Sentinel-2 Time Series Analysis for Identification of Underutilized Land in Europe
Abstract
:1. Introduction
- Which S2 time series model features of which spectral bands work best for the differentiation between utilized and underutilized land?
- What is the level of accuracy that can be achieved in different bio-geographical regions of Europe using a common classification approach?
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Satellite Imagery
2.2.2. Training Data
- High-Resolution Layers (HRL) Forest, Imperviousness and Water & Wetness
- CORINE Land Cover (CLC) 2018 agriculture classes “Arable land” (21), “Permanent crops” (22) and “Pastures” (23).
2.2.3. Reference Data for Exclusion of Specific Areas
2.2.4. Reference Data for Validation
2.3. Methods
3. Results
3.1. Feature Importance
3.2. Classification Results
3.3. Accuracy Assessment
4. Discussion
4.1. Feature Importance
4.2. Classification Results
4.3. Accuracy Assessment
5. Conclusions
- Which S2 time series model parameters of which spectral bands work best for the differentiation between utilized and underutilized land?
- What is the level of accuracy that can be achieved in different bio-geographical regions of Europe using a common classification approach?
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Parliament, Council of the European Union. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources. Off. J. Eur. Union 2018, L328/82, 82–209. [Google Scholar]
- IRENA, IEA Bioenergy, FAO. Bioenergy for Sustainable Development. IEA Bioenergy. 2017. Available online: https://www.ieabioenergy.com/wp-content/uploads/2017/01/BIOENERGY-AND-SUSTAINABLE-DEVELOPMENT-final-20170215.pdf (accessed on 26 November 2021).
- IPCC. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2018; Available online: https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf (accessed on 26 November 2021).
- European Commission, Joint Research Centre. Brief on Biomass for Energy in the European Union; Publications Office of the European Union: Luxembourg, 2019; Available online: https://data.europa.eu/doi/10.2760/546943 (accessed on 26 November 2021).
- Longato, D.; Gaglio, M.; Boschetti, M.; Gissi, E. Bioenergy and ecosystem services trade-offs and synergies in marginal agricultural lands: A remote-sensing-based assessment method. J. Clean. Prod. 2019, 237, 117672. [Google Scholar] [CrossRef]
- Khawaja, C.; Janssen, R.; Mergner, R.; Rutz, D.; Colangeli, M.; Traverso, L.; Morese, M.; Hirschmugl, M.; Sobe, C.; Calera, A.; et al. Viability and Sustainability Assessment of Bioenergy Value Chains on Underutilised Lands in the EU and Ukraine. Energies 2021, 14, 1566. [Google Scholar] [CrossRef]
- Pedroli, B.; Elbersen, B.; Frederiksen, P.; Grandin, U.; Heikkilä, R.; Krogh, P.H.; Izakovičová, Z.; Johansen, A.; Meiresonne, L.; Spijker, J. Is energy cropping in Europe compatible with biodiversity?—Opportunities and threats to biodiversity from land-based production of biomass for bioenergy purposes. Biomass Bioenergy 2013, 55, 73–86. [Google Scholar] [CrossRef]
- Scott, D.A.; Page-Dumroese, D.S. Wood Bioenergy and Soil Productivity Research. BioEnergy Res. 2016, 9, 507–517. [Google Scholar] [CrossRef]
- Ackom, E.; Brix, M.; Christensen, J. Bioenergy: The Potential for Rural Development and Poverty Alleviation; UNEP Risoe Centre: Roskilde, Denmark, 2011. [Google Scholar]
- Zolin, M.B. Diversification of Household Income in Rural Areas: Opportunities and Risks of Biomass Energy. Open Geogr. J. 2011, 4, 16–28. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations. World Programme for the Census of Agriculture 2020: Volume 1-Programme, Concepts and Definitions; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015. [Google Scholar]
- Radočaj, D.; Obhođaš, J.; Jurišić, M.; Gašparović, M. Global Open Data Remote Sensing Satellite Missions for Land Monitoring and Conservation: A Review. Land 2020, 9, 402. [Google Scholar] [CrossRef]
- Alcantara, C.; Kuemmerle, T.; Baumann, M.; Bragina, E.V.; Griffiths, P.; Hostert, P.; Knorn, J.; Müller, D.; Prishchepov, A.; Schierhorn, F.; et al. Mapping the extent of abandoned farmland in Central and Eastern Europe using MODIS time series satellite data. Environ. Res. Lett. 2013, 8, 035035. [Google Scholar] [CrossRef]
- Estel, S.; Kuemmerle, T.; Alcántara, C.; Levers, C.; Prishchepov, A.; Hostert, P. Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series. Remote Sens. Environ. 2015, 163, 312–325. [Google Scholar] [CrossRef]
- Estel, S.; Kuemmerle, T.; Levers, C.; Baumann, M.; Hostert, P. Mapping cropland-use intensity across Europe using MODIS NDVI time series. Environ. Res. Lett. 2016, 11, 024015. [Google Scholar] [CrossRef] [Green Version]
- Lesiv, M.; Schepaschenko, D.; Moltchanova, E.; Bun, R.; Dürauer, M.; Prishchepov, A.V.; Schierhorn, F.; Estel, S.; Kuemmerle, T.; Alcántara, C.; et al. Spatial distribution of arable and abandoned land across former Soviet Union countries. Sci. Data 2018, 5, 180056. [Google Scholar] [CrossRef]
- Löw, F.; Prishchepov, A.V.; Waldner, F.; Dubovyk, O.; Akramkhanov, A.; Biradar, C.; Lamers, J.P.A. Mapping Cropland Abandonment in the Aral Sea Basin with MODIS Time Series. Remote Sens. 2018, 10, 159. [Google Scholar] [CrossRef] [Green Version]
- Henebry, G. Carbon in idle croplands. Nat. Cell Biol. 2009, 457, 1089–1090. [Google Scholar] [CrossRef]
- Hirschmugl, M.; Sobe, C.; Khawaja, C.; Janssen, R.; Traverso, L. Pan-European Mapping of Underutilized Land for Bioenergy Production. Land 2021, 10, 102. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Baumann, M.; Kuemmerle, T.; Elbakidze, M.; Ozdogan, M.; Radeloff, V.C.; Keuler, N.S.; Prishchepov, A.; Kruhlov, I.; Hostert, P. Patterns and drivers of post-socialist farmland abandonment in Western Ukraine. Land Use Policy 2011, 28, 552–562. [Google Scholar] [CrossRef]
- Tumelienė, E.; Visockienė, J.; Malienė, V. The Influence of Seasonality on the Multi-Spectral Image Segmentation for Identification of Abandoned Land. Sustainability 2021, 13, 6941. [Google Scholar] [CrossRef]
- Szatmári, D.; Kopecka, M.; Feranec, J.; Goga, T. Abandoned Agricultural Land Mapping Using Sentinel-2a Data. In Proceedings of the 7th International Conference on Cartography and GIS, Sozopol, Bulgaria, 18–23 June 2018. [Google Scholar]
- Morell-Monzó, S.; Estornell, J.; Sebastiá-Frasquet, M.-T. Comparison of Sentinel-2 and High-Resolution Imagery for Mapping Land Abandonment in Fragmented Areas. Remote Sens. 2020, 12, 2062. [Google Scholar] [CrossRef]
- Portalés-Julià, E.; Campos-Taberner, M.; García-Haro, F.; Gilabert, M. Assessing the Sentinel-2 Capabilities to Identify Abandoned Crops Using Deep Learning. Agronomy 2021, 11, 654. [Google Scholar] [CrossRef]
- BIOPLAT-EU D4.1 Report on the Selection of Case Studies in the Target Countries. Available online: https://Bioplat.Eu/Assets/Content/Deliverables/D4.1%20-%20Case%20Study%20Selection_FAO%20final.Pdf (accessed on 26 November 2021).
- Aschbacher, J.; Milagro-Pérez, M.P. The European Earth monitoring (GMES) programme: Status and perspectives. Remote Sens. Environ. 2012, 120, 3–8. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Orgiazzi, A.; Ballabio, C.; Panagos, P.; Jones, A.; Fernández-Ugalde, O. LUCAS Soil, the largest expandable soil dataset for Europe: A review. Eur. J. Soil Sci. 2018, 69, 140–153. [Google Scholar] [CrossRef] [Green Version]
- EUROSTAT Database—Land Cover/Use Statistics—Eurostat. Available online: https://ec.europa.eu/eurostat/web/lucas/data/database (accessed on 23 November 2021).
- Myroniuk, V.; Kutia, M.; Sarkissian, A.J.; Bilous, A.; Liu, S. Regional-Scale Forest Mapping over Fragmented Landscapes Using Global Forest Products and Landsat Time Series Classification. Remote Sens. 2020, 12, 187. [Google Scholar] [CrossRef] [Green Version]
- Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for Sentinel-2. In Proceedings of the Image and Signal Processing for Remote Sensing, Warsaw, Poland, 4 October 2017; p. 3. [Google Scholar]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Deutscher, J.; Gallaun, H.; Steinegger, M.; Manuela, H.; Perko, R.; Gutjahr, K.; Raggam, J.; Schardt, M. Applying Time-Series Analysis on Multi-Sensor Imagery to Map Forest Change. In Proceedings of the 3rd EARSeL SIG Forestry Workshop, Krakow, Poland, 15–16 September 2016. [Google Scholar] [CrossRef]
- Roy, D.; Yan, L. Robust Landsat-based crop time series modelling. Remote Sens. Environ. 2020, 238, 110810. [Google Scholar] [CrossRef]
- Menenti, M.; Azzali, S.; Verhoef, W.; Van Swol, R. Mapping agroecological zones and time lag in vegetation growth by means of fourier analysis of time series of NDVI images. Adv. Space Res. 1993, 13, 233–237. [Google Scholar] [CrossRef]
- Olsson, L.; Eklundh, L. Fourier Series for analysis of temporal sequences of satellite sensor imagery. Int. J. Remote Sens. 1994, 15, 3735–3741. [Google Scholar] [CrossRef]
- Moody, A.; Johnson, D.M. Land-Surface Phenologies from AVHRR Using the Discrete Fourier Transform. Remote Sens. Environ. 2001, 75, 305–323. [Google Scholar] [CrossRef]
- Cai, Z.; Jönsson, P.; Jin, H.; Eklundh, L. Performance of Smoothing Methods for Reconstructing NDVI Time-Series and Estimating Vegetation Phenology from MODIS Data. Remote Sens. 2017, 9, 1271. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Jia, L.; Menenti, M. Reconstruction of global MODIS NDVI time series: Performance of Harmonic ANalysis of Time Series (HANTS). Remote Sens. Environ. 2015, 163, 217–228. [Google Scholar] [CrossRef]
- Wang, S.; Azzari, G.; Lobell, D.B. Crop type mapping without field-level labels: Random forest transfer and unsupervised clustering techniques. Remote Sens. Environ. 2019, 222, 303–317. [Google Scholar] [CrossRef]
- Liu, Q.; Fu, L.; Chen, Q.; Wang, G.; Luo, P.; Sharma, R.; He, P.; Li, M.; Wang, M.; Duan, G. Analysis of the Spatial Differences in Canopy Height Models from UAV LiDAR and Photogrammetry. Remote Sens. 2020, 12, 2884. [Google Scholar] [CrossRef]
- Landmann, T.; Eidmann, D.; Cornish, N.; Franke, J.; Siebert, S. Optimizing harmonics from Landsat time series data: The case of mapping rainfed and irrigated agriculture in Zimbabwe. Remote Sens. Lett. 2019, 10, 1038–1046. [Google Scholar] [CrossRef]
- Di Tommaso, S.; Wang, S.; Lobell, D.B. Combining GEDI and Sentinel-2 for wall-to-wall mapping of tall and short crops. Environ. Res. Lett. 2021, 16, 125002. [Google Scholar] [CrossRef]
- Pasquarella, V.J.; Holden, C.E.; Woodcock, C.E. Improved mapping of forest type using spectral-temporal Landsat features. Remote Sens. Environ. 2018, 210, 193–207. [Google Scholar] [CrossRef]
- Wilson, B.T.; Knight, J.F.; McRoberts, R.E. Harmonic regression of Landsat time series for modeling attributes from national forest inventory data. ISPRS J. Photogramm. Remote Sens. 2018, 137, 29–46. [Google Scholar] [CrossRef]
- Adams, B.; Iverson, L.; Matthews, S.; Peters, M.; Prasad, A.; Hix, D.M. Mapping Forest Composition with Landsat Time Series: An Evaluation of Seasonal Composites and Harmonic Regression. Remote Sens. 2020, 12, 610. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, K.; Ota, T.; Mizoue, N.; Saito, H. Comparison of Multi-Temporal PlanetScope Data with Landsat 8 and Sentinel-2 Data for Estimating Airborne LiDAR Derived Canopy Height in Temperate Forests. Remote Sens. 2020, 12, 1876. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, K.; Ota, T.; Mizoue, N. Detecting Forest Changes Using Dense Landsat 8 and Sentinel-1 Time Series Data in Tropical Seasonal Forests. Remote Sens. 2019, 11, 1899. [Google Scholar] [CrossRef] [Green Version]
- Jönsson, P.; Eklundh, L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1824–1832. [Google Scholar] [CrossRef]
- Beck, P.S.A.; Jöhnsson, P.; Høgda, K.; Karlsen, S.R.; Eklundh, L.; Skidmore, A. A ground-validated NDVI dataset for monitoring vegetation dynamics and mapping phenology in Fennoscandia and the Kola peninsula. Int. J. Remote Sens. 2007, 28, 4311–4330. [Google Scholar] [CrossRef]
- Jia, K.; Liang, S.; Wei, X.; Yao, Y.; Su, Y.; Jiang, B.; Wang, X. Land Cover Classification of Landsat Data with Phenological Features Extracted from Time Series MODIS NDVI Data. Remote Sens. 2014, 6, 11518–11532. [Google Scholar] [CrossRef] [Green Version]
- Horning, N. Random Forests: An Algorithm for Image Classification and Generation of Continuous Fields Data Sets. In Proceedings of the International Conference on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences, Osaka, Japan, 9–10 December 2010. [Google Scholar]
- Liaw, A.; Wiener, M. Classification and Regression by RandomForest. R News 2002, 2, 18–22. [Google Scholar]
- Li, T.; Ni, B.; Wu, X.; Gao, Q.; Li, Q.; Sun, D. On random hyper-class random forest for visual classification. Neurocomputing 2016, 172, 281–289. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Sha, Z.; Yu, M. Remote sensing imagery in vegetation mapping: A review. J. Plant Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- Yin, H.; Prishchepov, A.V.; Kuemmerle, T.; Bleyhl, B.; Buchner, J.; Radeloff, V.C. Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time series. Remote Sens. Environ. 2018, 210, 12–24. [Google Scholar] [CrossRef]
No. | Study Area | Country | Biogeographical Region | Main Reason for Selection |
---|---|---|---|---|
1 | Dahme Spreewald | Germany | Continental | Post-sewage farms, post-mining areas |
2 | Spree-Neiße | |||
3 | Bacau | Romania | Continental | Economically and topographically marginal land |
4 | Gorj | Post-mining areas | ||
5 | Chernihiv | Ukraine | Continental | Post-socialist fallow land |
6 | Khmelnytskyi | |||
7 | Bacs-Kiskun & Csongrad | Hungary | Pannonian | Economically and climatically marginal land |
8 | Hungary-North | |||
9 | Val Basento | Italy | Mediterranean | Areas not used due to contamination |
10 | Sulcis | |||
11 | Albacete | Spain | Mediterranean | Climatically marginal (dry) areas |
12 | Cuenca |
Band | Central Wavelength (nm) | Spatial Resolution (m) |
---|---|---|
B2 | 490 (blue) | 10 |
B3 | 560 (green) | 10 |
B4 | 665 (red) | 10 |
B5 | 705 (red-edge) | 20 |
B6 | 740 (red-edge) | 20 |
B7 | 783 (red-edge) | 20 |
B8 | 842 (near infrared) | 10 |
B8A | 865 (near infrared) | 20 |
B11 | 1610 (short waved infrared) | 20 |
B12 | 2190 (short waved infrared) | 20 |
No. | Study Area | Country | Study Area [ha] | Elimination Mask [ha] | Area of Interest [ha] |
---|---|---|---|---|---|
1 | Dahme-Spreewald | Germany | 394,462 | 307,399 | 87,063 s |
2 | Spree-Neiße | ||||
3 | Bacau | Romania | 530,235 | 407,225 | 123,010 |
4 | Gorj | 1,043,536 | 675,641 | 367,895 | |
5 | Chernihiv | Ukraine | 581,309 | 230,082 | 351,227 |
6 | Khmelnytskyi | 1,254,216 | 400,755 | 853,461 | |
7 | Bacs-Kiskun & Csongrad | Hungary | 1,192,070 | 606,547 | 585,523 |
8 | Hungary-North | 1,219,271 | 639,779 | 579,492 | |
9 | Val Basento | Italy | 1,218,812 | 841,742 | 377,070 |
10 | Sulcis | 35,802 | 16,694 | 17,485 | |
11 | Albacete | Spain | 2,304,810 | 1,285,882 | 1,018,928 |
12 | Cuenca |
Study Area | Utilized Land | Underutilized Land | Total |
---|---|---|---|
Dahme-Spreewald & Spree-Neiße | 173 | 22 | 195 |
Bacau | 166 | 105 | 271 |
Gorj | 193 | 107 | 300 |
Chernihiv | 83 | 197 | 280 |
Khmelnytskyi | 210 | 279 | 489 |
Bacs-Kiskun & Csongrad | 314 | 86 | 400 |
Hungary North | 250 | 150 | 400 |
Sulcis | 61 | 139 | 200 |
Val Basento | 85 | 215 | 300 |
Albacete & Cuenca | 396 | 296 | 692 |
BGR | Study Area | AOI [ha] | UU [ha] | UU Share of AOI [%] | Average UU Patch Size [ha] | Median UU Patch Size [ha] |
---|---|---|---|---|---|---|
Continental | Dahme-Spreewald & | 87,063 | 4892.48 | 5.62 | 2.76 | 1.06 |
Spree-Neiße | ||||||
Bacau | 123,010 | 21,591.98 | 17.55 | 3.42 | 1.16 | |
Gorj | 367,895 | 84,959.75 | 23.09 | 4.38 | 1.19 | |
Chernihiv | 351,227 | 107,762.80 | 30.68 | 11.12 | 1.40 | |
Khmelnytskyi | 853,461 | 78,488.61 | 9.20 | 5.01 | 1.37 | |
Overall | 1,782,656 | 303,443.57 | 17.02 | 5.62 | 1.22 | |
Mediterranean | Val Basento | 377,070 | 22,326.93 | 5.92 | 3.13 | 1.10 |
Sulcis | 17,485 | 2273.83 | 11.90 | 4.63 | 1.14 | |
Albacete & Cuenca | 1,018,928 | 164,751.48 | 16.17 | 5.65 | 1.19 | |
Overall | 1,415,106 | 189,352.25 | 13.38 | 4.47 | 1.14 | |
Pannonian | Bacs-Kiskun & Csongrad | 585,523 | 4845.72 | 0.83 | 1.89 | 0.95 |
Hungary-North | 579,492 | 2252.32 | 0.39 | 2.52 | 1.05 | |
Overall | 1,165,015 | 7098.04 | 0.61 | 2.21 | 1.01 |
Study Area | OA [%] (CI) | U: OE [%] (CI) | U:CE [%] (CI) | UU: OE [%] (CI) | UU: CE [%] (CI) |
---|---|---|---|---|---|
Dahme-Spreewald & Spree-Neiße | 90.98 (3.93) | 1.13 (0.19) | 8.07 (3.97) | 98.80 (1.72) | 91.45 (15.82) |
Bacau | 91.86 (3.28) | 3.58 (1,33) | 6.03 (3.59) | 30.86 (12.83) | 20.53 (7.92) |
Gorj | 88.47 (3.60) | 3.63 (0.88) | 9.00 (3.79) | 67.31 (9.95) | 43.93 (10.94) |
Chernihiv | 80.36 (5.24) | 22.89 (7.71) | 26.14 (8.66) | 18.27 (6.76) | 10.56 (4.50) |
Khmelnytskyi | 81.74 (3.60) | 11.50 (2.64) | 17.63 (4.89) | 28.39 (5.75) | 19.40 (4.89) |
Sulcis | 80.25 (6.28) | 3.49 (2.62) | 26.12 (8.93) | 37.71 (8.05) | 5.83 (4.48) |
Val Basento | 81.28 (4.78) | 2.77 (2.14) | 27.07 (7.41) | 33.53 (6.11) | 2.77 (2.14) |
Albacete & Cuenca | 94.89 (1.83) | 0.76 (0.29) | 4.75 (1.94) | 42.62 (10.04) | 10.23 (3.92) |
Bacs-Kiskun & Csongrad | 92.34 (2.67) | 0.01 (0.01) | 7.66 (2.67) | 99.21 (2.28) | 15.79 (16.85) |
Hungary North | 96.76 (1.77) | 0.00 (NA) | 3.24 (1.77) | 99.24 (0.41) | 0.00 (0.00) |
Study Area | OA [%] (CI) | U: OE [%] (CI) | U:CE [%] (CI) | UU: OE [%] (CI) | UU: CE [%] (CI) |
---|---|---|---|---|---|
Dahme-Spreewald & Spree-Neiße | 90.26 (13.90) | 8.89 (6.56) | 7.69 (3.88) | 63.64 (33.37) | 38.46 (15.79) |
Bacau | 88.19 (4.10) | 8.43 (4.42) | 10.59 (4.64) | 17.14 (5.82) | 13.86 (6.77) |
Gorj | 87.00 (3.75) | 3.11 (3.23) | 15.00 (4.73) | 30.84 (6.70) | 7,50 (5.81) |
Chernihiv | 78.83 (5.07) | 18.63 (5.37) | 26.14 (8.66) | 23.23 (5.98) | 16.36 (5.42) |
Khmelnytskyi | 79.86 (3.57) | 17.62 (4.41) | 26.07 (5.64) | 22.10 (3.88) | 14.68 (4.38) |
Sulcis | 81.05 (5.86) | 3.28 (4.28) | 37.23 (8.23) | 25.18 (5.15) | 1.89 (2.60) |
Val Basento | 79.33 (4.29) | 4.71 (4.28) | 41.73 (4.64) | 26.98 (4.09) | 2.48 (2.41) |
Albacete & Cuenca | 85.40 (2.47) | 4.55 (2.39) | 18.00 (3.51) | 28.04 (3.75) | 7.79 (3.46) |
Bacs-Kiskun & Csongrad | 81.75 (8.64) | 0.96 (3.45) | 18.37 (3.89) | 81.40 (11.05) | 15.75 (16.85) |
Hungary North | 65.75 (2.39) | 0.00 (NA) | 35.40 (4.77) | 91.33 (4.83) | 0.00 (0.00) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobe, C.; Hirschmugl, M.; Wimmer, A. Sentinel-2 Time Series Analysis for Identification of Underutilized Land in Europe. Remote Sens. 2021, 13, 4920. https://doi.org/10.3390/rs13234920
Sobe C, Hirschmugl M, Wimmer A. Sentinel-2 Time Series Analysis for Identification of Underutilized Land in Europe. Remote Sensing. 2021; 13(23):4920. https://doi.org/10.3390/rs13234920
Chicago/Turabian StyleSobe, Carina, Manuela Hirschmugl, and Andreas Wimmer. 2021. "Sentinel-2 Time Series Analysis for Identification of Underutilized Land in Europe" Remote Sensing 13, no. 23: 4920. https://doi.org/10.3390/rs13234920
APA StyleSobe, C., Hirschmugl, M., & Wimmer, A. (2021). Sentinel-2 Time Series Analysis for Identification of Underutilized Land in Europe. Remote Sensing, 13(23), 4920. https://doi.org/10.3390/rs13234920