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Abstract: In many parts of Africa, spatially-explicit information on plant α-diversity, i.e., the number
of species in a given area, is missing as baseline information for spatial planning. We present
an approach on how to combine vegetation-plot databases and remotely-sensed land surface
phenology (LSP) metrics to predict plant α-diversity on a regional scale. We gathered data on
plant α-diversity, measured as species density, from 999 vegetation plots sized 20 m ˆ 50 m covering
all major vegetation units of the Okavango basin in the countries of Angola, Namibia and Botswana.
As predictor variables, we used MODIS LSP metrics averaged over 12 years (250-m spatial resolution)
and three topographic attributes calculated from the SRTM digital elevation model. Furthermore,
we tested whether additional climatic data could improve predictions. We tested three predictor
subsets: (1) remote sensing variables; (2) climatic variables; and (3) all variables combined. We used
two statistical modeling approaches, random forests and boosted regression trees, to predict vascular
plant α-diversity. The resulting maps showed that the Miombo woodlands of the Angolan Central
Plateau featured the highest diversity, and the lowest values were predicted for the thornbush savanna
in the Okavango Delta area. Models built on the entire dataset exhibited the best performance
followed by climate-only models and remote sensing-only models. However, models including
climate data showed artifacts. In spite of lower model performance, models based only on LSP metrics
produced the most realistic maps. Furthermore, they revealed local differences in plant diversity of
the landscape mosaic that were blurred by homogenous belts as predicted by climate-based models.
This study pinpoints the high potential of LSP metrics used in conjunction with biodiversity data
derived from vegetation-plot databases to produce spatial information on a regional scale that is
urgently needed for basic natural resource management applications.

Keywords: Angola; Botswana; dry tropical forests; EVI; Miombo; MODIS; Namibia; phenological
metrics; predictive modeling; species density

1. Introduction

Globally, biodiversity is declining at a high rate [1], and international treaties, such as the
Convention on Biological Diversity, pledged to halt biodiversity loss. Paramount for safeguarding
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biodiversity is a better understanding of biodiversity patterns and spatially-explicit information.
The recent discussion on ‘essential biodiversity variables’ has shown that remote sensing applications
are indispensable in the process and are needed to monitor changes in biodiversity over large areas
with a consistent methodology [2,3]. In this context, field-based ecological data also play a prominent
role as baseline data for biodiversity models and as ground truth information for remote sensing
applications. In a recent effort, the initiative on a global index of vegetation-plot databases (GIVD)
created a meta-database containing over 200 existing vegetation-plot databases worldwide with over
three million vegetation plots [4,5]. These databases harbor an enormous potential as ground truth
information for future remote sensing studies and spatial modeling approaches from local to global
scales; yet, so far this potential remains unexploited. However, there are a few studies combining
MODIS data with vegetation databases, e.g., to predict tree species richness in the USA [6] or to analyze
vegetation responses to drought in Dutch dune ecosystems [7]. The main reasons for the missing
integration of remote sensing, spatial modeling and ecological research are not only the differing
traditions of the disciplines, but are rooted in the mismatch of the spatial scales of satellite imagery and
the size of ecological field sites. However, in recent years remote sensing products have diversified, and
even more importantly, many have become readily available at no cost with appropriate spatial and
temporal resolution; for a review from the remote sensing perspective, see Wang et al. [8]. Likewise, the
availability of field-based data has increased and has become more accessible through the formation of
global (meta-) databases.

Vegetation plots are samples of a specific area of the landscape and vary in size depending on
vegetation type and the purpose of the study: the size of vegetation plots in woodlands and forests
commonly ranges from 400 m2 to 25,000 m2 [9]. Typically, they hold information of the co-occurring
plant species, their cover or abundance, vegetation structure and are often connected to abiotic
parameters, such as soil properties. Generally, vegetation plots are stored in a vegetation database
compiling information of several vegetation plots within a region. From these databases, one can extract
information on plant diversity. Diversity has many dimensions, and its measurement strongly depends
on the observed spatial scale [10]. Commonly, diversity is treated in three different components:
(1) α-diversity defined as the diversity of a vegetation plot; (2) β-diversity is the difference in species
composition between vegetation plots; and (3) γ-diversity reflects the diversity at the landscape level,
i.e., the species pool of all sampled vegetation plots [10]. The α-diversity measure “species density” is
often regarded as the “common currency” in diversity research [11] and is defined as the number of
species present in a given area, e.g., in a vegetation plot.

Turner et al. [12] list two main approaches to assess biodiversity using remote sensing: (i) direct
measurements where species are recognized based on their spectral properties; or (ii) indirect ones
where no direct link is established, but instead, relies on the spatially-explicit localization of distinct
vegetation units. Closely linked to these vegetation units are properties, such as α-diversity, i.e.,
the average species number of a defined site or habitat, that we seek to extrapolate using statistical
models [13]. In ecology, the establishment of species distribution models (SDMs) as a standard tool to
make predictions for unsurveyed areas based on field surveys has boosted the integration of robust
statistical methods for predictive modeling [14]. In predictive modeling, statistical algorithms are
used to relate the attributes in question, i.e., the response variable, to a set of environmental predictor
variables, such as climate data or remotely-sensed information.

Spectral properties of vegetation change throughout the seasons due to changes of biophysical
and biochemical properties, i.e., pigment, sugar and water content of leaves in the canopy, above
ground biomass or vegetation structure. As such, land surface phenology (LSP) metrics can be
derived from dense spectral observations reflected in remotely-sensed vegetation indices across large
areas [15,16]. Software, such as TIMESAT [17], is frequently used to derive various LSP metrics, i.e.,:
(1) temporal metrics defining phenological stages of the vegetation (e.g., start and end of the green
season); (2) biomass-related metrics (e.g., integrals or amplitudes); and (3) seasonality-related metrics
(e.g., the green-up rate).
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As every vegetation unit has a more or less unique combination of phenological metrics, LSPs are
highly suited to distinguish different vegetation types, as demonstrated by Fan et al. [18], who used
LSP to identify rubber plantations in fragmented tropical forests. Moreover, LSP metrics served for
mapping above-ground woody biomass [19] and have been successfully applied in species distribution
modeling [20,21], change detection [22,23] and for vegetation mapping [24,25]. So far, no study tested
the suitability of LSP metrics for modeling plant α-diversity. However, especially biomass-related LSP
metrics, i.e., integrals or base values, could be promising predictors for plant α-diversity due to strong
empirical linkages of above ground biomass and species richness [26,27].

Generally, climate is regarded as the main driver of biogeographic patterns at large spatial
scales [28]. However, with increasing spatial resolution, factors, such as topography, soil properties or
disturbance patterns, gain importance. It has been shown that climatic predictors serve as large-scale
determinants, while land cover data increase the predictive power of species distribution models on
finer resolutions of 1 km to 20 km [28,29]. Most studies on plant α-diversity using remote sensing
data focus either on global or continental scales with very coarse resolution (100 km) [30] or have
a small extent, but operate on fine grain sizes (1 m to 30 m) [31–33]. The study of Saatchi et al. [34] is
an exception in this regard and covers the entire Amazon basin at 1- to 5-km spatial resolution.

The aim of this study was to test the suitability of MODIS EVI land surface phenology metrics
at 250-m spatial resolution to predict vascular plant α-diversity derived from the vegetation-plot
database of the Okavango Basin. We used two statistical model algorithms, boosted regression trees
(BRT) and random forests (RF), and compared the performances of the models on three predictor
subsets: (1) only LSP metrics and topography; (2) only climate data; and (3) the entire set of predictor
variables including both LSP metrics and climate data. Finally, we analyzed the α-diversity maps
generated for the Okavango Basin using the different models and datasets. In doing this, we
aimed to provide recommendations for generating spatially-explicit maps on plant α-diversity on
a regional level with comparatively high spatial resolution to support natural resource management
and conservation applications.

2. Data and Methods

2.1. Study Site

The Okavango Basin is situated in southern Africa and is shared by the countries of Angola,
Namibia and Botswana (Figure 1). The Okavango River and its tributaries originate on the Angolan
Central Plateau, where the large majority of the runoff is generated [35]. The middle reaches of the
river form the border between Angola and Namibia before entering Botswana, where it terminates
in the Okavango Delta, one of the largest inland deltas of the world. The course of the river follows
a strong environmental gradient from its source on the Angolan Central Plateau at altitudes of 1850 m
a.s.l. to the Okavango Delta in Botswana at around 940 m a.s.l. Mean annual temperature increases
from northwest to southeast from 18 ˝C to 24 ˝C. Precipitation shows an inverse trend: the Angolan
Central Plateau features a sub-humid climate with mean annual precipitation of over 1400 mm, and
the delta receives less than 500 mm per year [36]. Accordingly, vegetation changes along the course
of the river. Miombo forests are the dominant vegetation type of the Angolan Central Plateau with
its gently rolling landscape. However, topography has a strong impact on local vegetation patterns;
mid- and bottom slopes of the valleys feature geoxylic grasslands, and the valley bottoms of many
tributaries harbor wetlands [37]. As climate becomes drier, the closed Miombo woodlands give way to
the more open Baikiaea-Burkea woodlands of the middle reaches. The area surrounding the delta to the
east is dominated by Colophospermum mopane woodlands, while the driest areas to the west and south
of the delta are covered by thornbush savannas formed by various Acacia communities [38].
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Figure 1. Location of the Okavango Basin in southern Africa. The map of the Okavango Basin shows 
major vegetation units modified after Stellmes et al. [39] and the location of vegetation plots used in 
this study. The three major urban centers of the basin, Menongue, Rundu and Maun, are indicated by 
a red dot. The map datum is WGS84, and the background shows the SRTM digital elevation model. 
The extent of the study area, the Okavango Basin, follows the definition of The Future Okavango 
(TFO) project [40]. For a map on observed species density, see Figure S1. 

2.2. Data 

2.2.1. Vegetation Data 

Quantitative information on the vegetation, especially on the large Angolan share of the 
Okavango Basin, is scarce and limited to descriptive studies from the pre-independence era, i.e., 
before 1975 [41–44]. During The Future Okavango (TFO) project, we initiated an extensive 
plot-based vegetation survey based on a random stratified sampling design to ensure coverage of all 
major vegetation types of the basin (GIVD database ID: AF-00-009) [37,38,45–47]. However, the 
remoteness, limited access and the danger of land mines posed restrictions on the sampling. On 
vegetation plots sized 20 m × 50 m, all vascular plant species were recorded. Vegetation surveys 
were carried out during the growing seasons (November to May) of the years 2011 to 2014. 
Additionally, data from the National Phytosociological Database of Namibia were used (GIVD 
database ID: AF-NA-001) [48]. For the present study, we only considered plots from terrestrial 
vegetation, i.e., forests, woodlands and grasslands, as plots from semi-terrestrial and aquatic 
vegetation units were too small to properly relate to MODIS data. To avoid mixed pixel problems, 
we only selected plots that were not located at the edge of vegetation units and had a minimum 
distance of 500 m between plots, i.e., there was only one vegetation plot within one MODIS pixel. In 
total, 999 vegetation plots were selected for modeling. This dataset comprises the best available data 
for the region. However, some vegetation units were underrepresented, such as the thornbush 
savanna in the southwest of the Okavango Delta and the transition zone between Miombo 
woodlands and Baikiaea-Burkea woodlands. As a plant α-diversity measure, we derived species 
density per 103 m2, i.e., the number of vascular plant species per vegetation plot [10]. 

Figure 1. Location of the Okavango Basin in southern Africa. The map of the Okavango Basin shows
major vegetation units modified after Stellmes et al. [39] and the location of vegetation plots used in
this study. The three major urban centers of the basin, Menongue, Rundu and Maun, are indicated by
a red dot. The map datum is WGS84, and the background shows the SRTM digital elevation model.
The extent of the study area, the Okavango Basin, follows the definition of The Future Okavango (TFO)
project [40]. For a map on observed species density, see Figure S1.

2.2. Data

2.2.1. Vegetation Data

Quantitative information on the vegetation, especially on the large Angolan share of the Okavango
Basin, is scarce and limited to descriptive studies from the pre-independence era, i.e., before 1975 [41–44].
During The Future Okavango (TFO) project, we initiated an extensive plot-based vegetation survey
based on a random stratified sampling design to ensure coverage of all major vegetation types of the
basin (GIVD database ID: AF-00-009) [37,38,45–47]. However, the remoteness, limited access and the
danger of land mines posed restrictions on the sampling. On vegetation plots sized 20 m ˆ 50 m, all
vascular plant species were recorded. Vegetation surveys were carried out during the growing seasons
(November to May) of the years 2011 to 2014. Additionally, data from the National Phytosociological
Database of Namibia were used (GIVD database ID: AF-NA-001) [48]. For the present study, we only
considered plots from terrestrial vegetation, i.e., forests, woodlands and grasslands, as plots from
semi-terrestrial and aquatic vegetation units were too small to properly relate to MODIS data. To avoid
mixed pixel problems, we only selected plots that were not located at the edge of vegetation units
and had a minimum distance of 500 m between plots, i.e., there was only one vegetation plot within
one MODIS pixel. In total, 999 vegetation plots were selected for modeling. This dataset comprises
the best available data for the region. However, some vegetation units were underrepresented, such
as the thornbush savanna in the southwest of the Okavango Delta and the transition zone between
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Miombo woodlands and Baikiaea-Burkea woodlands. As a plant α-diversity measure, we derived
species density per 103 m2, i.e., the number of vascular plant species per vegetation plot [10].

2.2.2. MODIS

We compiled a MODIS-enhanced vegetation index (EVI) time series with a spatial resolution of
250 m ˆ 250 m (MOD13Q1 product. The main requisition of an appropriate vegetation index is its
capability of differentiating biomass at a certain point in time, as well as tracing phenological changes
reliably [49]. We used the standard MODIS vegetation 16-day EVI product, because this vegetation
index overcomes some limitations of the NDVI that are of relevance in our study area. Thus, the
EVI is less sensitive to the background signal, such as soil brightness, and it does not saturate as fast
with high biomass values. Moreover, still, inherent atmospheric effects should be lessened [50,51].
Using TIMESAT [17], we derived eleven land surface phenology (LSP) metrics based on the 16-day EVI
composite time series ranging from July 2000 to June 2012 (Table 1). As a consequence of the Southern
Hemisphere, the start of the year was set to the middle of the year, 1 July, when most deciduous
species have shed their leaves and annual plants have died back. In order to reduce the effect of the
inter-annual variability of LSP, we used the long-term mean of the annual metrics. Additionally, we
used the mean and the minimum of the near infrared (NIR) channel of the surface reflectance product
(MOD13Q1) to differentiate between vegetation-scarce surfaces with different brightness, such as
water and soil.

2.2.3. Topography

We selected three predictor variables describing topography (Table 1), as it has been shown that the
local topography of the Angolan Central Plateau creates micro-climatic conditions strongly influencing
vegetation patterns [52,53]. Moreover, water availability plays a primary role in the semi-arid parts of
the Okavango Basin. Based on the global digital elevation model SRTM (Shuttle Radar Topography
Mission) with a horizontal resolution of 90 m ˆ 90 m, we calculated the topographic position index
(TPI) [54], the topographic wetness index (TWI) [55] and the topographic ruggedness index (TRI) [56]
in the open source GIS SAGA [57]. Subsequently, the topographic attributes were resampled using
bilinear interpolation to match the MODIS resolution.

2.2.4. Climate

Weinzierl et al. [58] provided a regionalization of climate data from 1950 to 2000 for the Okavango
Basin based on orographic parameters and a geographically-weighted regression algorithm with
a resolution of 1 km ˆ 1 km. The original climate data stem from the regional climate model REMO for
the domain of south central Africa forced with the global circulation model ECHAM [59]. We resampled
the regionalized data using bilinear interpolation to match the resolution of the MODIS data. Based on
monthly values of minimum temperature, maximum temperature and monthly precipitation, we
derived 15 bioclimatic predictors using the “dismo” package in R [60].

To test whether the quality of predictions depended on climate, we additionally tested a second
climate dataset compiled from two sources: (1) precipitation data were obtained from the gridded
African Rainfall Climatologies Version 2 with a spatial resolution of 0.1˝ (ARC2, [61]); input data of
the ARC2 data are 3-hourly satellite-based infrared measurements and daily gauge measurements;
(2) temperature data were derived from the Climate Research Unit (CRU) TS3.10 dataset [62]. CRU
is based on meteorological stations across the global land area and has a spatial resolution of 0.5˝.
These climate data were subject to the same treatment as the REMO climate data, and the same
bioclimatic predictor variables were calculated. For results based on the modeling using the second
climate dataset, refer to the Supplementary Material.
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Table 1. Description of predictor variables and data sources. All variables excluded from modelling
after screening for collinearity among predictor variables are denoted with an asterisk. SRTM: digital
elevation model of shuttle radar topography mission; REMO: regional climate model for the domain
of south central Africa forced with the global circulation model ECHAM. RS TOPO, remote sensing
and topography.

Dataset Variable Variable Description Dataset

RS TOPO Amplitude maximum of EVI–minimum of EVI MODIS EVI time series
BaseValue base value of EVI in the course of year MODIS EVI time series

LargeIntegral total integral of EVI in the course of year MODIS EVI time series
SmallIntegral * integral of EVI above BaseValue MODIS EVI time series

NIR near infrared band MODIS EVI time series
NIR_min * minimum of the near infrared band MODIS EVI time series
MaxFit * maximum fitted value of EVI MODIS EVI time series

RateDecrease * rate of senescence (slope of the line connecting the
annual peak and the point at the end of greenness) MODIS EVI time series

RateIncrease * rate of green up (slope of the line connecting the
point of the onset of greenness and the annual peak) MODIS EVI time series

SeasonEnd day of year, end of greening MODIS EVI time series
SeasonLength number of days, duration of greening MODIS EVI time series

SeasonMid day of year, peak of greening MODIS EVI time series
SeasonStart day of year, start of the greening MODIS EVI time series

TPI topographic position index SRTM 90 m
TRI topographic ruggedness index SRTM 90 m
TWI topographic wetness index SRTM 90 m

CLIMATE bio1 annual mean temperature (˝C) REMO

bio2 * mean diurnal range (˝C)
(mean of monthly (max temp–min temp)) REMO

bio3 isothermality ((BIO2/BIO7) ˆ 100) REMO
bio4 temperature seasonality (standard deviation ˆ100) REMO

bio5 * max temperature of warmest month (˝C) REMO
bio6 * min temperature of coldest month (˝C) REMO
bio7 temperature annual range (BIO5 to BIO6) (˝C) REMO

bio8 * mean temperature of wettest quarter (˝C) REMO
bio9 * mean temperature of driest quarter (˝C) REMO

bio10 * mean temperature of warmest quarter (˝C) REMO
bio11 * mean temperature of coldest quarter (˝C) REMO
bio12 annual precipitation (mm) REMO
bio15 precipitation seasonality (coefficient of variation) REMO

2.3. Statistical Modeling

To test whether remote sensing data or climate data are better suited to predict plant α-diversity,
we tested three subsets of the predictor variables: (1) remote sensing data and topographic data
denoted as remote sensing and topography (“RS TOPO”); (2) only climatic data “CLIMATE”; (3) all
predictor variables “ALL” (Table 1).

Collinearity among predictor variables can lead to erroneous estimation of the parameters of
a statistical model and, hence, cause misleading interpretations [63]. Therefore, all predictors were
screened prior to modelling and tested for collinearity using a Spearman rank-correlation test (rs).
For visualizing the strength of the correlation, we used the R package “corrplot” [64]. For all pairs of
variables with |rs| > 0.7, the variable better reflecting ecological processes determining vegetation
patterns was selected [63].

The choice of the statistical model type is a common source of the algorithmic prediction error [65].
Thus, we tested and compared two modeling techniques that have been used in various areas of
ecological modeling and have been demonstrated to have a high predictive power [66]: boosted
regression trees (BRT) [67] and random forests (RF) [68,69]. BRT combines the strength of traditional
regression trees and boosting, the adaptive, stage-wise combination of a multitude of individual
models. High predictive performance is enabled through accommodating non-linear relationships
and fitting interactions among predictor variables. We used the R packages “gbm” [70] and ‘caret’ [71]
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to compute BRT assuming a Poisson distribution of the response variable. There are three important
parameters that need to be set by the user: interaction depth, number of trees and the learning rate.
We systematically varied the three parameters using a 10-fold cross-validation to find the optimal
settings for each data subset [72].

RF builds multiple regression trees based on bootstrap samples with each tree being grown on
a randomized subsample of the predictor variables. A large number of trees is grown without pruning,
and final results are averaged. In RF, the specification of model parameters has less influence on model
output. We operated RF with default settings for the number of variables used at each split (number
of candidate variables divided by 3); the number of trees to grow was set to 1000. RF was calculated
using the R package ‘randomForest’ [73].

BRT and RF offer slightly different measures of variable importance, and the measures cannot
be compared directly among model types. In BRT, variable importance is measured as the relative
influence of each variable averaged over all trees. For RF, we display the increase in the mean square
error of the prediction [73].

For validation, the dataset was split into training and test data samples with a ratio of 80:20 using
random stratified sampling. The following criteria of model performance were calculated: explained
variance, the Pearson’s coefficient of correlation (rp) between the predicted and observed values of
species density, the coefficient of determination R2, the root mean square error (RMSE), and the relative
root mean square error (rRMSE in percent) [71]. The models were calibrated on training data and then
used to predict plant α-diversity of the entire Okavango Basin at 250-m spatial resolution. All analyses
were carried out in R [74].

3. Results

3.1. Model Building and Validation

After screening for collinearity, seven LSP metrics, three topography predictors and six climate
variables were selected for modeling out of the 29 potential predictor variables (Figure 2, Table 1).
Models on all subsets (“RS TOPO”, “CLIMATE” and “ALL”) showed a clear correlation of predicted
and observed values of plant α-diversity, and values of the Pearson correlation (rp) ranged from 0.69
to 0.80 on test data. In order to compare rp values based on confidence intervals, we computed the
z-scores based on the Fisher transformation. Comparisons revealed no significant differences in the
correlation for “ALL” and “CLIMATE” models. However, “RS TOPO” models showed consistently
significantly lower correlation in comparison to “ALL” (BRT: z-value ´2.475, p-value 0.007; RF: z-value
´1.758, p-value 0.039) and “CLIMATE” (BRT: z-value ´2.475, p-value 0.007; RF: z-value ´1.758, p-value
0.039). The RMSE was moderately high with values of 9.3 to 11.0 species per 103 m2, and the relative
RMSE ranged from 26.8% to 31.4%. The R2 indicated a moderate goodness-of-fit ranging from 0.48 to
0.64. The explained variance ranged from 43% to 67% (Table 2). The two statistical model algorithms
BRT and RF performed almost equally well regarding all performance criteria. Only the explained
deviance was consistently higher in BRT for all datasets than in RF. The difference of the performance
criteria between training and test data was much higher in RF than in BRT. Regarding the different
input data, the “ALL” models performed best, closely followed by “CLIMATE”, while “RS TOPO” models
exhibited the poorest performance.
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were calculated: explained variance (expl. var. (%)), Pearson’s correlation coefficient (rp) between 
observed and predicted values, the coefficient of determination (R2), the root mean square error 
(RMSE, in species per 103 m2), and the relative root mean square error (rRMSE in percent). The results 
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3.2. Variable Importance 
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model types. However, a few general trends were evident (Figure 3). The topographic variables had 
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Figure 2. Correlation matrix of predictor variables measured by Spearman’s rank-correlation coefficient
(rs) ranging from ´1 to 1. The lower half of the diagonal gives the numeric value of rs; the upper
diagonal visualizes the correlation coefficient: the size of the circles corresponds to the strength of the
correlation; red denotes negative and blue positive correlation coefficients. For details on predictor
variables, see Table 1.

Table 2. Validation results for the two model types boosted regression trees (BRT) and random forests
(RF) on the three subsets of the predictor variables: remote sensing and topography (“RS TOPO”),
only climate data (“CLIMATE”) and all data (“ALL”). The following performance measures were
calculated: explained variance (expl. var. (%)), Pearson’s correlation coefficient (rp) between observed
and predicted values, the coefficient of determination (R2), the root mean square error (RMSE, in
species per 103 m2), and the relative root mean square error (rRMSE in percent). The results for training
and test data are displayed (training 80% of the data andtesting 20%).

Model Dataset
Expl. var. Correlation (rp) R2 RMSE rRMSE

Train (%) Train Test Train Test Train Test Train Test

BRT RS TOPO 54 0.80 0.69 0.60 0.48 10.1 11 28.8 31.8
CLIMATE 61 0.82 0.80 0.68 0.63 9.1 9.3 25.8 26.8

ALL 67 0.86 0.80 0.74 0.64 8.3 9.3 23.5 26.8

RF RS TOPO 43 0.94 0.70 0.89 0.49 5.9 10.9 16.7 31.4
CLIMATE 50 0.94 0.78 0.87 0.61 5.8 9.6 16.6 27.6

ALL 54 0.95 0.79 0.90 0.63 5.3 9.4 15.2 27.0

3.2. Variable Importance

Variable importance varied among the three subsets of predictor variables and between the model
types. However, a few general trends were evident (Figure 3). The topographic variables had only
limited influence in all model runs. In the “RS TOPO” dataset, the “NIR” and “LargeIntegral” were
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the two most important variables. Most of the biomass-related metrics were superior to the temporal
metrics, i.e., length, start or end of the season. Among the climatic variables, annual mean temperature
(‘bio1’) was the most important predictor throughout all model runs. Precipitation-related variables
did not have much predictive power. In BRT, in the dataset “ALL”, climatic predictors had the highest
importance, while the opposite was observed in RF, where LSP metrics yielded higher predictive
power than climatic predictors (Figure 3).
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3.3. Patterns of Plant Alpha Diversity

The predicted plant α-diversity in the basin ranged from 15 to 65 species per 103 m2. All derived
maps showed that the Miombo woodlands of the upper reaches of the Okavango River featured the
highest plant α-diversity, reaching values of over 60 species per 103 m2 (Figure 4). Generally, plant
α-diversity followed a decreasing trend southwards. The Baikiaea-Burkea woodlands of the middle
reaches took an intermediate position, while the area around the Okavango Delta in Botswana showed
the lowest values of 20 to 25 species per 103 m2. Furthermore, the surroundings of the larger urban
centers Rundu and Menongue depicted the absolute lowest plant α-diversity.
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RF (B,E,H), difference (C,F,I). For a map on observed species density, see Figure S2.
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The predictions of BRT and RF were similar for “RS TOPO”, but showed regional differences
for the models built on the datasets “CLIMATE” and “ALL” (Figure 4C,F,I). On these datasets, BRT
predicted higher plant α-diversity for the Miombo woodlands of the far northeast of the basin and for
the Baikiaea-Burkea woodlands of the middle reaches of the Okavango River. In contrast, RF predicted
higher values than BRT in the thornbush savanna of the delta region. The maps based on the models on
“CLIMATE” and “ALL” datasets showed belts of undifferentiated plant α-diversity (Figure 4D,E,G,H).
In contrast, “RS TOPO” showed fine-scale patterns of the landscape of the Miombo region (Figure 4A,B,
Figure 5).

Remote Sens. 2016, 8, 370 12 of 19 

 

line with the globally-observed phenomenon of a latitudinal gradient of species richness [78]. 
However, the gradient is a rough abstraction with many exceptions, and the underlying process are 
still debated [79]. Apart from global or continental maps, there are no previous studies depicting 
plant α-diversity of the Okavango Basin. The global map on vascular plant diversity of Barthlott et al. 
[30] operates on a spatial scale of 10,000 km2 and features only three diversity zones for the 
Okavango Basin. According to this map, plant α-diversity ranges from 500 to 2000 species per 10,000 
km2. Naturally, the number of species increases with increasing plot size or reference area of a map. 
However, the increase in species number with increasing area is system dependent and, thus, results 
in species area curves that vary according to vegetation type [80]. Therefore, given this scale 
dependency of plant α-diversity, our results cannot be easily scaled up to the larger map units of 
Barthlott et al. [30] to directly compare the data. Nevertheless, it becomes evident that due to the high 
spatial resolution, our maps reveal diversity patterns with unprecedented detail showing more than 
a purely latitudinal gradient. On the Angolan Central Plateau in the north of the Okavango Basin, 
two major vegetation units occur in close proximity following the pattern of the gently rolling 
topography of the landscape: Miombo woodlands dominate on elevated areas, while geoxylic 
grasslands inhabit the slopes [37]. The measured plant α-diversity of the Miombo woodlands was 
significantly higher than plant α-diversity of the geoxylic grasslands (Figure 5A). The models on the 
‘RS TOPO’ dataset were capable of capturing this difference, but not the ‘CLIMATE’ models (Figure 5). 
The major urban centers of the basin showed low plant α-diversity, which can be explained by their 
spectral similarity to open vegetation types or shrub-dominated thornbush savanna also featuring 
low diversity. 

 
Figure 5. Plant alpha diversity (species density per 103 m2) in the Miombo region. (A) Observed species 
density of the vegetation units “Miombo woodlands” and “dwarf shrub/grassland” in the upper reaches 
of the Okavango Basin derived from vegetation-plot database. “Miombo woodlands” (mean = 44.0, SD = 
10.8) exhibit significantly higher species density than “dwarf shrub-grasslands” (mean = 35.9, SD = 7.3) 
according to a two-group t-test (p < 0.001); (B) Major vegetation units of the area according to Stellmes et 
al. [39] and location of vegetation plots; (C) Species density as predicted by BRT on the “RS TOPO” 
dataset; (D) Species density predicted by BRT on the “CLIMATE” dataset; (E) Species density predicted 
by BRT on the “ALL” dataset. 

Figure 5. Plant alpha diversity (species density per 103 m2) in the Miombo region. (A) Observed
species density of the vegetation units “Miombo woodlands” and “dwarf shrub/grassland” in the
upper reaches of the Okavango Basin derived from vegetation-plot database. “Miombo woodlands”
(mean = 44.0, SD = 10.8) exhibit significantly higher species density than “dwarf shrub-grasslands”
(mean = 35.9, SD = 7.3) according to a two-group t-test (p < 0.001); (B) Major vegetation units of the
area according to Stellmes et al. [39] and location of vegetation plots; (C) Species density as predicted
by BRT on the “RS TOPO” dataset; (D) Species density predicted by BRT on the “CLIMATE” dataset;
(E) Species density predicted by BRT on the “ALL” dataset.

4. Discussion

4.1. Model Evaluation and Quality of Predictions

Pearson et al. [65] divided the prediction error of species distribution models in two components:
(1) the algorithmic prediction error emanating from the choice of the statistical model and other
parameters set during the modeling exercise; and (2) quality of the input data. In our study, the
performance of BRT and RF models was very similar for all tested performance criteria showing good
to moderate performance (Table 2). While there was little difference between the plant α-diversity
maps of BRT and RF on the “RS TOPO” dataset (Figure 4A,B), the maps based on models including
climate data showed discrepancies between the two model algorithms (Figure 4C–F; for a detailed
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discussion, see the discussion on climate data below). Thus, depending on the dataset, the algorithmic
prediction error varies in magnitude, although BRT and RF are both machine learning techniques
based on regression trees and exhibited comparable model performance.

4.2. Data Quality

The response variable in this study was derived from two vegetation-plot databases. As shown by
García Márquez et al. [75], spatial bias is an inherent problem of many vegetation-plot databases and
can lead to the wrong model predictions. In Angola, very limited accessibility and the danger of land
mines put strong restrictions on a purely random stratified sampling design. Consequently, some areas
of the basin and some vegetation units are under-sampled, e.g., the vegetation belt in the transition
from the Miombo woodlands to the Baikiaea-Burkea woodlands at the base of the Angolan Central
Plateau. Furthermore, the data of the thornbush savanna surrounding the Okavango Delta are scarce.
The spatial bias of the response variable may also explain considerably high RMSE values. Beyond that,
regions with lower sampling intensity showed the highest discrepancies between the two model
algorithms on the datasets “CLIMATE” and “ALL”. However, generally, the vegetation database contains
a sufficient number of plots and represents the best available vegetation dataset for the region.

The relatively coarse resolution of MODIS data might also be a potential error source, where
especially small vegetation units are acquired in mixed pixels and, thus, are negatively affecting the
proper linkage to the smaller vegetation plots. Hence, substituting MODIS imagery with spatially
appropriate remote sensing data could improve predictions. However, at the current state, deriving
LSP based on Landsat for tropical Africa remains problematic, as one image at least every 16 days
is required [76]. This is not the case in tropical Africa due to the reduced data availability for this
region in the Landsat archive [77] and missing clear sky images from the wet season. Nevertheless, the
increasing revisit frequency of the medium-resolution satellite-platforms Landsat and Sentinel-2 might
account for this problem, alleviating the direct derivation of LSP at the required spatial scale.

4.3. Patterns of Plant Alpha Diversity

In general, the derived maps based on MODIS LSP (“RS TOPO”) showed a realistic pattern of plant
α-diversity when compared to the vegetation map of the region [39]. The highest plant α-diversity
was predicted for the more mesic regions of the upper reaches of the Okavango Basin and steadily
decreased southwards. Hence, plant α-diversity followed the environmental gradient of decreasing
precipitation and increasing temperatures in a north-south direction. This pattern is in line with
the globally-observed phenomenon of a latitudinal gradient of species richness [78]. However, the
gradient is a rough abstraction with many exceptions, and the underlying process are still debated [79].
Apart from global or continental maps, there are no previous studies depicting plant α-diversity of the
Okavango Basin. The global map on vascular plant diversity of Barthlott et al. [30] operates on a spatial
scale of 10,000 km2 and features only three diversity zones for the Okavango Basin. According to
this map, plant α-diversity ranges from 500 to 2000 species per 10,000 km2. Naturally, the number of
species increases with increasing plot size or reference area of a map. However, the increase in species
number with increasing area is system dependent and, thus, results in species area curves that vary
according to vegetation type [80]. Therefore, given this scale dependency of plant α-diversity, our
results cannot be easily scaled up to the larger map units of Barthlott et al. [30] to directly compare the
data. Nevertheless, it becomes evident that due to the high spatial resolution, our maps reveal diversity
patterns with unprecedented detail showing more than a purely latitudinal gradient. On the Angolan
Central Plateau in the north of the Okavango Basin, two major vegetation units occur in close proximity
following the pattern of the gently rolling topography of the landscape: Miombo woodlands dominate
on elevated areas, while geoxylic grasslands inhabit the slopes [37]. The measured plant α-diversity
of the Miombo woodlands was significantly higher than plant α-diversity of the geoxylic grasslands
(Figure 5A). The models on the ‘RS TOPO’ dataset were capable of capturing this difference, but not the
‘CLIMATE’ models (Figure 5). The major urban centers of the basin showed low plant α-diversity, which
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can be explained by their spectral similarity to open vegetation types or shrub-dominated thornbush
savanna also featuring low diversity.

Incorporating climate data into modelling species densities did improve model performance
when compared to remote sensing-only models “RS TOPO” (Table 2). However, a visual evaluation
of the resulting maps revealed artefacts in the presented patterns, i.e., the predicted patterns of
plant α-diversity did not match existing patterns in the vegetation of the Okavango Basin (Figure 1).
Maps produced by BRT and RF on the full set of predictor variables (including climate, but also remote
sensing information, dataset “ALL”) showed less obvious artifacts. Nevertheless, the maps exhibited
sharp borders with abruptly changing values of plant α-diversity (Figure 4). Only in some cases did
these changes coincide with climatic borders resulting in actual alteration of land cover, i.e., at the
southern foothills of the Angolan Central Plateau. Moreover, the differences between the predictions of
plant α-diversity by BRT and RF were much larger when climate data were included in the modeling.
The differences did not follow a systematic pattern, but showed a spatial pattern (Figure 4C,F,I). Thus,
the error can be related to the fact that the model algorithms give different weight to the climatic
predictor variables (Figure 3).

Models including climate (“CLIMATE” and “ALL”) reproduced large-scale climatic gradients
resulting in belts of undifferentiated plant α-diversity. In contrast, models based on LSP metrics and
topography (“RS TOPO”) produced by far better maps as judged by experts. The maps depict local
differences in plant α-diversity reflecting the mosaic of the landscape that is blurred in the climate
models, as evident from the Miombo region (Figure 5). Climatic predictors are known to be large-scale
determinants, while land cover predictors gain importance on smaller spatial scales [29,51]. Therefore,
extra- and azonal vegetation types pose challenges in predictive modeling if climatic predictors are
included and make careful checks or even post-processing required [81].

4.4. Biophysical Meaning of LSP Metrics

The productivity-diversity hypothesis [82] links the variation in species diversity to productivity
measured as plant biomass and proposes a hump-backed relationship. However, four decades after it
was first hypothesized, the exact form of the relationship between plant α-diversity and biomass, as
well as its generality across biomes is still hotly debated ([26,27], and citations therein). While empirical
studies usually measure biomass in kg¨ ha´1, we had to rely on LSP metrics derived from EVI time
series as a proxy. The “LargeIntegral” can be considered an indicator for total biomass [83,84], the
“Amplitude” for the build-up of life biomass during the vegetation period [84] and ‘BaseValue’ as the
share of biomass that remains after senescence of the vegetation during the dry season [83].

In this study, we showed that biomass-related LSP metrics (e.g., “LargeIntegral”, “Amplitude”
and “BaseValue”) are good predictors for plant α-diversity (Figure 3). The models for the Okavango
Basin showed that areas with low productivity, such as the dry thornbush savanna, featured low
species numbers, while the mesic Miombo woodlands exhibited the highest productivity and also the
highest number of species. However, we did not find the originally-proposed unimodal relationship,
but diverse response functions of plant α-diversity to above ground biomass-related LSP metrics in all
BRT and RF models (sigmoidal, linear and bimodal relationships; Figure S5).

Although vegetation indices, such as the EVI, are well-known proxies for above ground biomass,
they tend to saturate at high biomass values [85]. Consequently, the forecasted effect of low
plantα-diversity at sites with high biomass [27,82] could be blurred and, hence, might restrict
our observed response to an apparently linear relationship. Furthermore, the generality of the
productivity-diversity relationship is still debated and could be biome or even formation specific.
Sampling across multiple biomes and plant formations ranging from grasslands, savannas to forests as
in the case of this study could lead to superimposition of multiple relationships, resulting in an overall
weak linear response. Nonetheless, the productivity-diversity relationship could provide an important
theoretical background for spatially-modelled α-diversity based on remotely-sensed LSP metrics.
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4.5. Do Additional Climate Data Improve Models and Maps?

In spite of higher model performance of the models incorporating climate data, the resulting
diversity maps are unrealistic and not meaningful when compared to actual observations (Figures 4
and 5). The low quality of the spatial representation of plant α-diversity of the climate models could
be related to the coarse spatial resolution of the climate data. The study region of the Okavango Basin
encompasses an area with very limited historic climate data available to calibrate regional climate
models. One reason could therefore be that the regionalized climatologies of the regional climate
model REMO do not capture the climatic patterns in the Okavango Basin well enough. We thus tested
a second climate dataset from independent sources: for temperature, we used data from the Climate
Research Unit (CRU) [62]; for precipitation, we used the remotely-sensed information from the African
Rainfall Climatologies (ARC2) [61]. The resulting models had comparable model performance and
contained different, but similar artifacts (Table S1, Figure S6). In conclusion, artifacts in modeled
diversity maps were not related to the source of climate data, but the problem is inherent to using
climate data as predictors for modeling plant α-diversity of the ecosystems of southern Africa on
a medium spatial resolution. Modeling tree diversity of the Amazon basin, Saatchi et al. [34] came
to a similar conclusion that gridded climate data cannot fully capture landscape-scale variation in
plant α-diversity, as the patterns are, apart from climate, controlled by local phenomena, such as soil
properties, geology, nutrient availability and past history of the area. Land cover, in turn, is a result of
large-scale (climatic) gradients, but also mirrors site conditions and the history of disturbance events.
For the Okavango Basin, predicted patterns of plant α-diversity are similar to patterns of the land cover
classification of Stellmes et al. [39] (Figure 5B,C), hence supporting the assumption of Turner et al. [12]
that land cover is a good proxy for estimating diversity.

The fact that the chosen performance criteria did not identify the models delivering the most
realistic maps as the best ones is highly problematic and poses fundamental questions on how to
judge the validity of models. At the same time, it highlights the importance of cross-checking model
results with experts and revising the resulting maps within an ecological context. Not to treat statistical
significance synonymously with ecological relevance is paramount if communicating scientific results
to stakeholders and policy makers [86].

One explanation may lie in the ecology of the studied ecosystems. To a large extent, savanna
ecosystems are disturbance driven; especially fire has played a major role in their evolution and
maintenance [87,88]. Midgley and Bond [89] therefore argued that climatic predictors are not an ideal
choice to model these ecosystems. Therefore, remote sensing predictors depicting the current land
cover irrespective of the potential natural vegetation serve as better predictors. Nevertheless, this is
not reflected by the higher model performance of the “RS TOPO” models. However, in RF, the LSP
predictor variables had higher predictive power than climatic predictors, while in BRT, the opposite
was the case. This also explains the different patterns of the resulting maps. Including further remote
sensing-based predictors depicting fire will be promising. In savanna ecosystems, the fire frequency
and the timing of fire in the vegetation period are of paramount importance [90]. On the one hand,
short fire return periods may impede tree generation, capturing trees permanently in the sapling stage,
the so-called “demographic-bottleneck” [88]. On the other hand, fires early in the dry season mainly
affect the herbaceous layer, while hot, late dry season fires are more likely to also impact canopy species.
The corresponding parameter can be derived from the MODIS active fire product (MOD14A1 and
MYD14A1) and MODIS burned area (MCD45, 500-m resolution) [90] and included in the modeling.

Another important ecological feature shaping the spatial pattern of the dwarf shrub-grasslands of
the Angolan Central Plateau is the frequent occurrence of nocturnal frost in the low-lying valleys during
the dry season [52,53]. Generally, adaptations to frost are limited in the flora of tropical Africa. Therefore,
the regular frost events reduce the species pool of the dwarf shrub-grasslands to a large extent to frost
avoidance specialists protecting their buds underground, e.g., dwarf shrubs or so-called “geoxyles” [91],
or under dry leaf matter, e.g., many tufted C4 grasses. To develop topographically-corrected climate
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datasets showing spatial and temporal extents of cold air during night frost events will thus be
a promising way forward to improve vegetation modeling in tropical highlands.

5. Conclusions

Vegetation-plot databases harbor a great potential to provide response variables for modeling
ecosystem properties using remote sensing data. In this study, we showed that plant α-diversity
derived from such databases can be used for predicting plant α-diversity of unsurveyed areas
using land surface phenology derived from MODIS EVI time series. The models for the Okavango
Basin showed that the Miombo woodlands of the Angolan Central Plateau feature the highest
plant α-diversity and that plant α-diversity decreases southwards, reaching the lowest values in
the thornbush savanna surrounding the Okavango Delta. In spite of higher model performance,
models incorporating resampled climate data did not produce realistic maps on plant α-diversity.
The suitability of climate predictors for modeling plant α-diversity on a medium spatial resolution has
therefore to be questioned. Using MODIS LSP metrics as predictor variables has several advantages
for modeling plant diversity. First, the global coverage ensures transferability of modeling frameworks
to other regions. Second, the medium spatial resolution is fine enough to display local patterns of the
landscape mosaic. Third, using land cover-related predictor variables instead of climatic predictors
improves the representation of extra- and azonal vegetation types. The presented modeling approach
combines plot-based ecological field data with continuous remote sensing data and, hence, enables
predictions of ecosystem properties for vast, unsurveyed areas as they exist in many parts of the
world. In this way, the approach may contribute to systematic conservation planning, as it provides
the much needed spatial information for, e.g., identifying biodiversity hot spots or the delimitation of
protected areas.

Supplementary Materials: The supplementary materials of this paper are available online at
www.mdpi.com/2072-4292/8/5/370/s1. Table S1: Validation results for the two model types boosted
regression trees (BRT) and random forest (RF) on the three subsets of the predictor variables (a) remote sensing
and topography ‘RS TOPO’ (b) only climate data derived from CRU and ARC2 ‘CLIMATE CRU/ARC2’, (c) all
data ‘ALL2’ (‘RS TOPO and ‘CLIMATE CRU/ARC2’). The following performance measures were calculated:
explained variance (expl. var. [%]), Pearson’s correlation coefficient (rp) between observed and predicted values,
coefficient of determination (R2), the root mean square error (RMSE, in species per 103 m2) and the RMSE
normalized by the mean, the relative root mean square error (rRMSE in per cent).The results for training and
testing data are displayed (training 80% of the data and testing 20%); Figure S1: Observed values of alpha
diversity plotted against predicted values on training data for (A) BRT on data set ‘RS TOPO’; (B) RF on data set
‘RS TOPO’; (C) BRT on data set ‘CLIMATE’; (D) RF on data set ‘CLIMATE’; (E) BRT on data set ‘ALL’; (F) RF
on data set ‘ALL’; Figure S2: Observed plant alpha diversity (species density per 103 m2). Data is based on
999 vegetation plots sized 20 ˆ 50 m; Figure S3: Model residual for the two model types: boosted regression
trees (A,C,E) and random forest (B,D,E) on the three datasets: ‘RS TOPO’ (A,B); ‘CLIMATE’ (C,D); ‘ALL’; (G,H).
Furthermore, we calculated variograms to check for spatial autocorrelation but no sever spatial auto correlation
was detected; Figure S4: Plant alpha diversity (species density per 103 m2) predicted by the two model types: BRT
(A,C,E) and random forest (B,D,F) on the three data (sub-)sets: ‘RS TOPO’ (A,B); ‘CLIMATE’ (D,E); ‘ALL’ (E,F);
Figure S5: Partial dependence plots of the LSP metrics ‘Amplitude’ (A,D), ‘BaseValue’ (B,E) ‘LargeIntegral’ (c,f)
for the two model types BRT (A–C) and RF (D–F); Figure S6: Plant alpha diversity (species density per 103 m2)
predicted by the two model types: BRT (A,D) and random forest (B,E) on the second climate data set CRU/ARC2
(A,B); and on the entire data set comprising the second climate data set CRU/ARC2 and remote sensing data
(D,E) and the difference between the two model algorithms (C and F). For a map on observed species density
see Figure S1.
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