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Abstract: The accurate and timely detection of forest disturbances can provide valuable information
for effective forest management. Combining dense time series observations from optical and synthetic
aperture radar satellites has the potential to improve large-area forest monitoring. For various
disturbances, machine learning algorithms might accurately characterize forest changes. However,
there is limited knowledge especially on the use of machine learning algorithms to detect forest
disturbances through hybrid approaches that combine different data sources. This study investigated
the use of dense Landsat 8 and Sentinel-1 time series data for detecting disturbances in tropical
seasonal forests based on a machine learning algorithm. The random forest algorithm was used
to predict the disturbance probability of each Landsat 8 and Sentinel-1 observation using variables
derived from a harmonic regression model, which characterized seasonality and disturbance-related
changes. The time series disturbance probabilities of both sensors were then combined to detect
forest disturbances in each pixel. The results showed that the combination of Landsat 8 and Sentinel-1
achieved an overall accuracy of 83.6% for disturbance detection, which was higher than the disturbance
detection using only Landsat 8 (78.3%) or Sentinel-1 (75.5%). Additionally, more timely disturbance
detection was achieved by combining Landsat 8 and Sentinel-1. Small-scale disturbances caused
by logging led to large omissions of disturbances; however, other disturbances were detected with
relatively high accuracy. Although disturbance detection using only Sentinel-1 data had low accuracy
in this study, the combination with Landsat 8 data improved the accuracy of detection, indicating the
value of dense Landsat 8 and Sentinel-1 time series data for timely and accurate disturbance detection.
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1. Introduction

Understanding forest dynamics provides valuable knowledge for effective forest management [1].
Remotely sensed data are widely used to characterize these dynamics. Optical satellite remote sensing
is suitable for capturing current and past forest conditions over large areas because of its wide spatial
coverage and frequent temporal observations [2]. To detect small- to large-scale disturbances accurately,
medium spatial resolution satellite data have several desirable characteristics [3]. Recently, there has
been an increase in freely available and well-calibrated satellite data (e.g., Landsat and Sentinel-2)
thanks to open data policies [4–8]. This situation has encouraged researchers to process data from
numerous satellites to extract temporally and spatially improved forest change information [9–11].

Many approaches have been proposed to detect forest changes using time series medium spatial
resolution satellite data. Landsat time series have been particularly used for change detection in the last
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decade. Using annual Landsat time series, Kennedy et al. [12] proposed the Landsat-based detection
of Trends in Disturbance and Recovery (LandTrendr) to capture abrupt and gradual changes based on
temporal trajectory of a spectral index. Huang et al. [13] developed the Vegetation Change Tracker that
uses an integrated forest z-score value for change detection. Hermosilla et al. [14,15] used a spectral
trend analysis based on best available pixels (BAPs) composites for time series change analysis. Using
dense Landsat time series, Verbesselt et al. [16,17] proposed the Breaks For Additive Seasonal and
Trend (BFAST) algorithm that decomposes time series into trend, season and residual components
to detect abrupt and gradual changes. The Continuous Change Detection and Classification (CCDC)
algorithm [18] uses all available Landsat data to characterize land cover change.

Dense time series satellite data can provide more detailed information than bi-temporal or
annual satellite data [19–22]. The use of temporally dense satellite data to detect forest disturbances
is particularly suitable in the tropics, because rapid vegetation recovery can obscure the signs of
disturbance events [23,24]. The enhanced temporal resolution of dense time series satellite data is
also important for near-real-time monitoring, as early warnings can provide crucial information for
regional forest management, such as the location and timing of illegal logging [25]. However, frequent
cloud cover during the rainy season in the tropics sometimes hinders the acquisition of sufficient
data for several optical satellites, including Landsat. Hansen et al. [26] found that cloud cover was
a limiting factor for observation availability in Landsat-based disturbance alerts in humid tropical
forests. Daily observations from MODerate resolution Imaging Spectroradiometer (MODIS) data can
achieve consistent temporal coverage, even in tropical regions; however, small-scale disturbances may
be largely omitted because of the coarse spatial resolution (250–500 m) [27,28]. Overall, medium spatial
resolution satellite data, such as those from Landsat, are desirable for accurate detection. If using
Landsat data alone, however, forest monitoring in cloudy regions might have insufficient temporal
observations in the rainy season, causing delayed or omitted detections of disturbance events.

Synthetic Aperture Radar (SAR) can observe the land surface under cloudy conditions, because
radar signals from SAR penetrate though clouds. Many previous studies have mapped deforestation
and forest degradation using L-band SAR data (e.g., References [29–32]). This is because the longer
wavelength of L-band SAR can penetrate the forest canopy and has sufficient sensitivity for detecting
structural changes in the forest [33]. However, L-band SAR observations are limited in many regions
because the currently operational L-band SAR satellite (i.e., ALOS-2/PALSAR-2) usually only acquires
several observations per year in most tropical regions (e.g., References [34,35]). Thus, the use of
dense time series L-band SAR data is generally difficult, and most studies have focused on analysis
using bi-temporal or annual data. Conversely, the Copernicus Sentinel-1 mission has been providing
freely available and systematically acquired C-band SAR data since 2014. Sentinel-1 provides great
opportunities for dense observations in many tropical regions by operating two-satellites on at least
12-day repeated cycles for global coverage. Sentinel-1 data have been used for crop mapping [36,37], land
cover classification [38–40] and forest monitoring [41]. Although shorter wavelength (C-band) SAR data
is usually unsuitable for estimating forest structures [42,43], several studies have reported encouraging
results using Sentinel-1 time series data for detecting disturbances and mapping deforestation in
tropical regions [34,44].

Combining time series data from optical and SAR satellites is a promising approach for improving
forest change detection [45]. It can enhance the detection of forest changes by improving the temporal
frequency of observations [46] and using synergetic information acquired from different sensors [47].
Several studies have investigated the combination of dense time series optical and SAR data using
different approaches (e.g., [22,35,48,49]). One approach is to fuse the time series signals from optical
and SAR data in the same model [50]. Reiche et al. [51] fused Landsat Normalized Difference Vegetation
Index (NDVI) and ALOS/PALSAR backscatter to detect deforestation using the correlation between
NDVI-PALSAR time series. Although they demonstrated accurate and timely detection using L-band
SAR, the correlation of signals between optical and SAR data might be less consistent in the shorter
wavelength C-band SAR because of its inability to estimate forest structures. Another approach



Remote Sens. 2019, 11, 1899 3 of 22

combines the time series probability of forest changes predicted independently from optical and SAR
models. This approach has the advantage of analyzing different sensors separately, thus preserving
their sensor-specific characteristics [35]. In this context, Reiche et al. [22] developed a Bayesian approach
to detect deforestation events in the tropics using Landsat and ALOS/PALSAR time series. They
enhanced the conditional probabilities of non-forest using probability density functions for each sensor,
and then updated the conditional probability of deforestation using both sensors based on Bayes’
theorem. Reiche et al. [35] also investigated the use of Landsat, Sentinel-1 and ALOS-2/PALSAR-2 time
series data in a similar probabilistic approach. Verhegghen et al. [48] simply combined the burned area
mappings independently generated from Sentinel-1 and Sentinel-2.

Although several studies have investigated the combination of optical and SAR time series data,
there have been relatively few studies that only used freely available satellite data (e.g., Landsat and
Sentinel-1). Furthermore, even though previous studies have successfully detected forest changes, the
probability of forest and non-forest mainly depended on parametric models (e.g., Gaussian models).
Non-parametric models, such as machine learning, offer an alternative, as they have the ability to
handle complex data [52,53] and have been widely used for forest monitoring [47]. The use of machine
learning algorithms might be effective for predicting forest and non-forest probabilities in regions with
various causes of forest change. However, machine learning approaches for dense time series optical
and SAR data are not well developed.

The aim of this study was to evaluate the applicability of a disturbance detection approach using
dense time series observations of Landsat 8 and Sentinel-1 based on a machine learning algorithm in the
tropical seasonal forests of Myanmar. Disturbance probability models were built for each observation
(i.e., observed pixel values at the time of data acquisition) of Landsat 8 and Sentinel-1 using a Random
Forest (RF) algorithm. The predicted time series of disturbance probabilities were then used to detect
forest disturbances in each pixel location. We used a simple approach to combine the disturbance
probabilities of both sensors, and assessed the time needed to detect disturbances and the accuracy of
disturbance detection.

2. Study Area

The Bago region is located in central Myanmar (Figure 1). A total of 2.3 million ha ranging
from 10–600 m elevation was analyzed in this study. The study area is mainly composed of tropical
mixed deciduous forests. The mean annual precipitation is approximately 2000 mm and the mean
temperature is 27 ◦C. There are three seasons in this region: a hot season from February through May,
a rainy season from May to October, and a dry season from November to January.
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Figure 1. Location of the study area. MCD12Q1 Version 6 Land cover type product [54] for 2016 was 
used for visualization. The World Borders Dataset provided by Thematic Mapping 
(http://thematicmapping.org/) was used as the country border. 

There are several kinds of human-induced forest disturbances in this region. Logging activities 
(both legal and illegal) are the main cause of disturbances in the mountainous region [55,56]. Clearing 
for the development of timber plantations is also observed in the mountainous region. In areas near 
human settlements, shifting cultivation practices and conversion to permanent agriculture are major 
disturbance agents, especially in the eastern part of the study area. Other disturbance agents include 
water inundation and infrastructure development.  

3. Data and Methods  

An overall analysis of the disturbance detection process is presented in Figure 2. We also show 
the flowchart of overall analysis in Figure 3 to present training and test samples used for both RF 
disturbance probability models and disturbance detection. First, Landsat spectral indices and SAR 
backscatter coefficients were derived from time series observations of Landsat 8 and Sentinel-1. A 
harmonic regression model was fitted to represent forest structural change and vegetation 
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series of disturbance probabilities were predicted for a two-year period, and disturbances were 
detected based on the combined disturbance probabilities. We assessed the accuracy of disturbance 
detection using only Landsat 8, using only Sentinel-1 and using the combination of both sensors. 

Figure 1. Location of the study area. MCD12Q1 Version 6 Land cover type product [54] for
2016 was used for visualization. The World Borders Dataset provided by Thematic Mapping
(http://thematicmapping.org/) was used as the country border.

There are several kinds of human-induced forest disturbances in this region. Logging activities
(both legal and illegal) are the main cause of disturbances in the mountainous region [55,56]. Clearing
for the development of timber plantations is also observed in the mountainous region. In areas near
human settlements, shifting cultivation practices and conversion to permanent agriculture are major
disturbance agents, especially in the eastern part of the study area. Other disturbance agents include
water inundation and infrastructure development.

3. Data and Methods

An overall analysis of the disturbance detection process is presented in Figure 2. We also show
the flowchart of overall analysis in Figure 3 to present training and test samples used for both
RF disturbance probability models and disturbance detection. First, Landsat spectral indices and
SAR backscatter coefficients were derived from time series observations of Landsat 8 and Sentinel-1.
A harmonic regression model was fitted to represent forest structural change and vegetation seasonality
in each spectral index and backscatter coefficient. RF disturbance probability models were then
independently built for Landsat 8 and Sentinel-1 using the results of harmonic regression. Time series
of disturbance probabilities were predicted for a two-year period, and disturbances were detected
based on the combined disturbance probabilities. We assessed the accuracy of disturbance detection
using only Landsat 8, using only Sentinel-1 and using the combination of both sensors.

http://thematicmapping.org/
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were used for visualization. 

Figure 2. Schematic flow of overall analysis of disturbance detection. PlanetScope images from [57]
were used for visualization.
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Figure 3. Flowchart of overall analysis. Random Forest (RF) disturbance probability models
were developed using the observations of Landsat 8 and Sentinel-1 derived from training samples.
Disturbances were detected using disturbance probabilities predicted by the RF models.

3.1. Preprocessing of Landsat 8, Sentinel-1 and Topographic Data

We used the Landsat 8 Operational Land Imager (OLI) surface reflectance data available in the
Google Earth Engine (GEE) [58] cloud computing platform. We only used data located in our study
area (i.e., path/rows 132/47, 132/48, 133/46, 133/47 and 133/48 in World Reference System 2). All data
with cloud cover of less than 70% acquired from the beginning of January 2014 to the end of December
2018 were used in the analysis. A total of 374 data were retained. The Landsat 8 surface reflectance
data were atmospherically corrected using LaSRC [59]. Clouds and cloud shadows were masked using
a pixel quality assessment band generated from the CFmask algorithm [60].

The Landsat 8 surface reflectance data were transformed to five spectral indices to represent
the spectral response of vegetation conditions. We used the Tasseled Cap indices, which included
the Tasseled Cap Brightness (TCB), Greenness (TCG), Wetness (TCW) and Angle (TCA) [61] and
the Normalized Burn Ratio (NBR) [62]. A total of five time series of Landsat 8 spectral indices
were developed.

Sentinel-1 data originally from Level-1 Ground Range Detected (GRD) products acquired in
Interferometric Wide Swath (IW) mode from ascending and descending orbits were used in this study.
We used VV and VH dual-polarized data acquired from the beginning of January 2014 to the end of
December 2018, which are available in GEE. Sentinel-1A and 1B were launched in April 2014 and April
2016, respectively. As a result, the earliest scene in this study was acquired in October 2014. A total of
583 scenes were used for analysis. In GEE, Sentinel-1 GRD data have been preprocessed to backscatter
coefficients (σ◦) using the following steps: thermal noise removal, radiometric calibration and terrain
correction with SNAP Sentinel-1 Toolbox [63]. Additionally, speckle filtering was performed to reduce
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speckle noise using a refined Lee filter [64] with a window size of 7 × 7. The preprocessed Sentinel-1
data were resampled to 30 m spatial resolution.

To reduce the possible effects of variations in the incident angle of Sentinel-1 backscatter
coefficients [36,65], we only used observations that had almost the same incident angle at the
same pixel location. Because all observations were recorded as having incident angles below 37◦ or
above 39◦ in this study, we labeled the incident angle of each observation as “low” or “high.” Only
observations labeled with the majority angle class were used in the same pixel location. By doing this,
the time series of backscatter coefficients were less affected by variations in the incident angle. We used
observations from both ascending and descending orbits in the same time series in subsequent analysis.

The digital elevation data were obtained from the Shuttle Radar Topography Mission (SRTM)
version 3 [66] in GEE. This data has 30 m spatial resolution and has been processed with a void-filling
algorithm. We used SRTM data to calculate the topographic slope and elevation.

3.2. RF Disturbance Probability Models for Landsat 8 and Sentinel-1

To derive the disturbance probability of each observation in Landsat 8 and Sentinel-1, time series
of the Landsat 8 spectral indices and Sentinel-1 backscatter coefficients were respectively used in the
RF models. The signals of both Landsat 8 and Sentinel-1 time series data are affected by the seasonality
of soil and vegetation moisture content, as well as forest structure changes. There are two main
approaches to cope with seasonality: removing seasonality from signals (e.g., References [20,35]) and
modeling time series seasonality (e.g., References [67,68]). In this study, we used a harmonic regression
model to characterize seasonality and potential forest changes in each pixel location. We fitted an
ordinary least square (OLS) model, which is almost the same as the Continuous Change Detection and
Classification (CCDC) algorithm [18], to the time series of all Landsat 8 spectral indices and Sentinel-1
backscatter coefficients:

y = a0 + a1 cos
( 2π

365.25
x
)
+ b1 sin

( 2π
365.25

x
)
+ c1x + ε (1)

where y is a predicted value at time x, x is the Julian date, a0 represents a coefficient for overall value, a1

and b1 represent coefficients for intra-annual change, c1 represents a coefficient for inter-annual change
and ε is the residual error. The CCDC algorithm was originally developed for Landsat spectral bands;
however, several studies have successfully applied it to different sensors and different spectral indices
(e.g., References [28,68,69]) for change detection.

The OLS model was initially fitted using observations from 1 January 2014 to 31 December 2015.
After that period, the harmonic regression model was used to predict time series observations. Based on
the harmonic regression model prediction and actual observation values, the root mean square error
(RMSE) was calculated and used to identify break points as potential change. If three consecutive
observations deviated by more than three times the RMSE, a break point was labeled at that time
(Figure 2). After identifying the break point, a new harmonic regression model was fitted from the
next observation until a new break point was detected. Conversely, if three consecutive observations
did not deviate by more than three times the RMSE, we assumed there was no break point at that
time. The harmonic regression model was updated once new observations became available, and
the RMSE was recalculated every time. Thus, different coefficients and RMSEs were obtained when
new observations became available. We recorded these coefficients and the RMSE at each observation.
A detailed description and illustration of the harmonic regression model can be found in Reference [18].

The coefficients and RMSE of each observation from the harmonic regression models were used
as predictor variables in the RF models. Different from the original CCDC algorithm, the coefficients,
RMSEs and observed values were extracted for every observation, even if there was no break point.
This was because the RF model was applied to each time series observation in the subsequent procedure.
Together with variables from the harmonic regression models, the topographic slope and elevation,
and incident angle were also included as predictor variables.
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The RF models were independently developed for Landsat 8 and Sentinel-1. This means that
variables from the harmonic regression models for TCB, TCG, TCW, TCA and NBR were used in
the RF model of Landsat 8, and variables from VV and VH were used in the RF model of Sentinel-1.
We built RF disturbance probability models for each observation of Landsat 8 and Sentinel-1. Because
RF classifiers can be used to predict the probabilities of binary responses [70], several studies have used
them for probability mapping with remote sensing data (e.g., References [50,71]). In this study, we
predicted the probability of forest disturbances, defined as any discrete event that caused a reduction
of forest canopy. Following land cover type was not considered, therefore disturbances may include
conversion to other land cover types (e.g., infrastructure and agricultural land). We set disturbed
and not-disturbed (stable forest) conditions as the binary outcome of the RF models. The disturbance
probability was calculated as the proportion of disturbed class predicted by decision trees in the RF
classifier. The RF models were independently trained using observations derived from 535 training
samples collected within forested areas of the study area (see Section 3.4). In the training samples, each
observation of Landsat 8 and Sentinel-1 time series data was labeled as disturbed or not-disturbed.
We randomly selected five observations from each of the 535 training samples to use as training data in
each RF model. Thus, a total of 2675 observations from both Landsat 8 and Sentinel-1 were used to
train the RF models. Here, each observation came from any acquisition date of time series Landsat
8 and Sentinel-1 data during the monitoring period (i.e., from 1 January 2016 to 31 December 2017)
and had a reference label (disturbed or not-disturbed) and predictor variables. The RF models were
developed using the “randomForest” package [72] and tuned with 10-fold cross-validation of 500 trees
using the “caret” package [73] in the R statistical computing environment [74].

3.3. Detection of Forest Disturbance Using Time Series Disturbance Probabilities

The developed RF models were used to predict the disturbance probabilities of time series
observations, and these time series disturbance probabilities were then used to detect forest disturbance
in each pixel location. We tested the disturbance detection performance using only the disturbance
probabilities of Landsat 8, using only the disturbance probabilities of Sentinel-1 and using the combined
disturbance probabilities of Landsat 8 and Sentinel-1 from the monitoring period 1 January 2016 to
31 December 2017. We used a simple approach to detect disturbances: if three consecutive observations
exceeded a disturbance probability of 50%, then that pixel was assumed to indicate a disturbance.
We required three consecutive observations to remove false positive detections. When combining the
probabilities of Landsat 8 and Sentinel-1, we simply used either of the probabilities from Landsat 8 or
Sentinel-1 based on the confidence of the probability. This was measured by the closeness to 0 or 1,
expressed as follows:

Ci =

{
1− P(di)

P(di)

P(di) < 0.5
P(di) ≥ 0.5

(2)

where Ci represents the confidence of the disturbance probability for the i-th observation of Landsat
8 or Sentinel-1 and P(di) represents the disturbance probability for the i-th observation of Landsat
8 or Sentinel-1. We assumed that observations with more extreme probabilities represented more
confident predictions.

From the beginning of the time series, the disturbance probability was updated when new
observations became available. If a new observation was obtained from a different sensor, the confidence
of the probability of this new observation was compared against that of the previous disturbance
probability. If the confidence was higher for the new observation, the disturbance probability was
updated; if the confidence was lower for the new observation, the previous disturbance probability
was retained. By doing this, we combined the disturbance probabilities from different sensors.

To understand the variability of forest disturbance detection using different thresholds for
time series disturbance probabilities, we changed the threshold used to identify the occurrence of
disturbance. We tested thresholds from 10–90% at intervals of 2.5%. If the disturbance probabilities
of three consecutive observations exceeded the threshold, the pixel was labeled as a disturbance.
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We compared disturbance detection using only Landsat 8, using only Sentinel-1 and using the combined
Landsat 8 and Sentinel-1 data.

3.4. Collection of Reference Samples

We collected reference samples for the two-year monitoring period (i.e., from 1 January 2016 to
31 December 2017). Stratified random sampling was employed to collect samples. We used forest
disturbance maps from 2016 and 2017 in this study area that were derived from time series analysis
of annual Landsat data [75]. These disturbance maps were originally developed for the period
2000–2014, but additional Landsat data from 2000–2019 were used to generate the disturbance maps
used in this study. A total of 1070 reference samples were collected in forested regions of the study
area. We allocated 405 samples to areas that experienced disturbances in the monitoring period and
the remaining 665 samples to areas that appeared to be stable. Reference samples were randomly
distributed over each stratum in the forested regions of the study area. We used a single pixel as the
sample unit.

We recorded the presence/absence of disturbance and the date of disturbance occurrence for
the reference samples based on a visual interpretation of high spatial resolution satellite images.
PlanetScope and RapidEye images [57] were used to identify disturbances in this visual interpretation.
The PlanetScope satellites form a constellation of more than 150 CubeSats and provide images with a
spatial resolution of about 3 m. The PlanetScope and RapidEye images available for reference samples
varied over the monitoring period in this study (Figure 4) largely because of the variation of satellites
on orbits. The weighted average of available images for each sample was 3.3 images/month (i.e., 9.1 day
interval), including cloud-contaminated images. Although this figure included cloudy observations,
which might reduce the number of images available for visual interpretation, we considered this an
acceptable frequency for visual interpretation. In addition, time series of Landsat 8 data and high
spatial resolution images from Google Earth were used as complementary data when appropriate
PlanetScope and RapidEye images were not available. We also recorded disturbance agents (i.e.,
agricultural development, timber plantation development, logging, shifting cultivation, infrastructure
development and water inundation) in the visual interpretation to investigate potential differences in
detection for different causes of disturbance (Figure 5). Although several small-scale disturbances,
such as caused by selective logging, might be omitted in visual interpretation, we considered that
these omissions accounted for a small amount because most disturbances caused by selective logging
operations can be identified using high spatial resolution satellite images [76].Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 22 
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Figure 5. Distribution of samples that experienced disturbance in reference samples. We classified
these disturbances for six disturbance agents.

Each Landsat 8 and Sentinel-1 observation in the reference samples was labeled as disturbed or
not-disturbed based on the results of visual interpretation. We labeled observations as not-disturbed
when there was no sign of disturbance in the sample. If there was disturbance in the sample, observations
before the date of disturbance were labeled as not-disturbed and observations after disturbance were
labeled as disturbed. The reference samples had, on average, 35.4 and 50.8 observations for Landsat 8
and Sentinel-1, respectively.

We allocated 50% of the reference samples for training and used the remainder as test samples.
RF disturbance probability models were developed using the observations of training samples and
then validated using the observations of test samples. In developing and validating the RF models,
five observations were randomly selected from each training and test samples. Thus, we used
2675 observations for training and testing the RF models of both Landsat 8 and Sentinel-1.

3.5. Validation

The performance of the RF models was assessed based on the confusion matrix formed using the
2675 observations from the test samples. We set a disturbance probability of 50% as the threshold for
identifying disturbances. The overall accuracy (OA), producer’s accuracy (PA) and user’s accuracy
(UA) were calculated using the confusion matrix. In addition, the Brier score [77] was calculated
to investigate the prediction performance. This is a measure of probabilistic prediction accuracy
expressed as:

BS =
1
N

N∑
i=1

(Ri − P(di))
2 (3)

where BS is the Brier score of Landsat 8 or Sentinel-1, N represents the total number of observations in
the RF model, Ri represents the reference label indicating not-disturbed (0) or disturbed (1) for the i-th
observation of Landsat 8 or Sentinel-1 and P(di) represents the predicted disturbance probability for
the i-th observation of Landsat 8 or Sentinel-1. The Brier score measures the average squared deviation
of predicted probability and actual outcome [77]; lower values indicate higher prediction accuracy.

The disturbance detection was validated based on 535 test samples. We calculated OA, PA and
UA in each disturbance detection (i.e., only with Sentinel-1, only with Landsat 8 and combining
Landsat 8 and Sentinel-1). We treated disturbances detected before the actual disturbance date
as commission errors of disturbance, in accordance with other studies (e.g., References [20,21,35]).
However, disturbances detected within 10 days before the actual date were regarded as correct
detections, because the visual interpretation had an uncertainty of 9.1 days (the weighted average
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interval of available PlanetScope and RapidEye images used in the visual interpretation). We calculated
the mean time lag of disturbance detection, which was defined by mean days between the reference
date of disturbance and the initial date of three consecutive disturbance probabilities of greater than
50%, to investigate the temporal accuracy of detection. In this calculation, disturbances detected
before the date of the actual disturbance were not included. The OA, PA, UA and mean time lag
were calculated for disturbance detection with thresholds from 10–90%. Furthermore, we calculated
the omission error of disturbance for each disturbance agent, which was recorded in the reference
samples, using the disturbance detection results combining Landsat 8 and Sentinel-1 with a threshold
of 50%. We also investigated the effects of spatial post processing to mapped disturbance pixels with a
threshold of 50% by applying minimum mapping unit from 1 to 100 pixels.

4. Results

4.1. Accuracy of RF Disturbance Probability Models

The RF models for each observation of Landsat 8 and Sentinel-1 had an OA of 88.9% and 83.3%,
respectively, when observations that had disturbance probabilities of greater than 50% were labeled as
disturbances. In the RF model for Landsat 8, the PA of disturbances was 78.6% (Table 1). In the RF
model for Sentinel-1, however, the PA of disturbances was 58.6%, somewhat lower than that of the RF
model for Landsat 8 (Table 2). The PA of no disturbance was slightly higher for Sentinel-1 (94.5%) than
for Landsat 8 (93.5%). The UAs of disturbance and no disturbance for Landsat 8 were higher than
those for Sentinel-1. The Brier scores were 0.086 and 0.128 for the Landsat 8 and Sentinel-1 models,
respectively, indicating that the RF model for Landsat 8 provided better predictions.

Table 1. Confusion matrix of RF disturbance probability model for each observation at the single
pixel of Landsat 8. Observations that had disturbance probabilities of greater than 50% were labeled
as disturbances.

Reference

No-Disturbance Disturbance Sum UA (%)

Predicted

No-disturbance 1738 175 1913 90.9
Disturbance 121 641 762 84.1

Sum 1859 816 2675
PA (%) 93.5 78.6

Table 2. Confusion matrix of RF disturbance probability model for each observation at the single
pixel of Sentinel-1. Observations that had disturbance probabilities of greater than 50% were labeled
as disturbances.

Reference

No-Disturbance Disturbance Sum UA (%)

Predicted

No-disturbance 1740 345 2085 83.5
Disturbance 102 488 590 82.7

Sum 1842 833 2675
PA (%) 94.5 58.6

4.2. Accuracy of Disturbance Detection Using Time Series Disturbance Probabilities

The OAs of forest disturbance detection using only Landsat 8, using only Sentinel-1 and using a
combination of Landsat 8 and Sentinel-1 were 78.3%, 75.5% and 83.6%, respectively (Figure 6a), when
a threshold of 50% was used to identify disturbances. The disturbance detection with Landsat 8 and
Sentinel-1 had the highest OA, followed by that using only Landsat 8 and that using only Sentinel-1.
In terms of the UA of disturbance, the highest accuracy was again achieved by combining Landsat 8
and Sentinel-1 (71.5%). Conversely, for the PA of disturbance, using only Landsat 8 achieved slightly
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higher accuracy (84.7%) than the combination of Landsat 8 and Sentinel-1 (82.2%). The mean time lags
were 63.1 days and 86.9 days for disturbance detection using only Landsat 8 and using only Sentinel-1,
respectively (Figure 6b). When combining Landsat 8 and Sentinel-1, the mean time lag was 52.8 days,
some 10.3 days less than detection using only Landsat 8. A total of 200 samples were detected as
disturbance and 335 samples were predicted as stable in test samples during the monitoring period.
Figure 7 shows an example of disturbance detection using Landsat 8, Sentinel-1 and the combination
of Landsat 8 and Sentinel-1. Visually, the detected disturbances were largely reduced by combining
Landsat 8 and Sentinel-1 observations compared with using only Landsat 8 or Sentinel-1 observations.
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Figure 6. Accuracy of disturbance detection in terms of (a) overall accuracy (OA), producer’s accuracy
(PA) and user’s accuracy (UA) of disturbance, and (b) mean time lag of the detection of disturbance
using only Landsat 8, using only Sentinel-1 and combining Landsat 8 and Sentinel-1.

The omission error of disturbance for each disturbance agent is shown in Figure 8. Water
inundation achieved the lowest omission error (0.0%), although the sample size for this agent was
small (n = 28) during the monitoring period. Infrastructure development also achieved a low omission
error (4.8%). The highest omission error occurred for the detection of disturbances caused by logging
(41.7%). The development of timber plantations, shifting cultivation and agricultural development
had similar omission errors (15.0%, 15.9% and 19.4%, respectively).

The OAs of forest disturbance detection using only Landsat 8, using only Sentinel-1 and using
a combination of Landsat 8 and Sentinel-1 for each minimum mapping unit are shown in Figure 9.
The highest OA occurred at minimum mapping unit of 32, 3 and 7 pixels for Landsat 8 (80.0%),
Sentinel-1 (76.3%) and the combination of Landsat 8 and Sentinel-1 (84.9%), respectively.
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Figure 7. Example of disturbance detection in the study area. (a) RGB Landsat 8 data acquired on
23 December 2017, (b) disturbance detection using Landsat 8, (c) disturbance detection using Sentinel-1
and (d) disturbance detection using Landsat 8 and Sentinel-1. Disturbance pixels that had greater than
0.5 ha minimum mapping unit were used for visualization.
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Figure 9. OAs of the detection of disturbance using only Landsat 8, using only Sentinel-1 and combining
Landsat 8 and Sentinel-1 for each minimum mapping unit.

Figure 10 shows the accuracy of disturbance detection using only Landsat 8, using only Sentinel-1
and combining Landsat 8 and Sentinel-1 for different thresholds. In terms of the OA, PA and UA
of disturbance, Sentinel-1 generally achieved a lower accuracy for all thresholds, except for the UA
of disturbance for thresholds greater than 40% (Figure 10a). Combining Landsat 8 and Sentinel-1
produced higher Oas than disturbance detection using only Landsat 8 for all threshold values. We
found that the PA of disturbance was higher for disturbance detection combining Landsat 8 and
Sentinel-1 with thresholds greater than 52.5%, whereas disturbance detection using only Landsat
8 generally achieved higher accuracy with thresholds of 50% and below. The UA of disturbance
detection combining Landsat 8 and Sentinel-1 was higher than the others for thresholds below 60%, but
disturbance detection using only Landsat 8 or only Sentinel-1 was generally higher when the threshold
was over 62.5%. The highest OA occurred at thresholds of 72.5%, 62.5% and 77.5% for Landsat 8 (82.4%),
Sentinel-1 (78.3%) and the combination of Landsat 8 and Sentinel-1 (86.0%), respectively. The PA and
UA of disturbance achieved almost the same balanced accuracy at thresholds of 67.5%, 55.0% and
70.0% for Landsat 8 (PA: 70.7%, UA: 72.7%), Sentinel-1 (PA: 62.9%, UA: 62.2%) and the combination of
Landsat 8 and Sentinel-1 (PA: 79.5%, UA: 79.5%), respectively. In terms of the mean time lag, Sentinel-1
took longer to detect disturbances for all threshold values (Figure 10b). Combining Landsat 8 and
Sentinel-1, the mean time lag of disturbance detection was generally shortest for thresholds above
47.5%. For disturbance detection below that threshold, the mean time lag was shorter when using
Landsat 8 only.
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5. Discussion

In this study, we investigated the detection of disturbances in the tropical seasonal forests of
Myanmar using dense time series of Landsat 8 and Sentinel-1 data based on RF models. Previous
studies mainly used parametric models to combine time series data from optical and SAR satellites
for change detection, and other approaches, such as using machine learning algorithms, have not
been well developed. This study presented a new approach to detect disturbances by combining
disturbance probabilities of Landsat 8 and Sentinel-1 predicted by RF models. The RF disturbance
probability models for each observation of Landsat 8 and Sentinel-1 were separately developed using
predictor variables derived from a harmonic regression model. Combining the time series disturbance



Remote Sens. 2019, 11, 1899 16 of 22

probabilities of Landsat 8 and Sentinel-1 observations improved the accuracy of disturbance detection
compared with using only Landsat 8 or Sentinel-1.

The RF disturbance probability model of Landsat 8 produced better results than that of Sentinel-1.
The RF model of Landsat 8 achieved a relatively high OA and low Brier score. In this study, we
used a harmonic regression model based on the CCDC algorithm to account for both seasonality and
disturbance-related changes. This approach provided model coefficients and RMSEs representing
inter-annual and intra-annual changes and random variability. These variables effectively allowed the
RF model to detect disturbances. Furthermore, the harmonic regression model in this study could
reduce the effects of outliers caused by undetected clouds in cloud masking because three consecutive
observations were used to identify potential change. We consider this was one reason for relatively
high accuracy. The RF disturbance probability model of Sentinel-1 had a low PA of disturbance (58.6%),
indicating large omission errors of disturbance. This result was not surprising because C-band SAR
is generally less sensitive to forest structures [42,43]. Although we applied careful preprocessing to
remove noise from the SAR backscatter coefficients, such as terrain correction, the mountainous regions
in the study area might have affected the accuracy of detection, because rugged terrain affects the
geometric and radiometric conditions of SAR observations. In GEE, Sentinel-1 GRD data is processed
to backscatter coefficients σ◦; however, using backscatter coefficients γ◦ might be another option
because of its performance for topographic variation [78]. Although we cannot directly use Sentinel-1
data in GEE when backscatter coefficients γ◦ are generated, it could improve the accuracy of detection.
Another solution for improving detection accuracy is to use other preprocessing methods for Sentinel-1
data, such as a multi-temporal SAR filter to reduce speckle noise. This has a possibility to contribute
better results for change detection.

We found that using the disturbance probabilities of both Landsat 8 and Sentinel-1 achieved highly
accurate disturbance detection. The combination of Landsat 8 and Sentinel-1 improved the OA and
UA of disturbances using a threshold value of 50% (Figure 6a). Although the PA of disturbances was
slightly lower than disturbance detection using only Landsat 8, the quantitative difference was small.
In terms of temporal accuracy, the combination of Landsat 8 and Sentinel-1 reduced the time required
to detect disturbances compared with detection using only Landsat 8. Considering the temporal
distribution of the reference samples, most of the forest disturbances in this region occurred in the
dry season (Figure 5). Forest disturbances in the dry season can be observed by optical sensors (i.e.,
Landsat 8) immediately after the event; however, the combination of Landsat 8 and Sentinel-1 provided
better results for timely and accurate detection through the increased number of observations. These
results revealed the value of the frequent observations achieved by using both Landsat 8 and Sentinel-1.
A similar contribution from high temporal observations using multiple sensors was demonstrated
in previous studies [35]. Although Sentinel-1 alone did not perform well in terms of disturbance
detection, its combination with Landsat 8 improved the accuracy of disturbance detection. In this
context, combining Landsat 8 and Sentinel-1 observations can contribute to successful disturbance
detection while reducing commission errors of disturbance.

Increasing the thresholds required to identify disturbances led to a decrease in the PA of
disturbances and an increase in the UA of disturbances. The mean time lag of detection also generally
increased with the threshold value. This tradeoff confirms similar time series change detection
results from previous studies [22,35,79]. No single threshold achieved the highest PA and UA of
disturbance and the shortest mean time lag of detection. Although we used a threshold of 50% to
identify disturbances for analysis and mapping, it is possible to use other thresholds according to
the objective of disturbance detection. To detect most forest disturbances, lower thresholds could
achieve low omissions of disturbances, although false positive detections will increase. In contrast,
higher thresholds (e.g., 70%) could be used to achieve balanced PA and UA of detection and mean
time lag of detection. Applying a minimum mapping unit to mapped disturbances also might be used
for balancing PA and UA of detection because this procedure was effective to eliminate false positive
detection in this study.
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Although the combination of Landsat 8 and Sentinel-1 achieved relatively high accuracy, the
omission of disturbances was considerable for several disturbance agents. The omission errors for
each disturbance agent showed that conversion to other land cover type, such as water inundation and
infrastructure development, can easily be detected, whereas subtle disturbances such as logging were
difficult to detect. In this study, we detected forest disturbances that included subtle or small events as
well as deforestation. Logging activity in this region is not usually conducted by clearing large-scale
forest stands, but by small-scale tree-based harvesting [80] (i.e., selective logging). This might increase
the omission error of disturbances because it is difficult to detect small-scale disturbances such as those
caused by selective logging using medium spatial resolution images (e.g., Landsat) [81]. One possible
solution would be to use Sentinel-2 data combined with Sentinel-1 data. Small-scale disturbances
might be detected using Sentinel-2 data because we could conduct disturbance detection in 10 m spatial
resolution and with higher temporal resolution. Although Sentinel-2 data was not used in this study
due to the availability of bottom of atmosphere reflectance products during the monitoring period
in GEE, further studies are needed to investigate the effectiveness of Sentinel-2 data for detecting
small-scale disturbances. We found that the forest disturbances that caused land cover changes were
easily distinguished from stable forests by using Landsat 8 and Sentinel-1. This can be attributed to the
different surface properties of water and city compared with forest areas.

The approach presented in this paper has demonstrated the utility of disturbance probabilities
predicted by a machine learning algorithm (i.e., RF) for accurate and timely disturbance detection.
Although several studies have improved the accuracy of forest monitoring using a Bayesian approach
for optical and SAR data, this approach requires several premises, such as probability density functions
for Bayesian updating, to combine the conditional probabilities from both sensors (e.g., [22,35]).
Conversely, we can easily implement the proposed approach, because it simply uses either of the
disturbance probabilities of Landsat 8 or Sentinel-1 without prior knowledge. Compared with the
Bayesian approach in previous studies, such as Reiche et al. [35], the accuracy of disturbance detection
was low in this study. Reiche et al. [35] detected deforestation with the PA and UA of 88.9% and 88.0%,
respectively, for a high confidence in change area case (82.2% and 71.5% in this study). The mean time
lag of detection in this study was also longer compared with those of Reiche et al. [35] (i.e., 11 days in
the same definition of mean time lag) and another study by Reiche et al. [44] using Sentinel-1 data
(i.e., 7.5 days). The difference of forest change patterns might partially explain this lower accuracy
in this study because our study included small-scale disturbances that are usually difficult to detect.
Although some small-scale disturbances were omitted in our approach, most forest disturbances were
successfully captured. The simplicity and accuracy of the proposed approach are suited to operational
forest monitoring. Thus, the approach presented here, which enhances the disturbance probability
predicted by a machine learning algorithm with variables from a harmonic regression model, represents
a promising alternative for forest monitoring.

Although the presented approach produced encouraging results, it has several limitations. The RF
classifier was applied to each observation of Landsat 8 and Sentinel-1, therefore it was highly dependent
on computational resources. Even though RF is a highly efficient processing algorithm [52], it takes a
considerable time for large-area mapping. The availability of reference images was another constraint
for accurate detection. To examine the exact date of disturbance occurrence, adequate high spatial
resolution reference images are necessary, especially for detecting subtle or small-scale changes. In this
study, we used PlanetScope and RapidEye images that had an average interval of 9.1 days as reference
images; however, more frequent reference images might be needed for near-real-time scenarios, because
temporal accuracy is important for near-real-time monitoring. Recently, however, PlanetScope satellites
have provided more frequent, near-daily observations as the number of satellites has increased. This
will aid the reliability of data sources for reference images in time series analysis.
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6. Conclusions

This study assessed the effectiveness of using dense time series Landsat 8 and Sentinel-1 data
for the detection of forest disturbances in tropical seasonal forests. The disturbance probability of
each observation was predicted from a machine learning algorithm (Random Forest) using predictor
variables from harmonic regression models. Combining the time series of disturbance probabilities
from Landsat 8 and Sentinel-1 data based on a simple approach, we detected disturbances with an
OA of 83.6%, which was higher than disturbance detection using only Landsat 8 (78.3%) or only
Sentinel-1 (75.5%). In addition, the combination of Landsat 8 and Sentinel-1 data effectively reduced
the mean time lag for detecting disturbances. Although disturbance detection using only Sentinel-1
data achieved a relatively low accuracy, Sentinel-1 data were effective for accurate and timely detection
when combined with Landsat 8 data. We showed the tradeoff between reducing the omission error and
commission error of disturbances by changing the thresholds required to identify disturbances from
the time series disturbance probabilities. This suggests that the optimal thresholds vary depending on
the objective of analysis. Subtle or small-scale disturbances caused by logging activity were difficult
to detect; however, the presented approach can detect most large-scale disturbances, such as land
cover change from forest. Overall, using a machine learning algorithm was effective for detecting
disturbances in an accurate and timely manner. A simple approach to combining the disturbance
probabilities of multiple sensors is a promising approach for tropical seasonal forests.
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