0.840 0.833 0.833 0.867

We further evaluate our model in the comparison to other classic or state-of-art networks,
including FCN, DeepLab_v3, U-net and some methods on the leaderboard of ISPRS 2D datasets.
SVL_1 is a traditional machine learning method based on Adaboost-based classifier and CRF. Though
deep learning methods show an absolute advantage, it still can be a baseline method. DST_5 [48]
employs a non-downsampling CNN that performs better than the original FCN. RIT6 [49] is a new
approach published recently which uses two specific ways to extract features and fuses the feature
maps at different stages. Table 6 shows the quantitative result of the methods mentioned above. As we
can see, our proposed model has less misclassification areas as well as sharper object boundaries. The
prediction results are shown in Figure 8.

Table 6. Quantitative result of different methods including FCN, DeepLab_v3, U-net, SVL_1, DST_5
and RIT6 on the Potsdam dataset.

Method Precision Recall F1 OA

SVL_1 0.763 0.703 0.721 0.754
FCN [23] 0.807 0.823 0.812 0.824

DST_5 [48] 0.886 0.884 0.885 0.878
RIT6 [49] 0.886 0.892 0.888 0.879
U-net [27] 0.859 0.881 0.867 0.860

DeepLab_v3 [32] 0.881 0.886 0.882 0.878
DeepLab_v3+ [44] 0.882 0.889 0.884 0.880

Ours 0.885 0.893 0.888 0.883
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Figure 8. A sample of comparison prediction results of different methods on the Potsdam dataset.
(a) input imagery, (b) normalized DSM, (c) corresponding ground truth, (d) result of SVL_1, (e) result
of FCN, (f) result of DST_5, (g) result of RIT6, (h) result of U-net, (i) result of DeepLab_v3, (j) result of
DeepLab_v3+ and (k) our model.

4.3. The Influence of Superpixel-based DenseCRF

Dense Conditional Random Field (DenseCRF) is an effective postprocessing method to further
refine the boundary of objects after FCN-based models. However, with the development of networks,
the effect of enhancement has become weaker. In this study, we first apply classic DenseCRF after our



Remote Sens. 2019, 11, 20 14 of 18

model and the results show that the accuracy of prediction drops slightly. To improve the performance,
inspired by the work of Zhao [50], we employ the superpixel algorithm (SLIC) before DenseCRF
(details mentioned in Section 2.3). For overall accuracy, the superpixel-based DenseCRF brings 0.1%
and 0.3% improvement on the Potsdam and the Vaihingen datasets respectively. Figure 9 and Table 7
show details. From the imageries, we can see that superpixel-based DenseCRF removes some small
errors and the boundary of objects is slightly improved.
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Figure 9. The effect of superpixel based DenseCRF. Here we show a small patch of the original imagery
from the Potsdam dataset (a) input imagery, (b) groundtruth, (c) superpixel segmentation to input
imagery, (d) superpixel constraint to prediction map, (e) prediction map from our model and (f)
prediction map after superpixel-based DenseCRF.

Table 7. The comparison results before or after superpixel-based DenseCRF on the Potsdam and the
Vaihingen datasets.

Potsdam Precision Recall F1 OA

Before Superpixel-CRF 0.885 0.893 0.888 0.883
After Superpixel-CRF 0.888 0.892 0.889 0.884

Vaihingen Precision Recall F1 OA

Before Superpixel-CRF 0.840 0.833 0.833 0.867
After Superpixel-CRF 0.847 0.833 0.835 0.870

5. Conclusions

In this paper, a novel fully convolutional network to perform dense semantic labeling on
high-resolution remote sensing imageries is proposed. The main contribution of this work consists
of analyzing the advantage of existing FCN-based models, pointing out the encoder-decoder and
ASPP as two powerful structures and fusing them in one model with an additional multi-scale loss
function to take effect. Moreover, we employ several data augment methods before our model and
a superpixel-based CRF as the postprocessing method. The objective of our work is to further improve
the performance of fully convolutional network on dense semantic labeling tasks. Experiments were
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implemented on ISPRS 2D challenge which includes two high-resolution remote sensing imagery
datasets of Potsdam and Vaihingen. Every object of the given categories was extracted successfully
by our proposed method with fewer classification errors and sharper boundary. The comparison
was taken between U-net, DeepLab_v3, DeepLab_v3+ and even some methods from the leaderboard
including the recently published one. The results indicate that our methods outperformed other
methods and achieved significant improvement.

Nowadays, remote sensing technology develops at a high-speed, especially the popularization
of unmanned aerial vehicles and high-resolution sensors. More and more remote sensing imageries
are available to be utilized. Meanwhile, deep learning based methods have achieved an acceptable
result for practical applications. However, the groundtruth of remote sensing imageries are manually
annotated and so will take too much labor. Therefore, semi-supervised or weak supervision methods
should be taken into account in the future works.
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Abbreviations

The following abbreviations are used in this manuscript:

AdaBoost Adaptive Boosting
ASPP Atrous Spatial Pyramid Pooling
CNN Convolutional Neural Network
CRF Conditional Random Field
DSM Digital Surface Model
FCN Fully Convolutional Networks
HOG Histogram of Oriented Gradients
ISPRS International of Electrical and Electronics Engineers
SLIC Simple Linear Iterative Clustering
UAV Unmanned Aerial Vehicle
VGG Visual Geometry Group
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