Long-Term Gully Erosion and Its Response to Human Intervention in the Tableland Region of the Chinese Loess Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Base Data Collection and Gully Sampling
2.3. Topographic and Hydraulic Parameter Calculation and Data Analysis
2.4. Statistical Analysis and Assessment Methods
3. Results
3.1. Gully Growth from 1969 to 2019
3.2. Influencing Factors of and Modeling of Gully Growth Rates
3.3. Threshold Conditions of Gully Head Growth
4. Discussion
4.1. Long-Term Gully Growth Rates in the Tableland of the Loess Plateau
4.2. Topographic Thresholds of Gully Growth
4.3. Potentiality of Gully Growth
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poesen, J.; Nachtergaele, J.; Verstraeten, G.; Valentin, C. Gully erosion and environmental change: Importance and research needs. Catena 2003, 50, 91–133. [Google Scholar] [CrossRef]
- Valentin, C.; Poesen, J.; Li, Y. Gully erosion: Impacts, factors and control. Catena 2005, 63, 132–153. [Google Scholar] [CrossRef]
- Castillo, C.; Gómez, J.A. A century of gully erosion research: Urgency, complexity and study approaches. Earth-Sci. Rev. 2016, 160, 300–319. [Google Scholar] [CrossRef]
- Vanmaercke, M.; Poesen, J.; Van Mele, B.; Demuzere, M.; Bruynseels, A.; Golosov, V.; Bezerra, J.F.R.; Bolysov, S.; Dvinskih, A.; Frankl, A.; et al. How fast do gully headcuts retreat? Earth-Sci. Rev. 2016, 154, 336–355. [Google Scholar] [CrossRef]
- Vanmaercke, M.; Panagos, P.; Vanwalleghem, T.; Hayas, A.; Foerster, S.; Borrelli, P.; Rossi, M.; Torri, D.; Casali, J.; Borselli, L.; et al. Measuring, modelling and managing gully erosion at large scales: A state of the art. Earth-Sci. Rev. 2021, 218, 103637. [Google Scholar] [CrossRef]
- Burkard, M.B.; Kostaschuk, R.A. Initiation and evolution of gullies along the shoreline of Lake Huron. Geomorphology 1995, 14, 211–219. [Google Scholar] [CrossRef]
- Torri, D.; Poesen, J. A review of topographic threshold conditions for gully head development in different environments. Earth-Sci. Rev. 2014, 130, 73–85. [Google Scholar] [CrossRef]
- Yuan, M.T.; Zhang, Y.; Zhao, Y.Y.; Deng, J.Y. Effect of rainfall gradient and vegetation restoration on gully initiation under a large-scale extreme rainfall event on the hilly Loess Plateau: A case study from the Wuding River basin, China. Sci. Total Environ. 2020, 739, 140066. [Google Scholar] [CrossRef]
- Vandaele, K.; Poesen, J.; Govers, G.; van Wesemael, B. Geomorphic threshold conditions for ephemeral gully incision. Geomorphology 1996, 16, 161–173. [Google Scholar] [CrossRef]
- Samani, A.N.; Chen, Q.W.; Khalighi, S.; Wasson, R.J.; Rahdari, M.R. Assessment of land use impact on hydraulic threshold conditions for gully head cut initiation. Hydrol. Earth Syst. Sci. 2016, 20, 3005–3012. [Google Scholar] [CrossRef] [Green Version]
- Rossi, M.; Torri, D.; Santi, E. Bias in topographic thresholds for gully heads. Nat. Hazards 2015, 79, 51–69. [Google Scholar] [CrossRef]
- Frankl, A.; Poesen, J.; Deckers, J.; Haile, M.; Nyssen, J. Gully head retreat rates in the semi-arid highlands of Northern Ethiopia. Geomorphology 2012, 173, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Vandekerckhove, L.; Poesen, J.; Govers, G. Medium-term gully headcut retreat rates in Southeast Spain determined from aerial photographs and ground measurements. Catena 2003, 50, 329–352. [Google Scholar] [CrossRef]
- Ionita, I.; Niacsu, L.; Poesen, J.; Fullen, M.A. Controls on the development of continuous gullies: A 60 year monitoring study in the Moldavian Plateau of Romania. Earth Surf. Process. Landforms 2021, 46, 2746–2763. [Google Scholar] [CrossRef]
- Nicu, I.C. Is digital shoreline analysis system “fit” for gully erosion assessment? Catena 2021, 203, 105307. [Google Scholar] [CrossRef]
- Slimane, A.B.; Raclot, D.; Rebai, H.; Le Bissonnais, Y.; Planchon, O.; Bouksila, F. Combining field monitoring and aerial imagery to evaluate the role of gully erosion in a Mediterranean catchment (Tunisia). Catena 2018, 170, 73–83. [Google Scholar] [CrossRef]
- Marzolff, I.; Ries, J.B.; Poesen, J. Short-term versus medium-term monitoring for detecting gully-erosion variability in a Mediterranean environment. Earth Surf. Process. Landforms 2011, 36, 1604–1623. [Google Scholar] [CrossRef]
- Grellier, S.; Kemp, J.; Janeau, J.L.; Florsch, N.; Ward, D.; Barot, S.; Podwojewski, P.; Lorentz, S.; Valentin, C. The indirect impact of encroaching trees on gully extension: A 64 year study in a sub-humid grassland of South Africa. Catena 2012, 98, 110–119. [Google Scholar] [CrossRef]
- Frankl, A.; Poesen, J.; Haile, M.; Deckers, J.; Nyssen, J. Quantifying long-term changes in gully networks and volumes in dryland environments: The case of Northern Ethiopia. Geomorphology 2013, 201, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Guyassa, E.; Frankl, A.; Zenebe, A.; Poesen, J.; Nyssen, J. Gully and soil and water conservation structure densities in semi-arid northern Ethiopia over the last 80 years. Earth Surf. Process. Landforms 2018, 43, 1848–1859. [Google Scholar] [CrossRef]
- Yibeltal, M.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Meshesha, D.T.; Aklog, D.; Masunaga, T.; Tsubo, M.; Billi, P.; Vanmaercke, M.; et al. Analysis of long-term gully dynamics in different agro-ecology settings. Catena 2019, 179, 160–174. [Google Scholar] [CrossRef]
- Guan, Y.B.; Yang, S.T.; Zhao, C.S.; Lou, H.Z.; Chen, K.; Zhang, C.B.; Wu, B.W. Monitoring long-term gully erosion and topographic thresholds in the marginal zone of the Chinese Loess Plateau. Soil Till. Res. 2021, 205, 104800. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S. Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surf. Process. Landforms 2014, 39, 1413–1420. [Google Scholar] [CrossRef] [Green Version]
- James, M.R.; Robson, S.; d’Oleire-Oltmanns, S.; Niethammer, U. Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment. Geomorphology 2017, 280, 51–66. [Google Scholar] [CrossRef] [Green Version]
- Stöcker, C.; Eltner, A.; Karrasch, P. Measuring gullies by synergetic application of UAV and close range photogrammetry-A case study from Andalusia, Spain. Catena 2015, 132, 1–11. [Google Scholar] [CrossRef]
- Hosseinalizadeh, M.; Kariminejad, N.; Chen, W.; Pourghasemi, H.R.; Alinejad, M.; Behbahani, A.M.; Tiefenbacher, J.P. Spatial modelling of gully headcuts using UAV data and four best-first decision classifier ensembles (BFTree, Bag-BFTree, RS-BFTree, and RF-BFTree). Geomorphology 2019, 329, 184–193. [Google Scholar] [CrossRef]
- Chen, Y.P.; Wang, K.B.; Lin, Y.S.; Shi, W.Y.; Song, Y.; He, X.H. Balancing green and grain trade. Nat. Geosci. 2015, 8, 739–741. [Google Scholar] [CrossRef]
- Li, Y.; Poesen, J.; Yang, J.C.; Fu, B.; Zhang, J.H. Evaluating gully erosion using 137Cs and 210Pb/137Cs ratio in a reservoir catchment. Soil Till. Res. 2003, 69, 107–115. [Google Scholar] [CrossRef]
- Wu, Y.Q.; Cheng, H. Monitoring of gully erosion on the Loess Plateau of China using a global positioning system. Catena 2005, 63, 154–166. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Zhu, Q.K.; He, Y.M.; Yao, W.J. Assessment of bank gully development and vegetation coverage on the Chinese Loess Plateau. Geomorphology 2015, 228, 462–469. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Zhu, Q.K.; Yang, S.; Li, H.; Ma, H. A gully erosion assessment model for the Chinese Loess Plateau based on changes in gully length and area. Catena 2017, 148, 195–203. [Google Scholar] [CrossRef]
- Guo, W.Z.; Xu, X.Z.; Wang, W.L.; Liu, Y.K.; Guo, M.M.; Cui, Z.Q. Rainfall-triggered mass movements on steep loess slopes and their entrainment and distribution. Catena 2019, 183, 104238. [Google Scholar] [CrossRef]
- Guo, Q.K.; Ding, Z.W.; Qin, W.; Cao, W.H.; Lu, W.; Xu, X.M.; Yin, Z. Changes in sediment load in a typical watershed in the tableland and gully region of the Loess Plateau, China. Catena 2019, 182, 104132. [Google Scholar] [CrossRef]
- Guo, M.M.; Wang, W.L.; Wang, T.C.; Wang, W.X.; Kang, H.L. Impacts of different vegetation restoration options on gully head soil resistance and soil erosion in loess tablelands. Earth Surf. Process. Landforms 2020, 45, 1030–1050. [Google Scholar] [CrossRef]
- Fryirs, K. (Dis)Connectivity in catchment sediment cascades: A fresh look at the sediment delivery problem. Earth Surf. Process. Landforms 2012, 38, 30–46. [Google Scholar] [CrossRef]
- Bracken, L.J.; Wainwright, J.; Ali, G.A.; Tetzlaff, D.; Smith, M.W.; Reaney, S.M.; Roy, A.G. Concepts of hydrological connectivity: Research approaches, pathways and future agendas. Earth-Sci. Rev. 2013, 119, 17–34. [Google Scholar] [CrossRef] [Green Version]
- Conoscenti, C.; Agnesi, V.; Cama, M.; Caraballo-Arias, N.A.; Rotigliano, E. Assessment of gully erosion susceptibility using multivariate adaptive regression splines and accounting for terrain connectivity. Land Degrad. Dev. 2018, 29, 724–736. [Google Scholar] [CrossRef]
- Sohn, H.G.; Kim, G.H.; Yom, J.H. Mathematical modelling of historical reconnaissance CORONA KH-4B Imagery. Photogramm. Rec. 2004, 19, 51–66. [Google Scholar] [CrossRef]
- Altmaier, A.; Kany, C. Digital surface model generation from CORONA satellite images. ISPRS J. Photogramm. Remote Sens. 2002, 56, 221–235. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, B.Y.; Zhang, W.B. Study on standard of erosive rainfall. J. Soil Water Conserv. 2000, 14, 6–11. [Google Scholar]
- Tang, X.; Miao, C.Y.; Xi, Y.; Duan, Q.Y.; Lei, X.H.; Li, H. Analysis of precipitation characteristics on the loess plateau between 1965 and 2014, based on high-density gauge observations. Atmos. Res. 2018, 213, 264–274. [Google Scholar] [CrossRef]
- Moore, I.D.; Gessler, P.E.; Nielsen, G.A.; Peterson, G.A. Soil attribute prediction using terrain analysis. Soil Sci. Soc. Am. J. 1993, 57, 443–452. [Google Scholar] [CrossRef]
- Conforti, M.; Aucelli, P.P.C.; Robustelli, G.; Scarciglia, F. Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy). Nat. Hazards 2011, 56, 881–898. [Google Scholar] [CrossRef]
- Conoscenti, C.; Angileri, S.; Cappadonia, C.; Rotigliano, E.; Agnesi, V.; Märker, M. Gully erosion susceptibility assessment by means of GIS-based logistic regression, A case of Sicily (Italy). Geomorphology 2014, 204, 399–411. [Google Scholar] [CrossRef] [Green Version]
- Garosi, Y.; Sheklabadi, M.; Conoscenti, C.; Pourghasemi, H.R.; Van Oost, K. Assessing the performance of GIS- based machine learning models with different accuracy measures for determining susceptibility to gully erosion. Sci. Total Environ. 2019, 664, 1117–1132. [Google Scholar] [CrossRef]
- Arabameri, A.; Pradhan, B.; Rezaei, K.; and Conoscenti, C. Gully erosion susceptibility mapping using GIS-based multi-criteria decision analysis techniques. Catena 2019, 180, 282–297. [Google Scholar] [CrossRef]
- Ponce, V.M.; Hawkins, R.H. Runoff curve number: Has it reached maturity? J. Hydrol. Eng. 1996, 1, 11–19. [Google Scholar] [CrossRef]
- Hawkins, R.H.; Theurer, F.D.; Rezaeianzadeh, M. Understanding the basis of the curve number method for watershed models and TMDLs. J. Hydrol. Eng. 2019, 24, 06019003. [Google Scholar] [CrossRef]
- Boughton, W.C. A Review of the USDA SCS Curve Number Method. Aust. J. Soil Res. 1989, 27, 511–523. [Google Scholar] [CrossRef]
- Lian, H.; Yen, H.; Huang, J.C.; Feng, Q.; Qin, L.; Bashir, M.A.; Wu, S.; Zhu, A.X.; Luo, J.; Di, H.; et al. CN-China: Revised runoff curve number by using rainfall-runoff events data in China. Water Res. 2020, 177, 115767. [Google Scholar] [CrossRef]
- Feng, J.; Wei, W.; Feng, Q.Y. The runoff curve number of SCS-CN method in loess hilly region. Sheng Tai Xue Bao 2021, 41, 4170–4181. [Google Scholar]
- Montgomery, D.R.; Dietrich, W.E. Landscape dissection and drainage area-slope thresholds. In Process. Models and Theorical Geomorphology; Kirkby, M.J., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 1994; pp. 221–246. [Google Scholar]
- Yalin, M.S. An expression for bed-load transportation. J. Hydraul. Div. 1963, 89, 221–250. [Google Scholar] [CrossRef]
- Heckmann, T.; Cavalli, M.; Cerdan, O.; Foerster, S.; Javaux, M.; Lode, E.; Smetanová, A.; Vericat, D.; Brardinoni, F. Indices of sediment connectivity: Opportunities, challenges and limitations. Earth Sci. Rev. 2018, 187, 77–108. [Google Scholar] [CrossRef] [Green Version]
- Arnáez, J.; Lana-Renault, N.; Lasanta, T.; Ruiz-Flaño, P.; Castroviejo, J. Effects of farming terraces on hydrological and geomorphological processes. A review. Catena 2015, 128, 122–134. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhao, Y.Y.; Liu, B.Y.; Wang, Z.Q.; Zhang, S. Rill and gully erosion on unpaved roads under heavy rainfall in agricultural watersheds on China’s Loess Plateau. Agri. Ecosyst. Environ. 2019, 284, 106580. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Zhang, Y.; Yuan, M.T.; Yang, M.; Deng, J.Y. Estimation of initiation thresholds and soil loss from gully erosion on unpaved roads on China’s Loess Plateau. Earth Surf. Process. Landforms 2021, 46, 1713–1724. [Google Scholar] [CrossRef]
- Chen, Y.X.; Jiao, J.Y.; Wei, Y.H.; Zhao, H.K. Characteristics of gully development in Northern Shaanxi Hilly Loess Region before Grain-for-Green Programme (1976–1997). Trans. CSAE 2017, 33, 120–127. [Google Scholar]
- Romanescu, G.; Cotiuga, V.; Asandulesei, A.; Stoleriu, C. Use of the 3-D scanner in mapping and monitoring the dynamic degradation of soils: Case study of the Cucuteni-Baiceni Gully on the Moldavian Plateau (Romania). Hydrol. Earth Syst. Sci. 2012, 16, 953–966. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.H.; Bloemendal, J.; Rea, D.K.; An, Z.S.; Vandenberghe, J.; Lu, H.Y.; Su, R.X.; Liu, T.S. Bimodal grain-size distribution of Chinese loess, and its palaeoclimatic implications. Catena 2004, 55, 325–340. [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.J.; Gao, G.Y.; Liu, Y.; Zhou, J. Responses of soil moisture in different land cover types to rainfall events in a re-vegetation catchment area of the Loess Plateau, China. Catena 2013, 101, 122–128. [Google Scholar] [CrossRef]
- Knapen, A.; Poesen, J. Soil erosion resistance effects on rill and gully initiation points and dimensions. Earth Surf. Process. Landforms 2010, 35, 217–228. [Google Scholar] [CrossRef]
- Vandekerckhove, L.; Poesen, J.; Oostwoud-Wijdene, D.; Nachtergaele, J.; Kosmas, C.; Roxo, M.J.; de Figueiredo, T. Thresholds for gully initiation and sedimentation in Mediterranean Europe. Earth Surf. Process. Landforms 2000, 25, 1201–1220. [Google Scholar] [CrossRef]
- Cheng, H.; Zou, X.Y.; Wu, Y.Q.; Zhang, C.L.; Zheng, Q.H.; Jiang, Z.Y. Morphology parameters of ephemeral gully in characteristics hillslopes on the Loess Plateau of China. Soil Till. Res. 2007, 94, 4–14. [Google Scholar] [CrossRef]
- Capra, A.; Porto, P.; Scicolone, B. Relationships between rainfall characteristics and ephemeral gully erosion in a cultivated catchment in Sicily (Italy). Soil Till. Res. 2009, 105, 77–87. [Google Scholar] [CrossRef]
- Svoray, T.; Markovitch, H. Catchment scale analysis of the effect of topography, tillage direction and unpaved roads on ephemeral gully incision. Earth Surf. Process. Landforms 2009, 34, 1970–1984. [Google Scholar] [CrossRef]
- Zgłobicki, W.; Baran-Zgłobicka, B.; Gawrysiak, L.; Telecka, M. The impact of permanent gullies on present-day land use and agriculture in loess areas (E. Poland). Catena 2015, 126, 28–36. [Google Scholar] [CrossRef]
- Beuselinck, L.; Steegen, A.; Govers, G.; Nachtergaele, J.; Takken, I.; Poesen, J. Characteristics of sediment deposits formed by intense rainfall events in small catchments in the Belgian Loam Belt. Geomorphology 2000, 32, 69–82. [Google Scholar] [CrossRef]
- Casalí, J.; López, J.J.; Giráldez, J.V. Ephemeral gully erosion in southern Navarra (Spain). Catena 1999, 36, 65–84. [Google Scholar] [CrossRef]
- Prosser, I.P.; Soufi, M. Controls on gully formation following forest clearing in a humid temperate environment. Water Resour. Res. 1998, 34, 3661–3671. [Google Scholar] [CrossRef]
Platform | Photo Date | Ground Sampling Distance (GSD) | Number of Bands 2 |
---|---|---|---|
KH-4B | 13/12/1969 | 3.10 m | 1 (photographic film) |
Quickbird-2 | 12/12/2010 | 0.61 m 1 | 4 (MUL) + 1 (PAN) |
DJI Inspire 2 | 17/10–19/10/2019 | 0.14 m | 3 (MUL) |
Land Use Type | Curve Number (CN) 1 |
---|---|
Apple orchard (crown density < 20%) | 79.6 |
Apple orchard (20% < crown density < 60%) | 78.8 |
Apple orchard (crown density > 60%) | 78.5 |
Cropland (vegetation coverage < 20%) | 79.6 |
Cropland (20% < vegetation coverage < 60%) | 77.3 |
Cropland (vegetation coverage > 60%) | 75.6 |
Forestland | 78.5 |
Shrub land | 78.1 |
Grassland | 77 |
Fallow field | 77.8 |
Bare land | 79.6 |
Construction land | 100 2 |
Unpaved road | 79.6 3 |
Gully Type | Sample Size | Number of Gullies with Terraces 1 | A (ha) | Sg (m·m−1) | RL2 (m·yr−1) | RA (m2·yr−1) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1969 | 2010 | 2019 | Min | Max | Average | Min | Max | Average | ||||
Growing | 45 | 8 | 27 | 35 | 2.96 | 0.07 | 0.04 | 2.78 | 0.30 | 0.50 | 20.94 | 5.66 |
Stable | 25 | 14 | 22 | 24 | 2.08 | 0.05 | - | - | - | - | - | - |
Infilled | 21 | 0 | 14 | 16 | 3.08 | 0.05 | - | - | - | −0.60 | −14.16 | −5.14 |
Excavated | 4 | 0 | 3 | 4 | 9.30 | 0.06 | - | - | - | 1.43 | 7.10 | 4.28 |
RL | RA | A | Sg | Sd | Qa6910 | Qae6910 | Qr6910 | Qhr | SPI | |
---|---|---|---|---|---|---|---|---|---|---|
RL | 1 | 0.504 ** | 0.132 | −0.148 | 0.038 | 0.416 ** | 0.416 ** | 0.259 | 0.330 * | 0.174 |
RA | 1 | 0.426 ** | −0.104 | 0.061 | 0.533 ** | 0.526 ** | 0.366 * | 0.457 ** | 0.640 ** |
Parameter | Model Equation | R2 | Equation No. |
---|---|---|---|
A | RA = 4.317A0.4369 | 0.273 | (9) |
SPI | RA = 0.302SPI1.060 | 0.411 | (10) |
Qa6910 | RA = 0.117Qa69100.422 | 0.364 | (11) |
Qa6910, Sd | RA = 0.301Qa69100.562 Sd | 0.530 | (12) |
No. | Region and Location | Average RL (m·yr−1) | Average RA (m2·yr−1) | Land Use Types | Average Pa (mm) | MP (yr.) | Number of Samples | Reference |
---|---|---|---|---|---|---|---|---|
1 | Tableland region on the southeastern Loess Plateau | 0.30 | 5.66 | Orchard, cropland | 500.48 (1969–2010) | 40 | 45 | This study |
2 | Hilly gully region on the northeastern Loess Plateau | 0.54 | 9.1 | Cropland | 397 (1959–2018) | 59 | 30 | [22] |
3 | Hilly gully region on the central Loess Plateau | 0.49 | - | Cropland, grassland | 520.54 (1976–1997) | 21 | 138 | [58] |
4 | The Moldavian Plateau of Romania | 0.61 | - | Deforestation | 500–700 | 65 | 1 | [59] |
Country | Study Area | k | b | Main Land Use Type | Reference |
---|---|---|---|---|---|
Belgium | Vlaams Brabant | 0.050 | 0.400 | Cropland | [62] |
Spain | Cerro Tonosa | 0.230 | 0.100 | Cropland | [63] |
USA | Standford Hills, California | 0.180 | 0.500 | Rangeland | [52] |
China | Hilly gully region, Loess Plateau | 0.184 | 0.239 | Cropland | [29] |
China | Hilly gully region, Loess Plateau | 0.058 | 0.300 | Cropland | [64] |
China | Hilly gully region, Loess Plateau | 0.053 | 0.379 | Unpaved road 1 | [57] |
China | Tableland region, Loess Plateau | 0.006 | 0.289 | Apple orchard, cropland | This study 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhang, Y.; Deng, J.; Yu, S.; Zhao, Y. Long-Term Gully Erosion and Its Response to Human Intervention in the Tableland Region of the Chinese Loess Plateau. Remote Sens. 2021, 13, 5053. https://doi.org/10.3390/rs13245053
Wang J, Zhang Y, Deng J, Yu S, Zhao Y. Long-Term Gully Erosion and Its Response to Human Intervention in the Tableland Region of the Chinese Loess Plateau. Remote Sensing. 2021; 13(24):5053. https://doi.org/10.3390/rs13245053
Chicago/Turabian StyleWang, Jiaxi, Yan Zhang, Jiayong Deng, Shuangwu Yu, and Yiyang Zhao. 2021. "Long-Term Gully Erosion and Its Response to Human Intervention in the Tableland Region of the Chinese Loess Plateau" Remote Sensing 13, no. 24: 5053. https://doi.org/10.3390/rs13245053