Climate-Based Regionalization and Inclusion of Spectral Indices for Enhancing Transboundary Land-Use/Cover Classification Using Deep Learning and Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Methods
2.2.1. Satellite Image Acquisition and Processing
2.2.2. Spectral Features
2.2.3. Training and Validation Samples
2.2.4. Experimental Design
2.2.5. Inclusion of Spectral Indices and Feature Selection
2.2.6. Climate Based Study Area Regionalization
2.2.7. LULC Classification Using Deep Learning and Machine Learning
Machine Learning Classifiers
Deep Learning Classifiers
Parameter Tuning of DL and ML Classifiers
LULC Classification
2.2.8. Accuracy Assessments and Validation
3. Results
3.1. Integration of Spectral Indices to Spectral Bands
3.2. Climate Based Regionalization
3.2.1. Bsh-Hot Semi-Arid Zone
3.2.2. Cwa-Monsoon
3.2.3. Cwb-Sub-Tropical Highland
4. Discussion
5. Conclusions
- (1)
- Inclusion of spectral indices improves the accuracy of LULC mapping for both ML and DL (with increase in OA > 5%);
- (2)
- Conducting a feature selection when evaluating LULC classification further improves accuracy as compared to mere inclusion of all spectral indices (with increase in OA > 10%); however, the increase was not consistently significant for all the classifiers;
- (3)
- Combined incorporation of post-feature selection combinations and climate-based regionalization significantly improves LULC accuracy based on all DL and ML classifiers (p < 0.05);
- (4)
- DL classifiers performed better than ML classifiers in all study sites and combinations of bands and spectral indices.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Bsh | Monsoon |
BTCAP | Tasseled Cap Brightness Index |
CART | Classification and Regression Tree |
Cwa | Subtropical Highland |
Cwb | Hot Semi-Arid |
DEM | Digital Elevation Model |
DNN | Deep Neural Network |
DTs | Decision Tree |
ES | Ecosysytem Services |
EVI | Enhanced Vegetation Index |
FAO | Food and Agriculture Organization |
GEE | Google Earth Engine |
GTCAP | Tasseled Cap Greeness Index |
k-NN | k-Nearest Neighbors |
LCCS | Landcover Classification System |
LULC | Land Use/Cover |
ML | Machine Learning |
MNDWI | Modified Normalised Difference Water Index |
NDBal | Normalised Difference Bareness Index |
NDBI | Normalised Difference Builtup Index |
NDTI | Normalised Difference Tillage Index |
NDVI | Normalised Difference Vegetation Index |
NDWI | Normalised Difference Water Index |
NGOWP | National Geographic Okavango and Wilderness Project |
Nnet | Neural Network Algorithm |
NTCAP | Tasseled Cap Noise Index |
OKACOM | Okavango River Basin Water Commission |
OS | Orthogonal Spectral Indices |
RBS | Ratio-Based Spectral Indices |
RF | Random Forest |
SADC | Southern African Development Community |
SAVI | Soil-Adjusted Vegetation Index |
SVM | Support Vector Machine |
TDBs | Transboundary Drainage Basins |
WTCAP | Tasseled Cap Wetness Index |
Xgboost | Extreme Gradient Boosting |
References
- Rai, P.K.; Chandel, R.S.; Mishra, V.N.; Singh, P. Hydrological inferences through morphometric analysis of lower Kosi river basin of India for water resource management based on remote sensing data. Appl. Water Sci. 2018, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, K.K.; Pant, L.P.; FitzGibbon, J. Contested governance of drinking water provisioning services in Nepal’s transboundary river basins. Ecosyst. Serv. 2020, 45, 101184. [Google Scholar] [CrossRef]
- Haefner, A. Negotiating for Water Resources: Bridging Transboundary River Basins; Taylor & Francis: Oxfordshire, UK, 2016. [Google Scholar]
- Just, R.E.; Netanyahu, S. International water resource conflicts: Experience and potential. In Conflict and Cooperation on Trans-Boundary Water Resources; Just, R.E., Netanyahu, S., Eds.; Springer: Boston, MA, USA, 1998; pp. 1–26. [Google Scholar] [CrossRef]
- Iyob, B. Resilience and Adaptability of Transboundary Rivers: The Principle of Equitable Distribution of Benefits and the Institutional Capacity of the Nile Basin; Oregon State University: Corvallis, OR, USA, 2010. [Google Scholar]
- Dessu, S.B.; Melesse, A.M.; Bhat, M.G.; McClain, M.E. Assessment of water resources availability and demand in the Mara River Basin. CATENA 2014, 115, 104–114. [Google Scholar] [CrossRef]
- Barraqué, B.; Mostert, E. Transboundary River Basin Management in Europe. Human Development Report Office (HDRO), United Nations Development Programme (UNDP), HDOCPA-2006-21. October 2006. Available online: https://ideas.repec.org/p/hdr/hdocpa/hdocpa-2006-21.html (accessed on 6 October 2020).
- Draper, S.E. Administration and institutional provisions of water sharing agreements. J. Water Resour. Plan. Manag. 2007, 133, 446–455. [Google Scholar] [CrossRef]
- Azgin, S.T.; Celik, F.D. Evaluating surface runoff responses to land use changes in a data scarce basin: A case study in Palas basin, Turkey. Water Resour. 2020, 47, 828–834. [Google Scholar] [CrossRef]
- Yang, Y.; Guan, H.; Batelaan, O.; McVicar, T.R.; Long, D.; Piao, S.; Liang, W.; Liu, B.; Jin, Z.; Simmons, C.T. Contrasting responses of water use efficiency to drought across global terrestrial ecosystems. Sci. Rep. 2016, 6, 23284. [Google Scholar] [CrossRef] [Green Version]
- Manandhar, R.; Odeh, I.O.; Ancev, T. Improving the accuracy of land use and land cover classification of Landsat data using post-classification enhancement. Remote Sens. 2009, 1, 330–344. [Google Scholar] [CrossRef] [Green Version]
- Kassawmar, T.; Eckert, S.; Hurni, K.; Zeleke, G.; Hurni, H. Reducing landscape heterogeneity for improved land use and land cover (LULC) classification across the large and complex Ethiopian highlands. Geocarto Int. 2018, 33, 53–69. [Google Scholar] [CrossRef] [Green Version]
- Dhanaraj, K.; Angadi, D.P. Land use land cover mapping and monitoring urban growth using remote sensing and GIS techniques in Mangaluru, India. GeoJournal 2020, 1–27. [Google Scholar] [CrossRef]
- Coskun, H.G.; Tanik, A.; Alganci, U.; Cigizoglu, H.K. Determination of environmental quality of a drinking water reservoir by remote sensing, GIS and regression analysis. Water Air Soil Pollut. 2008, 194, 275–285. [Google Scholar] [CrossRef]
- Johnson, B.A.; Iizuka, K. Integrating OpenStreetMap crowdsourced data and Landsat time-series imagery for rapid land use/land cover (LULC) mapping: Case study of the Laguna de Bay area of the Philippines. Appl. Geogr. 2016, 67, 140–149. [Google Scholar] [CrossRef]
- Mohajane, M.; Essahlaoui, A.; Oudija, F.; Hafyani, M.E.; Hmaidi, A.E.; Ouali, A.E.; Randazzo, G.; Teodoro, A.C. Land use/land cover (LULC) using Landsat data series (MSS, TM, ETM+ and OLI) in Azrou Forest, in the Central Middle Atlas of Morocco. Environments 2018, 5, 131. [Google Scholar] [CrossRef] [Green Version]
- Evrendilek, F.; Gulbeyaz, O. Boosted decision tree classifications of land cover over Turkey integrating MODIS, climate and topographic data. Int. J. Remote Sens. 2011, 32, 3461–3483. [Google Scholar] [CrossRef]
- Piyoosh, A.K.; Ghosh, S.K. Analysis of land use land cover change using a new and existing spectral indices and its impact on normalized land surface temperature. Geocarto Int. 2020, 1–23. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Elvidge, C.D.; Lyon, R.J. Influence of rock-soil spectral variation on the assessment of green biomass. Remote Sens. Environ. 1985, 17, 265–279. [Google Scholar] [CrossRef]
- Lawrence, R.L.; Ripple, W.J. Comparisons among vegetation indices and bandwise regression in a highly disturbed, heterogeneous landscape: Mount St. Helens, Washington. Remote Sens. Environ. 1998, 64, 91–102. [Google Scholar] [CrossRef]
- Huete, A.R.; Jackson, R.D. Soil and atmosphere influences on the spectra of partial canopies. Remote Sens. Environ. 1988, 25, 89–105. [Google Scholar] [CrossRef]
- Mushore, T.D.; Mutanga, O.; Odindi, J.; Dube, T. Assessing the potential of integrated Landsat 8 thermal bands, with the traditional reflective bands and derived vegetation indices in classifying urban landscapes. Geocarto Int. 2017, 32, 886–899. [Google Scholar] [CrossRef]
- Guyon, I.; Elisseeff, A. An introduction to feature extraction. In Feature Extraction; Springer: Berlin/Heildelberg, Germany, 2006; pp. 1–25. [Google Scholar]
- Gilbertson, J.K.; Kemp, J.; van Niekerk, A. Effect of pan-sharpening multi-temporal Landsat 8 imagery for crop type differentiation using different classification techniques. Comput. Electron. Agric. 2017, 134, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Shahi, K.; Shafri, H.Z.M.; Hamedianfar, A. Road condition assessment by OBIA and feature selection techniques using very high-resolution WorldView-2 imagery. Geocarto Int. 2017, 32, 1389–1406. [Google Scholar] [CrossRef]
- Poona, N.K.; van Niekerk, A.; Nadel, R.L.; Ismail, R. Random forest (RF) wrappers for waveband selection and classification of hyperspectral data. Appl. Spectrosc. 2016, 70, 322–333. [Google Scholar] [CrossRef]
- Das, H.; Naik, B.; Behera, H.S. A Jaya algorithm based wrapper method for optimal feature selection in supervised classification. J. King Saud Univ. Comput. Inf. Sci. 2020. [Google Scholar] [CrossRef]
- Saeys, Y.; Inza, I.; Larranaga, P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23, 2507–2517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fourie, C. A One-Class Object-Based System for Sparse Geographic Feature Identification; University of Stellenbosch: Stellenbosch, South Africa, 2011. [Google Scholar]
- Elmannai, H.; Al-Garni, A.D. Classification using semantic feature and machine learning: Land-use case application. Telkomnika 2021, 19, 1242–1250. [Google Scholar] [CrossRef]
- Ismail, R.; Mutanga, O. Discriminating the early stages of Sirex noctilio infestation using classification tree ensembles and shortwave infrared bands. Int. J. Remote Sens. 2011, 32, 4249–4266. [Google Scholar] [CrossRef]
- Narumalani, S.; Zhou, Y.; Jelinski, D.E. Utilizing geometric attributes of spatial information to improve digital image classification. Remote Sens. Rev. 1998, 16, 233–253. [Google Scholar] [CrossRef]
- Homer, C.; Huang, C.; Yang, L.; Wylie, B.; Coan, M. Development of a 2001 national land-cover database for the United States. Photogramm. Eng. Remote Sens. 2004, 70, 829–840. [Google Scholar] [CrossRef] [Green Version]
- Manis, G.; Homer, C.; Ramsey, R.D.; Lowry, J.; Sajwaj, T.; Graves, S. The development of mapping zones to assist in land cover mapping over large geographic areas: A case study of the Southwest ReGAP Project. GAP Anal. Bull. 2000, 9, 13–16. [Google Scholar]
- Langrange, A.; Fauvel, M.; Grizonnet, M. Large-scale feature selection with Gaussian mixture models for the classification of high dimensional remote sensing images. IEEE Trans. Comput. Imaging 2017, 3, 230–242. [Google Scholar] [CrossRef] [Green Version]
- Tuia, D.; Persello, C.; Bruzzone, L. Domain adaptation for the classification of remote sensing data: An overview of recent advances. IEEE Geosci. Remote Sens. Mag. Int. J. Remote Sens. 2016, 4, 41–57. [Google Scholar]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, T. Okavango basin–Climate. Biodivers Ecol. 2013, 5, 15–17. [Google Scholar] [CrossRef] [Green Version]
- Aburas, M.M.; Ahamad, M.S.S.; Omar, N.Q. Spatio-temporal simulation and prediction of land-use change using conventional and machine learning models: A review. Environ. Monit. Assess. 2019, 191, 205. [Google Scholar] [CrossRef]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Van Der Laak, J.A.; Van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [Green Version]
- El Bouchefry, K.; de Souza, R.S. Learning in big data: Introduction to machine learning. In Knowledge Discovery in Big Data from Astronomy and Earth Observation; Elsevier: Amsterdam, The Netherlands, 2020; pp. 225–249. [Google Scholar]
- Abdi, A.M. Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. GIScience Remote Sens. 2020, 57, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Fu, H.; Yu, L.; Gong, P.; Feng, D.; Li, C.; Clinton, N. Stacked autoencoder-based deep learning for remote-sensing image classification: A case study of African land-cover mapping. Int. J. Remote Sens. 2016, 37, 5632–5646. [Google Scholar] [CrossRef]
- Ligate, E.J.; Chen, C.; Wu, C. Evaluation of tropical coastal land cover and land use changes and their impacts on ecosystem service values. Ecosyst. Health Sustain. 2018, 4, 188–204. [Google Scholar] [CrossRef] [Green Version]
- Talukdar, N.R.; Ahmed, R.; Choudhury, P.; Barbhuiya, N.A. Assessment of forest health status using a forest fragmentation approach: A study in Patharia Hills Reserve Forest, northeast India. Model. Earth Syst. Environ. 2020, 6, 27–37. [Google Scholar] [CrossRef]
- Tsai, C.-F.; Hsiao, Y.-C. Combining multiple feature selection methods for stock prediction: Union, intersection, and multi-intersection approaches. Decis. Support. Syst. 2010, 50, 258–269. [Google Scholar] [CrossRef]
- Mendelsohn, J.; El Obeid, S. Okavango River: The Flow of a Lifeline; Struik Publishers: Cape Town, South Africa, 2004. [Google Scholar]
- Revermann, R.; Finckh, M.; Stellmes, M.; Strohbach, B.J.; Frantz, D.; Oldeland, J. Linking land surface phenology and vegetation-plot databases to model terrestrial plant α-diversity of the Okavango Basin. Remote Sens. 2016, 8, 370. [Google Scholar] [CrossRef] [Green Version]
- Mianabadi, A.; Davary, K.; Mianabadi, H.; Karimi, P. International environmental conflict management in transboundary river basins. Water Resour. Manag. 2020, 34, 3445–3464. [Google Scholar] [CrossRef]
- Porto, J.G.; Clover, J. The peace dividend in Angola: Strategic implications for Okavango basin cooperation. In Transboundary Rivers, Sovereignty and Development: Hydropolitical Drivers in the Okavango River Basin; African Water Issues Research Unit: Pretoria, South Africa, 2003. [Google Scholar]
- Steudel, T.; Göhmann, H.; Flügel, W.A.; Helmschrot, J. Assessment of hydrological dynamics in the upper Okavango river basins. Biodivers. Ecol. 2013, 5, 247–262. [Google Scholar] [CrossRef] [Green Version]
- Ge, Y.; Hu, S.; Ren, Z.; Jia, Y.; Wang, J.; Liu, M.; Zhang, D.; Zhao, W.; Luo, Y.; Fu, Y.; et al. Mapping annual land use changes in China’s poverty-stricken areas from 2013 to 2018. Remote Sens. Environ. 2019, 232, 111285. [Google Scholar] [CrossRef]
- Wingate, V.R.; Phinn, S.R.; Kuhn, N.; Bloemertz, L.; Dhanjal-Adams, K.L. Mapping decadal land cover changes in the woodlands of north eastern Namibia from 1975 to 2014 using the Landsat satellite archived data. Remote Sens. 2016, 8, 681. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.; Thenkabail, P.S.; Tilton, J.C.; Gumma, M.K.; Teluguntla, P.; Oliphant, A.; Congalton, R.G.; Yadav, K.; Gorelick, N. Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using Sentinel-2 and Landsat-8 data on Google Earth Engine. Remote Sens. 2017, 9, 1065. [Google Scholar] [CrossRef] [Green Version]
- Avogo, W.; Agadjanian, V. Childbearing in crisis: War, migration and fertility in Angola. J. Biosoc. Sci. 2008, 40, 725. [Google Scholar] [CrossRef]
- Chaves, M.E.D.; Picoli, M.C.A.; Sanches, I.D. Recent applications of Landsat 8/OLI and Sentinel-2/MSI for land use and land cover mapping: A systematic review. Remote Sens. 2020, 12, 3062. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Chen, X.; Vierling, L.; Rowell, E.; DeFelice, T. Using lidar and effective LAI data to evaluate IKONOS and Landsat 7 ETM+ vegetation cover estimates in a ponderosa pine forest. Remote Sens. Environ. 2004, 91, 14–26. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Sturari, M.; Frontoni, E.; Pierdicca, R.; Mancini, A.; Malinverni, E.S.; Tassetti, A.N.; Zingaretti, P. Integrating elevation data and multispectral high-resolution images for an improved hybrid land use/land cover mapping. Eur. J. Remote Sens. 2017, 50, 1–17. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the greant plains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite-1 Symposium, Washington, WA, USA, 10–14 December 1973; Nasa Special Publication; NASA: Washington, WA, USA, 1974; Volume 351, pp. 309–317. [Google Scholar]
- Van Deventer, A.P.; Ward, A.D.; Gowda, P.H.; Lyon, J.G. Using thematic mapper data to identify contrasting soil plains and tillage practices. Photogramm. Eng. Remote Sens. 1997, 63, 87–93. [Google Scholar]
- Zhao, H.; Chen, X. Use of normalized difference bareness index in quickly mapping bare areas from TM/ETM+. In Proceedings of the International Geoscience and remote Sensing Symposium, Seoul, Korea, 29 July 2005; Volume 3, p. 1666. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Crist, E.P.; Cicone, R.C. A physically-based transformation of thematic mapper data—The TM tasseled cap. IEEE Trans. Geosci. Remote Sens. 1984, 3, 256–263. [Google Scholar] [CrossRef]
- Baig, M.H.A.; Zhang, L.; Shuai, T.; Tong, Q. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sens. Lett. 2014, 5, 423–431. [Google Scholar] [CrossRef]
- De Sousa, C.; Fatoyinbo, L.; Neigh, C.; Boucka, F.; Angoue, V.; Larsen, T. Cloud-computing and machine learning in support of country-level land cover and ecosystem extent mapping in Liberia and Gabon. PLoS ONE 2020, 15, e0227438. [Google Scholar]
- Arino, O.; Ramos, J.; Kalogirou, V.; Defourny, P.; Achard, F. GlobCover 2009. In Proceedings of the ESA Living Planet Symposium, Bergen, Norway, 27 June–2 July 2010. [Google Scholar]
- Foody, G.M.; Mathur, A. Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification. Remote Sens. Environ. 2004, 93, 107–117. [Google Scholar] [CrossRef]
- Di Gregorio, A. Land Cover Classification System: Classification Concepts and User Manual: LCCS; Food & Agriculture Org.: Rome, Italy, 2005; Volume 2. [Google Scholar]
- Kuhn, M. Caret: Classification and Regression Training; Astrophysics Source Code Library: Houghton, MI, USA, 2015; p. ascl-1505. [Google Scholar]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Rousset, G.; Despinoy, M.; Schindler, K.; Mangeas, M. Assessment of deep learning techniques for land use land cover classification in southern New Caledonia. Remote Sens. 2021, 13, 2257. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984. [Google Scholar]
- Saini, R.; Ghosh, S.K. Ensemble classifiers in remote sensing: A review. In Proceedings of the 2017 International Conference on Computing, Communication and Automation (ICCCA), Greater Noida, India, 5–6 May 2017; pp. 1148–1152. [Google Scholar]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, P.M.; Tatnall, A.R. Introduction neural networks in remote sensing. Int. J. Remote Sens. 1997, 18, 699–709. [Google Scholar] [CrossRef]
- Talukdar, S.; Singha, P.; Mahato, S.; Pal, S.; Liou, Y.-A.; Rahman, A. Land-use land-cover classification by machine learning classifiers for satellite observations—A review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef] [Green Version]
- Georganos, S.; Grippa, T.; Vanhuysse, S.; Lennert, M.; Shimoni, M.; Wolff, E. Optimizing classification performance in an object-based very-high-resolution land use-land cover urban application. In Remote Sensing Technologies and Applications in Urban Environments II; SPIE: Bellingham, WA, USA, 2017; Volume 10431, p. 104310I. [Google Scholar]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: Berlin/Heildelberg, Germany, 2013; Volume 26. [Google Scholar]
- Cook, D. Practical Machine Learning with H2O: Powerful, Scalable Techniques for Deep Learning and AI; O’Reilly Media, Inc.: Newton, MA, USA, 2016. [Google Scholar]
- Werbos, P.J. Supervised learning: Can it escape its local minimum? In Theoretical Advances in Neural Computation and Learning; Springer: Berlin/Heildelberg, Germany, 1994; pp. 449–461. [Google Scholar]
- Singh, C.; Murdoch, W.J.; Yu, B. Hierarchical interpretations for neural network predictions. arXiv 2018, arXiv:180605337. [Google Scholar]
- Omer, G.; Mutanga, O.; Abdel-Rahman, E.M.; Adam, E. Exploring the utility of the additional WorldView-2 bands and support vector machines in mapping land use/land cover in a fragmented ecosystem, South Africa. S. Afr. J. Geomat. 2015, 4, 414–433. [Google Scholar] [CrossRef] [Green Version]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Agresti, A. Categorical Data Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2003; Volume 482. [Google Scholar]
- Mongus, D.; Žalik, B. Segmentation schema for enhancing land cover identification: A case study using Sentinel 2 data. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 56–68. [Google Scholar] [CrossRef]
- R Development Core Team. R Foundation for statistical Computing; R Development Core Team: Vienna, Austria, 2014. [Google Scholar]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Reed, B.C.; Schwartz, M.D.; Xiao, X. Remote sensing phenology. In Phenology of Ecosystem Processes; Springer: Berlin/Heildelberg, Germany, 2009; pp. 231–246. [Google Scholar]
- Abdullah, A.Y.M.; Masrur, A.; Adnan, M.S.G.; Baky, M.; Al, A.; Hassan, Q.K.; Dewan, A. Spatio-temporal patterns of land use/land cover change in the heterogeneous coastal region of Bangladesh between 1990 and 2017. Remote Sens. 2019, 11, 790. [Google Scholar] [CrossRef] [Green Version]
- Löw, F.; Michel, U.; Dech, S.; Conrad, C. Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using support vector machines. ISPRS J. Photogramm. Remote Sens. 2013, 85, 102–119. [Google Scholar] [CrossRef]
- Noormets, A. Phenology of Ecosystem Processes: Applications in Global Change Research; Springer: Berlin/Heildelberg, Germany, 2009. [Google Scholar]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Zeng, H.; Wu, B.; Wang, S.; Musakwa, W.; Tian, F.; Mashimbye, Z.E.; Poona, N.; Syndey, M. A synthesizing land-cover classification method based on Google Earth engine: A case study in Nzhelele and Levhuvu Catchments, South Africa. Chin. Geogr. Sci. 2020, 30, 397–409. [Google Scholar] [CrossRef]
- Candel, A.; Parmar, V.; LeDell, E.; Arora, A. Deep learning with H2O; H2O Ai Inc.: Mountain View, CA, USA, 2016; pp. 1–21. [Google Scholar]
- Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A review of supervised object-based land-cover image classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277–293. [Google Scholar] [CrossRef]
- Beysolow, T., II. Introduction to Deep Learning Using R: A Step-by-Step Guide to Learning and Implementing Deep Learning Models Using R; Apress: New York, NY, USA, 2017. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Shi, W.; Gong, Y.; Ding, C.; Tao, Z.M.; Zheng, N. Transductive semi-supervised deep learning using min-max features. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 299–315. [Google Scholar]
- Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann Machines; University of Toronto: Toronto, ON, Canada, 2010. [Google Scholar]
- Mustapha, I.B.; Saeed, F. Bioactive molecule prediction using extreme gradient boosting. Molecules 2016, 21, 983. [Google Scholar] [CrossRef] [Green Version]
- Georganos, S.; Grippa, T.; Vanhuysse, S.; Lennert, M.; Shimoni, M.; Wolff, E. Very high resolution object-based land use–land cover urban classification using extreme gradient boosting. IEEE Geosci. Remote Sens. Lett. 2018, 15, 607–611. [Google Scholar] [CrossRef] [Green Version]
- Saini, R.; Ghosh, S.K. Analyzing the impact of red-edge band on land use land cover classification using multispectral RapidEye imagery and machine learning techniques. J. Appl. Remote Sens. 2019, 13, 044511. [Google Scholar] [CrossRef]
Name of Spectral Indices | Formulae | References |
---|---|---|
NDVI | [64] | |
NDBI | [59] | |
NDWI | [60] | |
MNDWI | [61] | |
NDTI | [65] | |
NDBal | [66] | |
EVI | [67] | |
SAVI | [68] |
Landsat 5 | |||||||
Name of Spectral Indices | Transformation Coefficients | References | |||||
(Blue) Band 1 | (Green) Band 2 | (Red) Band 3 | (NIR) Band 4 | (SWIR1) Band 5 | (SWIR2) Band 7 | [69] | |
BTCAP | 0.2043 | 0.4158 | 0.5524 | 0.5741 | 0.3124 | 0.2303 | |
GTCAP | −0.1603 | 0.2819 | −0.4934 | 0.7940 | 0.0002 | 0.1446 | |
WTCAP | 0.0315 | 0.2021 | 0.3102 | 0.1594 | 0.6806 | 0.6109 | |
NTCAP | −0.8242 | −0.0849 | 0.4392 | −0.0580 | 0.2012 | −0.2768 | |
Landsat 8 | |||||||
Name of Spectral Indices | Transformation Coefficients | References | |||||
(Blue) Band 2 | (Green) Band 3 | (Red) Band 4 | (NIR) Band 5 | (SWIR1) Band 6 | (SWIR2) Band 7 | [70] | |
BTCAP | 0.3029 | 0.2786 | 0.4733 | 0.5599 | 0.5080 | 0.1872 | |
GTCAP | 0.2941 | 0.2430 | 0.5424 | 0.7276 | 0.0713 | 0.1608 | |
WTCAP | 0.1511 | 0.1973 | 0.3283 | 0.3407 | −0.7117 | 0.4559 | |
NTCAP | −0.8239 | −0.0849 | 0.4396 | −0.058 | 0.2013 | −0.2773 |
Number of Sample Points | |||
---|---|---|---|
LULC Class | Ground Samples | Photo-Interpreted Samples | Class Total |
bareland | 420 | 242 | 662 |
builtup | 612 | 116 | 728 |
water | 524 | 156 | 680 |
cultivated | 513 | 114 | 627 |
woodland | 631 | 63 | 694 |
shrubland | 212 | 482 | 694 |
grassland | 194 | 321 | 515 |
wetland | 314 | 226 | 540 |
Overall Total | 3420 | 1720 | 5140 |
Model | Parameters | Hyper-Parameter Values |
---|---|---|
RF | mtry | 100 |
ntree | 2 | |
Xgboost | nrounds | 500 |
maxdepth | 7 | |
eta | 0.01 | |
gamma | 0.1 | |
nodesize | 2 | |
Nnet | Size | 70 |
learning rate | 0.005 | |
maxit | 500 | |
DNN | activation | Rectifier |
hidden layers | 5 | |
neurons per layer | 200 | |
epochs | 300 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kavhu, B.; Mashimbye, Z.E.; Luvuno, L. Climate-Based Regionalization and Inclusion of Spectral Indices for Enhancing Transboundary Land-Use/Cover Classification Using Deep Learning and Machine Learning. Remote Sens. 2021, 13, 5054. https://doi.org/10.3390/rs13245054
Kavhu B, Mashimbye ZE, Luvuno L. Climate-Based Regionalization and Inclusion of Spectral Indices for Enhancing Transboundary Land-Use/Cover Classification Using Deep Learning and Machine Learning. Remote Sensing. 2021; 13(24):5054. https://doi.org/10.3390/rs13245054
Chicago/Turabian StyleKavhu, Blessing, Zama Eric Mashimbye, and Linda Luvuno. 2021. "Climate-Based Regionalization and Inclusion of Spectral Indices for Enhancing Transboundary Land-Use/Cover Classification Using Deep Learning and Machine Learning" Remote Sensing 13, no. 24: 5054. https://doi.org/10.3390/rs13245054
APA StyleKavhu, B., Mashimbye, Z. E., & Luvuno, L. (2021). Climate-Based Regionalization and Inclusion of Spectral Indices for Enhancing Transboundary Land-Use/Cover Classification Using Deep Learning and Machine Learning. Remote Sensing, 13(24), 5054. https://doi.org/10.3390/rs13245054