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Abstract: A satellite-derived cropland extent map at high spatial resolution (30-m or better) is
a must for food and water security analysis. Precise and accurate global cropland extent maps,
indicating cropland and non-cropland areas, are starting points to develop higher-level products
such as crop watering methods (irrigated or rainfed), cropping intensities (e.g., single, double,
or continuous cropping), crop types, cropland fallows, as well as for assessment of cropland
productivity (productivity per unit of land), and crop water productivity (productivity per unit
of water). Uncertainties associated with the cropland extent map have cascading effects on all
higher-level cropland products. However, precise and accurate cropland extent maps at high spatial
resolution over large areas (e.g., continents or the globe) are challenging to produce due to the
small-holder dominant agricultural systems like those found in most of Africa and Asia. Cloud-based
geospatial computing platforms and multi-date, multi-sensor satellite image inventories on Google
Earth Engine offer opportunities for mapping croplands with precision and accuracy over large
areas that satisfy the requirements of broad range of applications. Such maps are expected to
provide highly significant improvements compared to existing products, which tend to be coarser in
resolution, and often fail to capture fragmented small-holder farms especially in regions with high
dynamic change within and across years. To overcome these limitations, in this research we present
an approach for cropland extent mapping at high spatial resolution (30-m or better) using the 10-day,
10 to 20-m, Sentinel-2 data in combination with 16-day, 30-m, Landsat-8 data on Google Earth Engine
(GEE). First, nominal 30-m resolution satellite imagery composites were created from 36,924 scenes
of Sentinel-2 and Landsat-8 images for the entire African continent in 2015–2016. These composites
were generated using a median-mosaic of five bands (blue, green, red, near-infrared, NDVI) during
each of the two periods (period 1: January–June 2016 and period 2: July–December 2015) plus
a 30-m slope layer derived from the Shuttle Radar Topographic Mission (SRTM) elevation dataset.
Second, we selected Cropland/Non-cropland training samples (sample size = 9791) from various
sources in GEE to create pixel-based classifications. As supervised classification algorithm, Random
Forest (RF) was used as the primary classifier because of its efficiency, and when over-fitting issues of

Remote Sens. 2016, 9, 1065; doi:10.3390/rs9101065 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-2320-0780
https://orcid.org/0000-0002-3760-3935
https://orcid.org/0000-0001-8060-9841
https://orcid.org/0000-0001-8622-7932
https://orcid.org/0000-0003-3891-2163
https://orcid.org/0000-0002-7560-8884
http://dx.doi.org/10.3390/rs9101065
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2016, 9, 1065 2 of 27

RF happened due to the noise of input training data, Support Vector Machine (SVM) was applied
to compensate for such defects in specific areas. Third, the Recursive Hierarchical Segmentation
(RHSeg) algorithm was employed to generate an object-oriented segmentation layer based on spectral
and spatial properties from the same input data. This layer was merged with the pixel-based
classification to improve segmentation accuracy. Accuracies of the merged 30-m crop extent product
were computed using an error matrix approach in which 1754 independent validation samples
were used. In addition, a comparison was performed with other available cropland maps as well
as with LULC maps to show spatial similarity. Finally, the cropland area results derived from
the map were compared with UN FAO statistics. The independent accuracy assessment showed
a weighted overall accuracy of 94%, with a producer’s accuracy of 85.9% (or omission error of 14.1%),
and user’s accuracy of 68.5% (commission error of 31.5%) for the cropland class. The total net cropland
area (TNCA) of Africa was estimated as 313 Mha for the nominal year 2015. The online product,
referred to as the Global Food Security-support Analysis Data @ 30-m for the African Continent,
Cropland Extent product (GFSAD30AFCE) is distributed through the NASA’s Land Processes
Distributed Active Archive Center (LP DAAC) as (available for download by 10 November 2017
or earlier): https://doi.org/10.5067/MEaSUREs/GFSAD/GFSAD30AFCE.001 and can be viewed
at https://croplands.org/app/map. Causes of uncertainty and limitations within the crop extent
product are discussed in detail.

Keywords: cropland mapping; cropland areas; 30-m; Landsat-8; Sentinel-2; Random Forest; Support
Vector Machines; segmentation; RHSeg; Google Earth Engine; Africa

1. Introduction

Agricultural areas are changing rapidly over time and space across the world as a result of land
cover change as well as climate variability. Mapping the geographical extent of croplands, their precise
locations, and establishing areas of agricultural croplands is of great importance for managing food
production systems and to study their inter-relationships with geo-political, socio-economic, health,
environmental, and ecological issues [1]. In many food-insecure regions of the world, such as Africa,
understanding and characterizing agricultural production remains a major challenge [2]. In addition,
a primary requirement for agricultural cropland studies is a dependency on the availability of a precise
map of cropland extent at high spatial resolution (30-m or better) as well as determining reliable
and consistent cropland areas derived from these accurate maps [3]. The absence of such a product
leads to great uncertainties in all higher-level cropland products resulting in poor assessment of
global and local food security scenarios. Consequently, the demand for a baseline cropland extent
product at high resolution and accuracy has been widely recognized [4]. Accuracy of higher-level
cropland products such as cropping intensities, crop types, crop watering methods (e.g., irrigated or
rainfed), planted or left fallow, crop health, crop productivity (productivity per unit of land, kg·m−2),
and crop water productivity (productivity per unit of water or crop per drop, kg·m−3) are dependent
on having a precise cropland extent product as a baseline product. In Africa, these products are
particularly helpful due to the absence of high resolution cropland products that map field level details
of croplands making them an invaluable baseline product for all higher-level products such as crop
type, crop productivity, and crop water productivity [5,6].

Remote sensing has long been recognized as an effective tool for broad-scale crop mapping [7–9].
The two most applied remote sensing methods for land-cover mapping are manual classification
based on visual interpretation [10] and digital per-pixel classification [11]. Although the human
capacity for interpreting images is remarkable, visual interpretation is subjective, time-consuming,
and expensive on large area. A number of cropland cover datasets on a global scale have been
developed, mostly at a coarse resolution of 1-km [8,12–14]. Others have mapped cropland as
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one class in their land cover products at MODIS resolution [15–19]. However, all these studies
suffered from inability to depict individual farm fields. Moving from existing products to high
resolution (30-m or finer) greatly improves the ability to capture small and fragmented cultivated
fields. On this topic, National Agricultural Statistics Service (NASS) of the US Department of
Agriculture (USDA) produced Cropland Data Layers (CDLs) for the US using a decision tree
approach based on millions ground samples generated from farmers’ surveys over across the
country as well as the National Land Cover Database [20]. However, such advanced operational
approaches cannot be replicated in developing regions other than North America and Europe
because of the lack of systematic collection of ground training samples. Alternate procedures have
consisted of unsupervised approaches [13,21–23] and supervised methods in small regional areas with
different classifiers including decision trees [12], Support Vector Machine [24,25], Random Forest [12],
neural networks [26–28], data mining [29], and hybrid methods [30]. In order to improve classification
results, the following issues were investigated in literature which include the selection of the
dates [31], temporal windows derivation [32], input features selection [33] and automated classification
methods [34]. Object-based approaches of crop identification have also been explored [35].

One issue that has confounded above cropland mapping efforts is how the term “cropland”
has been defined. For instance, the U.S. Department of Agriculture (USDA) includes in its cropland
definition “all areas used for the production of adapted crops for harvest”, which covers both cultivated
and non-cultivated areas [36]. In most global land cover products, such as Africover [37], GLC2000 [38],
GlobCover [39], GLCShar [40], MODIS Land Cover [41] croplands are partly combined in mosaic
or mixed classes including meadows and pastures [42], making them difficult to use in agricultural
applications, either as agricultural masks or as a source for area estimates. In a previous effort to
compile four existing global cropland into a 1-km global cropland extent map [43], cropland was
defined as: “lands cultivated with plants harvested for food, feed, and fiber, include both seasonal
crops (e.g., wheat, rice, corn, soybeans, cotton) and continuous plantations (e.g., coffee, tea, rubber,
cocoa, oil palms). Cropland fallows are lands uncultivated during a season or a year but are farmlands
that are equipped for cultivation, and hence included as part of croplands. From a remote-sensing
perspective, a cropland in this study is a piece of land of minimum 0.09 ha (30-m × 30-m pixel) that is
sowed/planted and harvest-able at least once within the 12 months after the sowing/planting date.
The annual cropland produces an herbaceous cover and can sometimes be combined with some tree or
woody vegetation. Some crops like sugarcane plantation and cassava crop are not necessarily planted
yearly, but are still crops based on planting that had taken place during a previous year. Greenhouses,
and aquaculture are part of the farmlands and have different signature from other croplands [44],
but these are negligible in Africa. In a nutshell, the cropland extent includes: standing crops, cropland
fallows and plantations.

In order to make continental scale classification feasible, new methods and approaches need
to be adopted or developed to deal with the complex classification issues [45–48]. In this research,
we propose this integrated method of pixel-based classification and object-based segmentation for
large area cropland mapping. A number of earlier studies [49–52] have explored such integrated
approaches. Pixel-based classification algorithms, such as the Random Forests (RF) and Support
Vector Machines (SVM), are widely used due to their efficiency over large areas. These pixel-based
clustering algorithms focus only on the spectral value of each pixel and often result in image speckle
and overall inaccuracies when applied to high resolution imagery. Since each pixel is dealt with
in isolation from its neighbors in the pixel-based paradigm, close neighbors often have different
classes, despite being similar. When classification to produce discrete mapped entities is needed,
an object-based segmentation approach can alleviate such problems [53]. For object-based classification,
field boundaries can be derived either from a digital vector database [54] or by segmentation [55].
In landscapes with mixed agriculture and pastoral land cover classes (e.g., Sahelian countries), image
segmentation methods seem to provide a considerable advantage, since these land cover types are
structurally fairly dissimilar to non-cropland areas whereas they are spectrally similar [56].
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The aim of this paper is to develop a 30-m crop extent map of continental Africa by
integrating pixel-based and object-based approaches. The generic methodology is capable of handling
high-resolution satellite imagery with support of cloud-based Google Earth Engine (GEE) computing
platform [57]. First, creating two half-year period mosaics from 30-m Landsat-8 Operational Land
Imager (OLI) Top of Atmosphere (TOA) and 10-m to 20-m Sentinel-2 multi-spectral instrument
(MSI) L1C product from 2015 to 2016; Second, two pixel-based supervised classifiers (Random
Forest and Support Vector Machines) are applied to input dataset to obtain pixel-based classification;
Third, object-based segmentations from Recursive Hierarchical Image Segmentation (RHSeg) were
introduced to improve the pixel-based classification. Fourth, the study will compare the cropland
areas determined using 30-m cropland product for the nominal 2015 with other statistics such as from
the Food and Agricultural Organization (FAO) of the United Nations (UN). This research is a part of
the Global Food Security-Support Analysis Data Project at 30-m (GFSAD30).

2. Materials

2.1. Study Area

We have chosen the entire continent of Africa for the study area (Figure 1), which extends from
approximately 38◦ N to 35◦ S , occupies 3037 million hectares (Mha), and has 7 distinct geologic and
bio-geographic regions with varying land cover types [58]. Demographic changes of continental Africa
are expected to be staggering in the 21st Century with population expected to increase from the current
1.2 billion to over 4 billion by the end of the Century [59]. Africa is endowed with a wide diversity
of agro-ecological zones. These zones range from the heavy rain-forest vegetation with bi-annual
rainfall to relatively sparse, dry and arid vegetation with low unimodal rainfall. This diversity is
a tremendous asset, but it also poses a substantial challenge for agricultural development. On the one
hand, it creates a vast potential with respect to the mix of agricultural commodities and products which
can be produced and marketed in domestic and external markets. On the other hand, the diversity
implies that there are no continent-wide uniform solutions to agricultural developmental problems
across the continent. Thereby, a precise and accurate cropland extent map of Africa is of significant
importance to study crop dynamics, water security, and food security.

2.2. Cloud-Free Satellite Imagery Composition at 30-m Resolution

Concurrent availability of 10-day Sentinel-2 and 16-day Landsat-8 data provides an unprecedented
opportunity to gather high resolution data for global cropland mapping. Sentinel-2 data become
available for Africa and Europe in the middle of 2015 [60] and its capabilities to map crop types
and tree species have been assessed [34,61–64] and its 10-m and 20-m data provides much more
details than Landsat 30-m data. The easy and simultaneous access to entire archive of Sentinel-2
and Landsat-8 products through GEE, as well as the fast and scalable computational tools that it
offers, makes GEE an essential and powerful tool for this project. Creating 30-m cloud-free imagery
composition for entire Africa is a challenging task because of west and east African monsoon [65],
which cause constant clouds in Gulf of Guinea and east Mozambique most of the time. As a result,
we established the Sentinel-2 composite during two periods (period 1: January–June 2016, and period 2:
July–December 2015), each coinciding with the two main crop growing seasons [24,44,66–69] in Africa.
All data were resampled to 30-m using the average value of all involved pixels. However, data-gaps
still existed in small portions of the continent due to cloud and haze issues after this composition.
For these gaps, Landsat multi-bands (Table 1) with similar wavelength range as Sentinel-2 MSI were
used as supplementary data for gap-filling, to make sure this 30-m wall-to-wall continental mosaic
was cloud-free. In the end, a total of 36,924 images (20,214 from Sentinel-2 and 16,710 from Landsat 8)
were queried from GEE data-pool and was used in this study.
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Figure 1. Map of Africa and its seven stratified zones used in the study. The pixel-based supervised
classifications were run separately for each of the 7 refined agro-ecological zones (RAEZs, or simply
referred to as zones: Northern, Sudano-Sahelian, Gulf of Guinea, Central, Eastern, Southern, Indian
Ocean Islands). The object-based segmentation was run on each 1◦ × 1◦ grids to delineate crop
field boundaries. The dots represent the location of the reference training and validation samples
(green indicates training and red indicates validation).

Table 1. Characteristics of Sentinel-2 MSI and Landsat-8 OLI bands used in this study. Five bands were
used for each of the two periods plus slope layer from SRTM (Total 11 bands for input of classification).

Sensors Period Band Use Wavelength Resolution Provider

Sentinel-2 MSI Level-1C, TOA Period 1: January – June, 2016; 
Period 2: July – December, 2015

B2 Blue 490 nm 10 m

ESA
B3 Green 560 nm 10 m
B4 Red 665 nm 10 m

B8A Near Infrared 856 nm 20 m
NDVI 10 m

Landsat 8 OLI TOA Period 1: January – June, 2016; 
Period 2: July – December, 2015

B2 Blue 450 – 510 nm 30 m

USGS
B3 Green 530 – 590 nm 30 m
B4 Red 640 – 670 nm 30 m
B5 Near Infrared 850 – 880 nm 30 m

NDVI 30 m

Shuttle Radar Topography Mission (SRTM) 30 m Slope 30 m NASA/USGS

The gap-filling of Sentinel-2 data with Landsat-8 data poses some technical challenges and requires
imagery to be harmonized. The platforms and sensors differ in their orbital, spatial, and spectral
configuration. As a consequence, measured physical values and radiometric attributes of the imagery
are affected. For example, a root mean square error (RMSE) greater than 8% in the red band was found
when comparing Sentinel and Landsat simulated data, due to the discrepancies in the nominal relative
spectral response functions (RSRF) [70]. Werff compared Sentinel-2A MSI and Landsat-8 OLI Data [71],
finding the correlation of their TOA reflectance products is higher than their bottom-of-atmosphere



Remote Sens. 2016, 9, 1065 6 of 27

reflectance products. Besides, the combined use of multi-temporal images requires an accurate
geometric registration, i.e., pixel-to-pixel correspondence for terrain-corrected products. Both systems
are designed to register Level 1 products to a reference image framework. However, the Landsat-8
framework, based upon the Global Land Survey images, contains residual geolocation errors leading
to an expected sensor-to-sensor misregistration of 38-m [72]. This is because although both sensor
geolocation systems use parametric approaches, whereby information concerning the sensing geometry
is modeled and the sensor exterior orientation parameters (altitude and position) are measured,
they use different ground control and digital elevation models to refine the geolocation [72,73].
These misalignments vary geographically but should be stable for a given area. A study demonstrates
that sub-pixel accuracy was achieved between 10-m resolution Sentinel-2 bands (band 3) and 15-m
resolution panchromatic Landsat images (band 8) [74]. We determined that the mismatch between
the geo-referencing of Landsat and Sentinel is within 30-m by comparing multiple ground control
points from obvious, well-recognized locations on the land when both sensors images were available.
Sentinel-2 has two NIR bands B8 (10-m) and B8A (20-m); B8 is consistently lower than B8A due to
different gain settings. The B8A band was used here for ’NIR band’ because it matched Landsat
data better.

For each period (January–June 2016, July–December 2015) 5 bands (blue, green, red, NIR and an
NDVI band (Table 1, Figure 2) were composited using Sentinel-2 and Landsat-8 combined. First, TOA
reflectance values of Sentinel-2 were calculated and mosaicked using median values to create layer
stacks for each of the seasons separately. Wherever “data-gaps” found, they were identified and filled
using Landsat-8 data. Note that each of the 5 bands were composited over each of the two periods so
we had total 10 bands from two time periods. In addition, we derived a slope surface from the Shuttle
Radar Topography Mission (SRTMGL1v3) [75] digital elevation at one arc-sec (approximately 30-m)
resolution dataset. These 11 bands were organized as a GEE Image Collection object, which provided
a programmable way to run classification algorithms such as RF and SVM deployed on GEE.

Figure 2. Illustration of the 11 input layers in this study. Five bands (Blue, Green, Red, NIR, NDVI) were
composited for each of two periods (period 1: January–June 2016, and period 2: July–December 2015)
for entire African continent. Total 10 bands plus the slope layer derived from SRTM elevation data
were composed on GEE for pixel-based classification, 10 bands without slope layer were used for
object-based segmentation.
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It is noteworthy that half-yearly (January–June, July–December) composites were a measure of
expediency in attaining wall-to-wall cloud-free mosaics over such a large area as Africa. Because of
cloud cover, bimonthly mosaics or even trimonthly mosaics contain areas with no-data. In order to
create wall-to-wall cloud-free mosaics composites of Africa, we determined through experiments
that only 2 composites per year (half-yearly as mentioned above) could be reliably generated.
Data availability is much higher in some areas (e.g., North Africa) than others (central Africa),
which means we could set shorter composite periods in these regions, to get more composite periods
within one year. However, it also makes the number of inputs bands different between regions,
which increases difficulty in operational processing. Eventually, nominal 30-m cloud-free imagery
were generated for the entire African continent for two main crop growing periods (January–June 2016;
July–December 2015).

2.3. Reference Training Samples

We obtained reference training data (Figure 1) from following reliable sources in addition to our
own collections. First, we randomly distributed 10,000 data points across land of continental Africa.
We assessed these samples to ensure that they represent homogeneous cropland or non-cropland
classes in a 90-m × 90-m sample frame using National Geospatial Agency (NGA) sub-meter to
5-m imagery. We removed some heterogeneous (e.g., cropland mixed with non-cropland) samples.
After using 5511 randomly generated samples to train the pixel-based classification algorithm (RF
and SVM), another 4280 polygons were appended which were placed by the analyst. In the end,
there were 9791 training samples that were either croplands or non-croplands derived from VHRI
spread across Africa. The attributes, ground photos or satellite images of these training samples are
accessible through https://web.croplands.org/app/data/search.

The reference training data were then used to generate a cropland versus non-cropland
knowledge-base for the algorithms. For an example of zone 1 sample sets, reflectance values of
non-croplands were much higher than cropland samples (e.g., Figure 3), especially for Band 4 (red),
Band 3 (green) and Band 2 (blue), while NDVI values of croplands were much higher than
non-croplands. In this sample area (Figure 3), period 1 (January–June 2016) reflectance was significantly
higher than period 2 (July–December 2015) due to greater intensity of cropping during this period
in this sample area as well as types of crops grown during period 1 compared to period 2 (Figure 2).
However, this may change in other areas depending on crop dynamics. This knowledge was used in
training, classifying, and separating croplands from non-croplands in the the pixel-based supervised
classification algorithms (RF, SVM).

2.4. Reference Validation Sample Polygons

Reference validation samples were also collected using similar approach as in Section 2.3.
Spatial distribution of the validation data is shown in Figure 1. The validation data was hidden
from the map producers and was made available only to independent accuracy assessment team.
These reference datasets are publicly available for download at: https://doi.org/10.5067/MEaSUREs/
GFSAD/GFSAD30AFCE.001. Accuracy error matrices were established for each of the 7 refined
agro-ecological zones or RAEZs (Figure 1) separately as well as for the entire African continent. A total
of 1754 validation samples were reserved and was only available to the validation team. Further, the
areas computed for the 55 countries of Africa were compared with areas available from UN FAO.

https://web.croplands.org/app/data/search
https://doi.org/10.5067/MEaSUREs/GFSAD/GFSAD30AFCE.001
https://doi.org/10.5067/MEaSUREs/GFSAD/GFSAD30AFCE.001
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Figure 3. Creating knowledge-base to separate croplands from non-croplands involving: (a) waveband
reflectivity and NDVI of the two seasons; and (b) principal component plot. The above knowledge-base
is illustrated for a sub-area in one of the seven zones shown (Figure 1) of Africa.

3. Methods

There is no single classifier that is best applicable to cropland mapping [13,43] as a result of
their various strengths and limitations [15], specifically for large areas [8,9]. As result, a combination
of different classification techniques [47,76] were investigated. Earlier, several authors [49,50] have
explored this combination of methods for land use/land cover classification over large areas, but not for
cropland classification over large areas yet. In this section, an integrated methodology of pixel-based
classifiers (Random Forest, Support Vector Machines) and object-based Recursive Hierarchical
Segmentation is outlined in the flowchart (Figure 4) and described in the following sub-sections:

3.1. Overview of the Methodology

A comprehensive overview of the methodology is shown in Figure 4. As it is difficult to
apply a single classifier over large areas (Figure 1) for cropland mapping, an ensemble of machine
learning algorithms were investigated [47,76]. Specifically, the integration of pixel-based and the
object-based classifiers for large area land cover mapping has been explored by several authors [49,50].
Both pixel-based and object-oriented classifiers require a large amount of reference training data
(Section 2.3, Figure 1), which we established through several endeavors as discussed in Section 2 and
its sub-sections.

1. 30-m mosaic (11 bands) was built using Sentinel-2 and Landsat-8 data (Section 2.2) for period 1
(January–June, 2016) and period 2 (July–December, 2015);

2. Random Forest and Support Vector Machines (Section 3.1) were used to classify input bands for
croplands versus non-croplands;
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3. Using same bands as inputs, recursive hierarchical segmentation (Section 3.2) was carried out in
1◦ by 1◦ grid units on NASA pleiades supercomputer;

4. The pixel-based classification was integrated with object-based segmentation into cropland extent
map (Section 3.3) for further assessment (Section 3.4)

5. We compared derived cropland areas with country-wise statistics from other sources in Section 3.5
and explored the consistency between GFSAD30AFCE map and other reference maps in
Section 3.6.

6. 30-m Cropland extent product is released through the NASA Land Processes Distributed Active
Archive Center (LP DAAC) at: https://doi.org/10.5067/MEaSUREs/GFSAD/GFSAD30AFCE.
001 and can be viewed at: https://croplands.org.

Landsat 8 TOA, 
2013 – 2015

Sentinel-2 MSI L1C, 
2015, 2016

SRTM 30
Slope

cloud mask, gap-filling

- Field Work during 
2014–2015
- LULC Validation 
Dataset
(Zhao et al.,2014; Tateishi 
et al. 2014) 
- Research Literatures
(Hentze et al., 2016, 
Kidane et al.  2012, Kruger 
2006, Lambert et al.  2016)
*All samples are collected 
from mobile app and global 
croplands.org, assessed using 
Google Earth Imagery.

30-m mosaic
Period 1: January – June, 2016

  Period 2: July – December, 2015

Satellite image composition

Cropland classification
(pixel-based)

Random Forest (RF) 
Support Vector Machines 

(SVM)

Recursive hierarchical 
Segmentation (RHSeg)

Field segmentation
(object-oriented)

Crop Extent Map

Training Dataset 
(N = 9791)

Validation Dataset
(N = 1754)

Integrate classification 
& segmentation

refined agro-ecological 
zones (N = 7)

1° by 1° Grids 
(N = 1919)

merging

CropRef

Manual Selection

train

sampling

balance

accuracy assessment

Crop area statistics, 
reference maps

evaluation

On-line dataset: globalcroplands.org

Reference Compilation

Input Bands 
(N=11)

Period 1 mosaic:
Blue

Green
Red
NIR

NDVI
Period 2 mosaic:

Blue
Green
Red
NIR

NDVI
Slope from STRM30

Figure 4. Overview of methodology for cropland extent mapping. The study integrates
pixel-based classification involving the Random Forest (RF) and Support Vector Machines (SVM)
with object-oriented Recursive Hierarchical Image Segmentation (RHSeg). The chart also shows the
reference and training dataset used.

3.2. Pixel-Based Classifier: Random Forest (RF) and Support Vector Machine (SVM)

The Random Forest classifier uses bootstrap aggregating (bagging) to form an ensemble of
trees by searching random subspaces from the given features and the best splitting of the nodes by
minimizing the correlation between the trees. It is more robust, relatively faster in speed of classification,
and easier to implement than many other classifiers [77]. Accurate land cover classification and better
performance of the RF models have been described by many researchers [11,77–79].

RF was used to classify croplands in the 7 RAEZ’s, as shown in Figure 1. Initially, 5511 training
samples described in Section 2.3 were used for the first run of RF algorithm on GEE. In order to
improve classification results, ~500-600 trees were used and the number of training samples were
increased to varying degrees for each individual zone.

RF classified results were visually compared to other reference maps (GlobCover, GRIPC, GLC30,
Google Earth Imagery). Based on these comparisons, the training polygon set was refined by
creating additional croplands and non-croplands training polygons by drawing them in GEE editor.

https://doi.org/10.5067/MEaSUREs/GFSAD/GFSAD30AFCE.001
https://doi.org/10.5067/MEaSUREs/GFSAD/GFSAD30AFCE.001
https://croplands.org
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After additional training polygons were added, the classification was run again. This iterative step is
time-consuming, depending on the complexity of the landscape. For example, in the rainfed areas
of central Africa like Tanzania, the rainfed cropland areas are mixed with natural vegetation and
bare land. In such places, the training sample selection was repeated 4 times to achieve satisfactory
results. For all 7 RAEZs, another 4280 polygons were added following this iterative procedure. Overall,
we used 9791 training samples/polygons across the entire African continent.

Occasionally, overfitting issues happened in RF because input features are heavily correlated in
specific areas; to correct for this a SVM classifier [80] with a Linear kernel was used in the problematic
regions to replace RF results. SVM has also been reported to work significantly better with smaller,
intelligently selected, training samples than RF in literature [81].

The pixel-based classifiers (RFs and SVMs) were run on GEE. Cloud computing offers the power
of computing by linking 1000s of computers, allowing parallel processing and thus enabling the
classification of individual zones with 30-m pixels in matter of hours.

3.3. Recursive Hierarchical Image Segmentation (RHSeg)

Section 3.2 discussed pixel-based classifiers which are fast and are scalable over large areas
on cloud computing facilities like GEE. However, the pixel-based classification results inevitably
include “salt and pepper” noise and dis-jointed farm fragments in practice. Object-based analysis
can improve salt and pepper effects and increase classification accuracies over pixel-based image
classification [82,83]. Image segmentation gathers several similar neighbor pixels together as objects,
and categorizes or labels objects, which would be further labelled as croplands or non-croplands in
the integration step with pixel-based classification in Section 3.2. Image segmentation procedures
have many implementation [82,83] with very high memory and CPU requirements. GEE provides
APIs related to image segmentation such as region grow [84]. However, image segmentation for entire
Africa at 30-m is beyond GEE’s existing capacity so we utilized NASA supercomputer facilities [85] to
implement intensive segmentation over large areas.

In this study, Recursive Hierarchical Segmentation (RHSeg) software [86] was adopted to
extract object information from 30-m input imagery. RHSeg is an approximation of the Hierarchical
Segmentation (HSeg) algorithm that recursively subdivides large images into smaller subimages that
can be effectively processed by HSeg. RHSeg then blends the results from the subimages to produce
a hierarchical segmentation of the entire large image. HSeg utilizes an iterative region growing
approach to produce hierarchical image segmentations. HSeg is unique in that it alternates merges
of spatially adjacent and non-spatially adjacent regions to provide a simultaneous segmentation and
classification. The addition of merging non-spatially adjacent regions helps stabilize the segmentation
result by providing a larger sampling of each spectral class type. Other hierarchical classification
strategies have been tested by several researchers with a series of per-class classifiers to minimize the
effect of spectral confusion among different land cover classes [50,87].

The merging of spatially non-adjacent regions in RHSeg leads to heavy computational demands.
In order to expand its capability from regional-size to continental scale, a grid scheme (Figure 1) was
applied to subset the 30-m mosaic dataset created in Section 2.2, covering the non-desert areas of Africa
into 1919 smaller pieces using GEE. Each scene was a 10-band image for entire Africa without the
slope band (Figure 2, Table 1) at 30-m resolution, about 4000 columns by 4000 rows in size which was
then used by RHSeg as input for segmentation. Generating the segmentation of these input datasets
took about 74 hours using 64 CPUs on the Pleiades and Discover NASA Supercomputers under the
parallel mode supported by RHSeg.

Noting that some image scenes had a large percentage of water pixels or pixels masked out
due to clouds, we realized that more consistent and accurate results could be obtained by selecting
results from the RHSeg segmentation hierarchy based on merge threshold instead of the number of
regions. Based on the analysis of 12 representative 30-m foot-print images across Africa, we found



Remote Sens. 2016, 9, 1065 11 of 27

that a merge threshold of 15.0 selected the most suitable RHSeg segmentation hierarchy layer for
agricultural application.

3.4. Integration of Pixel-Based Classification and Object-Based Segmentation

Every segment in the outputs of RHSeg at the selected hierarchical level consists a group of pixels
with a unique id (region label), which will be further labeled as “cropland” or “non-cropland” patch
when the segment was overlaid with pixel-based classification results. In order to merge pixel-based
classification and field boundary information from segmentation, we reassigned the pixel values for
individual segments according to the following rules which were developed based on trial and error
in 12 images under different landscapes across the continent:

If > 85% of the pixels in a segmented patch are classified as ‘cropland’, the whole patch was
assigned to ‘cropland’;

If < 15% of the pixels in a segmented patch are classified as ‘cropland’, the whole patch was
assigned to ‘non-cropland’;

If either condition is not met, the pixel-based classification results will be unchanged in the final
crop extent map, resulting in mixed cropland and non-croplands pixels in one patch.

The example shown in Figure 5 highlights the value of the merging steps above to produce the final
cropland extent map. Pixel-based classification of croplands (green) covered most highly vegetated
areas, however, some cropland-pixels were missing because of cropland heterogeneity and spectral
contamination among neighboring pixels (Figure 5a). In Figure 5b, the RHSeg segmentation layer is
better able to determine whether pixels belong to the same field (random coloring). The results from
Figure 5a,b are merged to produce a more refined and complete boundaries of cropland fields (green)
(Figure 5c) which has better consistency with the true color VHRI from Google Earth (Figure 5d).

Figure 5. The example of (a) the pixel-based classification from random forest classifier; (b) the
object-based RHSeg image segmentation result; (c) the merged results with RHSeg segmentation result
with pixel-based Random Forest classification; and (d) a true color Google Earth Imagery for reference.



Remote Sens. 2016, 9, 1065 12 of 27

3.5. Accuracy Assessment

Map accuracy assessment is a key component of map production, especially when remote sensing
data are utilized [88]. Validation exercises require high-quality reference validation data sets collected
at appropriate spatial and temporal scales using random sample designs [89,90]. In addition to the
accuracy analysis performed when evaluating the classification results to select the best algorithms
and results, an independent validation of the product was performed. For the independent assessment,
a total of 1754 samples were used to determine the accuracy of the final cropland extent map of Africa
for all 7 RAEZ’s (Figure 1). Error matrices were generated for each of the RAEZ’s separately and also
for the entire African continent providing producer’s, user’s, and overall accuracies. Further, the areas
computed for the 55 countries of Africa were compared with areas available from UN FAO.

There are few basic important considerations that must be followed step by step in order to
perform an assessment of the cropland thematic maps [89]. The process of validation usually starts
with collection of a high-quality reference data independent of the training data that have already
been used for mapping the same area. The reference samples have been collected from very high-
resolution imagery or VHRI (sub-meter to 5-m) that were available for the entire continent through US
National Geospatial Agency (NGA) though image interpretation that corresponded with the same
year of mapping. It is better to adopt a continent specific sampling method to perform a meaningful
assessment of global cropland products. For Africa, a stratified random sampling design [89] was used
to distribute a balanced sample size using the following steps:

1. Stratified, random and balanced sampling: The African continent has been divided into 7 refined
agro-ecological zones or RAEZs (Figure 1) for stratified random sampling. Due to a large
crop diversity across RAEZ’s (Figure 1) there is high variability in their growing periods and
crop distribution. Therefore, to maintain balanced sampling for each zone, samples have been
randomly distributed in each zone. The question of how many samples are sufficient to achieve
statistically valid accuracy results is described in next point below.

2. Sample Size: The sample size has been chosen based on the analysis of incrementing minimum
number of samples. Initially, first 50 samples were chosen as minimum number for all the 7 RAE’s
and then incremented in steps with another 50 more samples. A few RAEZ’s in Africa have little
cropland distribution so that 50 samples were enough to achieve a valid assessment. However,
other RAEZ’s needed up to 250 samples for their assessment. Beyond 250 samples, accuracies of
all RAEZ’s become asymptotic. Overall, for Africa, total 1754 samples were used from 7 RAEZ’s.

3. Sample unit: The sample unit for a given validation sample must be a group of pixels (at least
3 × 3 pixels of 30-m resolution) in order to minimize the impact of positional accuracy [88].
This sampling unit is a 3 × 3 homogeneous window containing one class. If a sample at this step
was recognized to be a mixed patch of cropland and non-cropland, it had to be excluded from the
validation dataset in the accuracy assessment since heterogeneous windows were not considered,
however excluding them is the best practical choice for accuracy assessment.

4. Sampling was balanced to keep the proportion of the cropland versus non-cropland samples close
to the proportion of the cropland versus non-cropland area from the product layer to be validated.

5. Validation samples are created independently from training samples described in Section 2.3,
by a different team.

The performance of the different approaches was assessed by two complementary criteria,
namely the accuracy assessment and across-site robustness. Two different metrics, derived from the
confusion matrix, were selected for the overall accuracy (OA) assessment. The OA evaluated the overall
effectiveness of the algorithm, while the F-score measured the accuracy of a class using the precision
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and recall measures. For each of the 7 RAEZ’s (Figure 1) of Africa, the study establishes error matrices
that provides user’s (UA), producer’s (PA), and overall accuracies (OA) as following equations:

OA =
Sd
n

× 100% (1)

UA =
Xij

Xj
× 100% (2)

PA =
Xij

Xi
× 100% (3)

Fscore = 2 × UA × PA
UA + PA

(4)

where Sd is the total number of correctly-classified pixels, n = total number of validation pixels,
Xij = observation in row i column j; Xi = marginal total of row i; Xj = marginal total of column j.

3.6. Calculation of Actual Cropland Areas and Comparison with Areas from Other Sources

Generating cropland areas such as at national and sub-national levels is of great importance
in food security studies. In Google Earth Engine, we convert the crop extent map to a crop area
map where the pixel value represents the actual crop area converting the map to Lambert Azimuthal
(equal-area) projection. In order to derived the country level cropland area statistics from the 30-m
crop extent map of Africa, we used the Global Administrative Unit Layers (GAUL) from UN FAO as
country boundaries to create Table 4 as well as statistics from other sources, including AquaStat [91],
Mirca2000 [92], GRIPC [16] and GLC30 [45].

3.7. Consistency between GFSAD30AFCE Product and Four Existing Crop Maps

The GFSAD30AF product was also compared with other LULC/Cropland products that were
published recently to establish consistency between the products. First, we remapped four existing
global land cover map products according to their individual classification schemes (Table 2):

• Global Land Cover Map for 2009 (GlobCover 2009) [39]. Class 11, 14 were reclassified as
“croplands” and other land cover classes were reclassified as “non-croplands”;

• Global rainfed, irrigated, and paddy croplands map GRIPC [16]. All agricultural classes
include rainfed, irrigated and paddy were combined as “croplands” and other classes
were “non-croplands”;

• 30-m global land-cover map FROM-GLC [48]. Level 1 class 10 and Level 2 Bare-cropland 94 were
combined as “croplands” and other classes were “non-croplands”; and

• Global land cover GLC30 [45]. Class 10 was combined as “croplands” and other classes
were “non-croplands”.

To unify spatial resolution of cropland maps, the Cropland Extent Map and these four cropland
maps were all resampled to 30-m resolution for comparison. In addition to visual comparison
illustrations, we also evaluated statistical agreements between these cropland maps. We generated
12,627 random points across the classification extent and sampled the cropland classes from five
cropland extent maps to build similarity metrics.
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Table 2. Remapped land cover classes of other cropland or land use/land cover (LULC) products used
to compare with the GFSAD30AFCE product of this study.

Cropland/LULC Maps Resolution Code Class Name

GlobCover 2009 v2.3 300 m

11 Post-flooding or irrigated croplands
14 Rainfed croplands
20 Mosaic cropland/vegetation
30 Mosaic vegetation/croplands

GRIPC 500 m
1 Rain-fed croplands
2 Irrigated croplands
3 Paddy croplands

FROMGC Level 2 30 m

11 Rice
12 Greenhouse
13 Other Crop
94 Bare-cropland

GLC30 30 m 1 Cultivated Land

4. Results

The study produced a nominal 30-m cropland extent product (Figure 6; croplands.org) of the
entire African continent using Sentinel-2 and Landsat-8 data for the year 2015. In the following
sub-sections, we will discuss this product, referred to as, the Global Food Security-support Analysis
Data @ 30-m of Africa, Cropland Extent (GFSAD30AFCE; Figure 6) product, its accuracies, areas
derived from it, and comparison of areas with areas reported through National and sub-National
statistics as reported by the Food and Agricultural Organization (FAO) of the United Nations (UN).
We will also compare the GFSAD30AFCE product with other cropland and/or land use/land cover
(LULC) products where cropland classes were mapped.

Figure 6. Global Food Security-support Analysis Data @ 30-m of Africa, Cropland Extent product (a).
Full resolution of 30-m cropland extent can be visualized by zooming-in to specific areas as illustrated
in right panel (b,c). For any area in Africa, croplands can be visualized by zooming into specific areas
in croplands.org.

4.1. GFSAD30AFCE Product

The Global Food Security-support Analysis Data @ 30-m of Africa, Cropland Extent
(GFSAD30AFCE; Figure 6), produced by combining the pixel-based (RF, SVM) and Object-based

croplands.org
croplands.org
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segmentation algorithm (RHSeg), is accessible at https://croplands.org/app/map. The data will also
be soon made available for download through NASA’s Land Processes Distributed Active Archive
Center (LP DAAC). The product year is referred to as nominal 2015 since most Sentinel-2 images used
in processing were from July 2015 to June 2016. Data users can also browse the online version of the
products at croplands.org.

On the African continent, croplands are primarily dominant throughout West Africa, along the
great Lakes of Africa (Lake Victoria and Lake Tanganyika), South Africa, Southern Africa, along the
coasts of North Africa, and all along the Nile Basin (Figure 6). The Sahara Desert, Kalahari Desert,
and overwhelming proportion of the Congo rain forests have almost no croplands (Figure 6).

4.2. GFSAD30AFCE Product Accuracies

This final cropland extent product of Africa (GFSAD30AFCE) was systematically tested for
accuracies (Table 3) by independent validation datasets in each of the 7 refined agro-ecological zones
or RAEZs (Figure 1). For the entire African continent, the weighted overall accuracy was 94.5% with
producer’s accuracy of 85.9% (errors of omissions of 14.1%) and user’s accuracy of 68.5% (errors of
commissions of 31.5%) for the cropland class (Table 3). When considering all 7 RAEZs, the overall
accuracies varied between 90.8% and 96.8%, Producer’s accuracies varied between 60.7% and 94.9%,
and user’s accuracies varies between 53.3% and 89.6% for cropland class (Table 3). The F score ranged
between 0.65 and 0.9.

Table 3. Independent Accuracy Assessment of GFSAD30 Cropland Extent product of Africa
(GFSAD30AFCE).

Zone 1, % of TNCA* = 9.1% Reference Data Zone 2, % of TNCA* = 26.4% Reference Data

Crop No-Crop Total User Accuracy Crop No-Crop Total User Accuracy

Map Data
Crop 43 5 48 89.6%

Map Data
Crop 21 8 29 72.4%

No-Crop 4 198 202 98.0% No-Crop 8 213 221 96.4%

Total 47 203 250 Total 29 221 250

Producer Accuracy 91.5% 97.5% Producer Accuracy 72.4% 96.4%

Overall Accuracy 96.4% Fscore 0.91 Overall Accuracy 93.6% Fscore 0.72

Zone 3, % of TNCA* = 21.7% Reference Data Zone 4, % of TNCA* = 6.2% Reference Data

Crop No-Crop Total User Accuracy Crop No-Crop Total User Accuracy

Map Data
Crop 37 21 58 63.8%

Map Data
Crop 8 7 15 53.3%

No-Crop 2 190 192 99.0% No-Crop 1 234 235 99.6%

Total 39 211 250 Total 9 241 250

Producer Accuracy 94.9% 90.0% Producer Accuracy 88.9% 97.1%

Overall Accuracy 90.8% Fscore 0.76 Overall Accuracy 96.8% Fscore 0.67

Zone 5, % of TNCA* = 16.6% Reference Data Zone 6, % of TNCA* = 19.9% Reference Data

Crop No-Crop Total User Accuracy Crop No-Crop Total User Accuracy

Map Data
Crop 44 17 61 72.1%

Map Data
Crop 22 9 31 71.0%

No-Crop 5 188 193 97.4% No-Crop 4 215 219 98.2%

Total 49 205 254 Total 26 224 250

Producer Accuracy 89.8% 91.7% Producer Accuracy 84.6% 96.0%

Overall Accuracy 91.3% Fscore 0.80 Overall Accuracy 94.8% Fscore 0.77

Zone 7, % of TNCA* = 0.1% Reference Data All Zones, % of TNCA*=100% Reference Data

Crop No-Crop Total User Accuracy Crop No-Crop Total User Accuracy

Map Data
Crop 17 7 24 70.8%

Map Data
Crop 176 81 257 68.5%

No-Crop 11 215 226 95.1% No-Crop 29 1464 1493 98.1%

Total 28 222 250 Total 205 1545 1750

Producer Accuracy 60.7% 96.8% Producer Accuracy 85.9% 94.8%

Overall Accuracy 92.8% Fscore 0.65 Overall Accuracy 93.7% Fscore 0.76
Weighted Accuracy** 94.5%

Note: * TNCA  (Total Net Croplands Area ) = 313 Mha

** The all-zones Weighted Accuracy is weighted by proportion of croplands in each zone

https://croplands.org/app/map
croplands.org
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Across RAEZs (Table 3), user’s accuracies (commission errors) were significantly lower than
producer’s accuracies (omission errors). This was mainly because when training the random
forest algorithm, we tweaked it to capture as much croplands as possible, thus ensuring high
producer’s accuracies (or low omission errors for the cropland class) across RAEZ’s. In this process,
the compromise was that some non-croplands were included as croplands, resulting in lower user’s
accuracies (or higher commission errors) for the cropland class. Ideally, an algorithm should optimize
a classification to balance producer’s and user’s accuracies. However, the goal of this project is to map
almost all croplands including fallow croplands. As a result, we aimed for high producer’s accuracies
(low errors of omissions) for the cropland class across zones (Table 3) and achieved it for most RAEZs,
as evidenced by a continent-wide producer’s accuracy of 85.9% (Table 3).

4.3. Cropland Areas and Comparison with Statistics from Other Sources

GFSAD30AFCE can accurately estimate cropland areas by nation or sub-national regions
(e.g., state, district, county, village). Here we calculated the cropland areas by country in Africa
(Table 4) for comparison with survey-based statistical area from UN FAO. Users can make use of
this product to do their own computation of sub-national statistics anywhere in Africa at all kinds of
administrative level and compare them to reliable reference data.

Table 4 shows a country-wise cropland area statistics of all 55 African countries generated from
this study using GFSAD30AFCE product of year 2015 (Figure 6) and compared with the national
census data based MIRCA2000 [92] which were updated in the year 2015 (Stefan Siebert and Portmann,
personal communication). Overall, the entire African continent had total net cropland area (TNCA)
of 313 million hectares (Mha). Five countries (Nigeria, Ethiopia, Sudan, Tanzania, and South Africa)
constitute 40% of all cropland areas of Africa and each have 5% or more of total Africa’s net cropland
area (TNCA) of 313 Mha (Table 4). Nigeria is the leading cropland country in Africa with 11.4% of
the 313 Mha (Table 4). Ethiopia is second with 8.21%. However, crop productivities will depend on
numerous factors such as soils, whether they are irrigated or rainfed, management issues (e.g., inputs
such a N, K, P), and also climate and plant genetics. Thereby, larger cropland area does not necessarily
mean greater crop productivity. There are 12 countries (DR Congo, Mali, Zimbabwe, Kenya, Morocco,
Algeria, Niger, Zambia, Uganda, Mozambique, Burkina Faso, Chad) which have above 2% but below
5% of Africa’s TNCA of 313 Mha. The remaining 38 African countries have less than 2% of Africa’s
NCA. The overwhelming proportion (94%) of the cropland areas are in just 25 of the 55 countries
(Table 4).

For 48 of the 55 countries (7 “outliers” countries removed) there was a strong relationship between
the GFSAD30AFCE product produced cropland areas versus the MIRCA2000 produced cropland
areas (Figure 7) with an R-square value of 0.78. When all 55 countries are considered, this relationship
provides an R-square value of 0.65. The countries where GFSAD30AFCE under-estimated croplands
include Cote d’Voire, Uganda, Cameroun, Ghana, and Tunisia (Figure 7). The countries where
GFSAD30AFCE over-estimated croplands include Malawi, Kenya, Mozambique, and Egypt to mention
few names (Figure 7). Causes of this variability are many. Besides uncertainties among the input data
and methodology, the GFSAD30AFCE product and the national statistics differ due to these reasons:

• Different definition of “croplands” class: GFSAD30AFCE product as per definition, includes
all agricultural annual standing croplands, cropland fallows, and permanent plantation crops
whereas cropland areas reported in statistics may not include cropland fallows;

• Different time: GFSAD30AFCE incorporate the latest cultivated area in 2015–2016 as well as the
croplands fallows whereas country reported cropland areas may happen in other years.
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Table 4. Total net cropland areas (TNCA) of the African countries derived from the global food
security-support analysis data @ 30-m cropland extent product (GFSAD30AFCE) and compared with
other cropland area sources.

Country
Land (Mha) Total Net Cropland Area (TNCA, Mha)

FAO-
GAUL MIRCA2000 This Study: 

GFSAD30AFCE
FAO Cultivated 

area (2002) GRIPC GFSAD250 GLC30

Resolution -- variable 30-m variable 500-m 250-m 30-m
Nigeria 90.56 38.62 35.67 33.00 39.30 14.05 28.20
Ethiopia 112.76 11.09 25.70 10.67 14.23 19.63 21.72
Sudan 186.88 18.40 22.74 16.65 10.43 9.09 19.94
Tanzania 93.98 5.67 22.57 5.10 4.57 28.81 18.25
South Africa 122.00 15.70 19.91 15.71 10.99 13.06 15.20
Congo DRC 232.94 9.80 16.32 7.80 11.41 22.87 4.47
Mali 125.26 4.84 12.78 4.70 9.81 10.66 5.16
Zimbabwe 39.07 3.53 12.31 3.35 0.10 10.75 8.97
Zambia 75.12 5.43 9.70 5.29 0.23 15.31 6.49
Kenya 59.34 5.35 9.23 5.16 5.74 8.91 8.38
Morocco 67.77 9.68 8.98 9.28 6.18 5.76 8.06
Algeria 231.27 5.96 8.81 8.27 3.99 3.78 7.73
Niger 118.12 14.53 8.45 4.50 1.06 0.24 6.60
Mozambique 78.57 4.82 8.42 4.44 1.30 11.76 5.80
Côte d’Ivoire 32.07 7.13 7.86 6.90 9.53 9.02 1.44
Burkina Faso 27.39 4.34 7.37 4.40 10.39 7.95 4.19
Uganda 24.13 8.58 7.19 7.20 9.37 7.69 6.24
Angola 124.71 3.67 6.32 3.30 2.17 7.94 4.29
Chad 127.09 3.72 6.31 3.63 7.13 11.07 4.80
Cameroon 46.50 7.40 5.20 7.16 4.45 5.37 1.45
Malawi 11.85 1.74 5.20 2.44 0.46 5.83 3.76
Tunisia 15.50 2.51 5.05 4.91 2.21 1.66 4.53
Egypt 98.22 4.51 4.99 3.42 3.21 4.11 4.31
Madagascar 58.98 4.34 4.63 3.55 4.02 2.55 2.07
Ghana 23.86 6.58 4.62 6.33 6.72 8.73 2.16
Senegal 19.52 2.52 4.33 2.51 5.65 2.59 3.32
Benin 11.52 2.85 3.81 2.82 2.44 2.97 2.95
Togo 5.67 2.63 2.24 2.63 1.53 1.65 1.73
Libya 161.52 0.94 2.08 2.15 0.64 0.45 1.68
Somalia 63.26 1.21 2.05 1.07 1.95 2.52 1.54
Botswana 57.84 0.87 1.90 0.38 0.02 9.75 0.84
Rwanda 2.53 1.29 1.42 1.39 1.68 1.63 1.20
South Sudan 62.43 0.00 1.26 0.00 0.00 4.13 0.00
Namibia 82.39 0.82 1.23 0.82 0.00 3.80 0.80
Central African Republic 62.03 2.06 1.02 2.02 0.61 1.18 0.69
Guinea 24.47 1.92 0.97 1.54 0.85 5.32 0.64
Lesotho 3.05 0.34 0.85 0.33 0.08 0.54 0.62
Burundi 2.72 1.08 0.85 1.35 1.26 1.80 0.67
Eritrea 12.25 0.56 0.73 0.50 0.16 0.33 0.56
Swaziland 1.74 0.24 0.69 0.19 0.19 0.38 0.52
Gambia 1.06 0.30 0.38 0.26 0.63 0.57 0.26
Congo 34.22 0.58 0.31 0.24 3.40 2.35 0.22
Guinea-Bissau 3.36 0.55 0.31 0.55 0.14 0.76 0.20
Sierra Leone 7.23 0.67 0.13 0.60 0.87 2.73 0.09
Mauritania 103.89 0.86 0.11 0.50 0.03 0.07 0.08
Liberia 9.58 0.46 0.01 0.60 0.21 2.44 0.01
Cape Verde 0.41 0.06 0.00 0.05 0.02 0.00 0.00
Gabon 26.15 0.49 0.00 0.50 0.94 1.07 0.00
Sao Tome and Principe 0.10 0.03 0.00 0.05 0.00 0.01 0.00
Equatorial Guinea 2.69 0.22 0.00 0.23 0.01 0.13 0.00
Comoros 0.17 0.08 0.00 0.13 0.04 0.00 0.00
Djibouti 2.17 0.00 0.00 0.00 0.00 0.00 0.00
Mauritius 0.20 0.16 0.00 0.11 0.12 0.00 0.05
Saint Helena 0.04 0.00 0.00 0.00 0.00 0.00 0.00
Seychelles 0.05 0.00 0.00 0.01 0.00 0.00 0.00
Total 2988 232 313 211 202 296 223

Note: FAO GAUL = The Food and Agricultural Organization’s The Global Administrative Unit Layers (GAUL);
GFSAD30AFCE = global food security support analysis data @ 30-m (this study); GFSAD250 = global food
security support-analysis data @ 250-m [15]; GRIPC = Global rain-fed, irrigated, and paddy croplands [16];
MIRCA2000 = Global data set of monthly irrigated and rainfed crop areas around 2000, revised for year 2015
in this study [92]; GLC30 = Global land cover mapping at 30m resolution [45].
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There are a number of other reasons for discrepancies between remote sensing and non-remote
sensing sources [1,8,13,23,43]. We suggest that a detailed investigation should be conducted on
this aspect to see why uncertainties exist and how to overcome them. More detailed assessment of
such variability is beyond the goal of this study. On average, the GFSAD30AFCE determined about
35% higher cropland areas relative to national statistics reported by Portmann et al., and UN FAO.
It is important to note that the GFSAD30AFCE of this study provided TNCA of the continent as
313 Mha, which is 5.7% higher than our earlier MODIS 250-m data based estimate of 296 Mha [15].
Other studies reported far less cropland areas for Africa, which were (Table 4): 232 Mha (MIRCA),
211 Mha (FAO), 202 Mha (GRIPC), and 223 Mha (GLC30). Therefore, these estimates were lower
by about 26% to 35% relative to GFSAD30AFCE product. Various factors may contribute to such
discrepancies: 1. MIRCA and FAO UN statistics were derived from a combination of national reports
and their synthesis using some remote sensing, GIS and field visits. MIRCA2000 is a derived gridded
dataset based on the FAOSTAT database [92]. FAO compiles the statistics reported by individual
countries, which are based on national censuses, agricultural samples, questionnaire-based surveys
with major agricultural producers, and independent evaluations (FAO, 2006 and The World Bank, 2010).
Since each country has its own data collection mechanism, differences in data gathering, and resource
limitations, the data lacks objectivity in many countries, resulting in data quality issues, particularly in
Africa. For example, in 2008/09 in Malawi, cropland extent was estimated by combining household
surveys with field measurements derived from a “pacing method” in which the size of crop fields
is determined by the number of steps required to walk around them [93]; 2. GRIPC [16] also maps
croplands but using 500-m MODIS data and using different definition and methodologies other than
GFSAD30AFCE; 3. GLC30 does include croplands class [45], and its focus is land use and land cover so
a lot of uncultivated, low vegetated croplands were identified as shrubs or grass instead of croplands.

Figure 7. Scatter plot of GFSAD30AFCE derived cropland areas versus MIRCA2000 (Personal
communication with Dr. Siebert and Dr. Portmann by Dr. Thenkabail) derived cropland areas
country by country for Africa.
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4.4. Consistency between GFSAD30AFCE Product and Four Existing Crop Maps

A similarity analysis was conducted where GFSAD30AFCE product was compared with each of
the other four products (Table 2) using the 12,627 random samples spread across the African continent.
The results showed that GFSAD30AFCE product matches with GLC30 product for 77.3% of the samples
while matches with GRIPC500 product with 68.8% samples for the cropland class (Table 5). For the
other two products (Globecover2009 and FROMGC), the cropland samples only matched 60% (Table 5).
The discrepancies between the products include different reference year of the dataset, cropland
definition and methodologies, resolution of the datasets, and a host of other factors; the differences
between these products should be investigated further in the future.

Table 5. Similarity analysis comparing the GFSAD30AFCE product of this study with four other
products using 12,627 random samples.

(a) Confusion Matrix Obtained with GlobCover 2009 (300-m, Arino et al., 2007)
Cropland Non-Cropland User's Accuracy (%)

Cropland 1125 585 65.79%
Non-Cropland 720 10,395 93.52%

Producer's Accuracy (%) 60.98% 94.67%
(b) Confusion Matrix Obtained with GRIPC (500-m, Salmon et al., 2015)

Cropland Non-Cropland User's Accuracy (%)
Cropland 1267 443 74.09%

Non-Cropland 576 10,539 94.82%
Producer's Accuracy (%) 68.75% 95.97%

(c) Confusion Matrix Obtained with FROMGC (30-m, Yu et al., 2013)
Cropland Non-Cropland User's Accuracy (%)

Cropland 1009 701 59.01%
Non-Cropland 676 10,439 93.92%

Producer's Accuracy (%) 59.88% 93.71%
(d) Confusion Matrix Obtained with GLC30 (30-m, Chen et al., 2015)

Cropland Non-Cropland User's Accuracy (%)
Cropland 1409 301 82.40%

Non-Cropland 413 10,702 96.28%
Producer's Accuracy (%) 77.33% 97.26%

Figure 8 shows a visual comparison of each product’s mapping of cropland pixels (highlighted
in green) using true color Google Earth Imagery as a background reference under three different
landscapes: Egyptian irrigation area, South Africa irrigation area, Cote d’Ivoire mixed agricultural
area. GFSADAFCE maps greatly outperformed the coarser resolution products which is
significant considering these maps are frequently used in applications that monitor agricultural
landscapes. Also, since images from the year 2015 were used in this study, it also covers
newly cultivated farmlands which were not mapped in higher resolution product such as GLC30.
Furthermore, the training/validation datasets of GFSAD will be also published with croplands maps,
which means these training samples can be reused/expanded to update the latest cropland extent
when necessary by using Google Earth Engine Cloud-based image composition and classification tools.
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Figure 8. A visual comparison of all crop extent products (shown in green) overlaid on Google
Earth Imagery.

5. Discussion

Although the value of this approach is evident, there are still problems in GFSAD30 cropland
extent; some of these are discussed below. There were insufficient samples to reflect the diversity of
croplands for certain regions and as a consequence, confusion between cropland and non-cropland
classes exist. In Africa, the diversity of spectral properties for croplands is very high (e.g., cropland
fallows in desert-margins of Sahara versus cropland fallows of the forest-margins of the rain forests).
Even though we gathered a very large sample size for training and validation in this project, we still
had difficulties verifying some areas. It was difficult to separate rainfed croplands from seasonal
grasses in the Sahel and Northern Guinea Savanna because it is difficult to discriminate between them
using VHRI imagery. In the context of phenology signatures, it is also easy to confuse croplands with
bare lands and grasslands. For example, barelands, grasslands, and rainfed croplands in Sahel are very
difficult to discern due to sparse vegetation of all three classes. We resolved such issues by utilizing
acquisitions of quality samples from field visits, data (reference maps and ground data) from a few
published articles on detailed studies in some small portions of the landscape and VHRI acquired
during the exact growing seasons. Also, fallows of different ages (<1-year fallow to 5-year fallow)
all have different signatures, especially in the rain forests where greater age corresponds to greater
natural vegetation.

With 30-m resolution, satellite imagery is still limited for small fragmented fields in Africa,
where field boundaries hardly exist and are often adjoin similar looking sparse grasslands or barrenlands.
This is a specific problem throughout the Sahel and in certain places on the Northern Guinea Savannas of
Africa. In such cases, RHSeg fails to identify boundaries of crop fields using 30-m imagery; however such
issues can be improved by applying RHSeg to 10-m Sentinel-2 data in the future.
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Another approach for improving classification accuracies is to use more refined segments
as units for classification. A solution might be to integrate the FAO Farming systems map [2],
which provides a finer stratification and takes into account both agro-ecological and climatic
characteristics. In our earlier study using MODIS 250-m data, we did use FAO agro-ecological
zones (AEZ’s) for stratification [15]. However, the MODIS approach allowed monthly composites to be
created, which was infeasible here when using 10 to 30-m data. By adopting more frequent (e.g., 15-day,
monthly) periodic composites, we will be able to work with more detailed AEZ zones rather than the
7 RAEZ’s zones as used in this study. We expect this will increase classification accuracies further.

6. Conclusions

This paper presents a practical methodology for cropland extent mapping at 30-m for the entire
African continent on Google Earth Engine. Five-bands (blue, green, red, NIR, and NDVI) from 10-day
time series Sentinel-2 and 16-day time-series Landsat-8 were time-composited over each of the two
crop growing periods (period 1: January–June 2016; period 2: July–December 2015) along with 30-m
SRTM DEM data, resulting in a 11-band stack over entire Africa. This input data was then classified
using two pixel-based supervised classifiers: Random Forests (RFs) and Support Vector Machines
(SVMs) which were merged with RHSeg, an object-based segmentation algorithm. A total of 9791
training samples/polygons were used to train the supervised classifiers. A total of 1754 validation
samples were used for assessing accuracies, errors, and uncertainties.

The study produced the first cropland extent map of Africa at nominal 30-m resolution for the
nominal year 2015. The product is referred to as the Global Food Security-support Analysis Data@
30-m of Africa, Cropland Extent (GFSAD30AFCE; Figure 6). The weighted overall accuracy of the
entire Africa continent was 94.5% with producer’s accuracy of 85.9% (errors of omissions of 14.1%)
and user’s accuracy of 68.5% (errors of commissions of 31.5%). Across the 7 zones of Africa, accuracies
vary with: 90.8% –96.8% overall accuracies, 60.7% –94.9% producer’s accuracies, and 53.3% –89.6%
user’s accuracies. The F-score ranged between 0.65 and 0.90 across all 7 zones.

Derived from GFSAD30AFCE, total net croplands areas (TNCA’s) was 313 million hectares for the
African continent for the year 2015. In comparison to other cropland products of the past for African
continent these area estimates were 26% to 35% higher. Five countries constitute 40% of all cropland
areas of Africa, Nigeria (11.4%), Ethiopia (8.2%), Sudan (7.3%), Tanzania (7.2%) and South Africa
(6.4%). There are 12 countries (DR Congo, Mali, Zimbabwe, Kenya, Morocco, Algeria, Niger, Zambia,
Uganda, Mozambique, Burkina Faso, Chad) which each have above 2% but below 5% of Africa’s TNCA.
The remaining 38 African countries each have less than 2% of Africa’s TNCA. The GFSAD30AFCE
cropland areas explained 65% –78% percent of variability in UN FAO country-wise cropland areas.

The GFSAD30AFCE products are viewable at: https://croplands.org/app/map.
The GFSAD30AFCE (https://doi.org/10.5067/MEaSUREs/GFSAD/GFSAD30AFCE.001) is
released through NASA’s Land Processes Distributed Active Archive Center (LP DAAC) for download
by user community.

Cloud-based computing platforms such as Google Earth Engine and new earth-observing satellites
like the Sentinel-2 constellation have brought significant paradigm-shifts in LULC mapping and
agricultural cropland mapping and monitoring. The production of standard static maps will be
replaced by the dynamic creation of maps from big data using crowd sourced training samples,
and cloud computing which will better serve land managers, NGO’s and the scientific community.
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