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Abstract: Satellite imagery of 25–30 m spatial resolution has been recognized as an effective tool for
monitoring the spatial and temporal dynamics of forest cover at different scales. However, the precise
mapping of forest cover over fragmented landscapes is complicated and requires special consideration.
We have evaluated the performance of four global forest products of 25–30 m spatial resolution within
three flatland subregions of Ukraine that have different forest cover patterns. We have explored the
relationship between tree cover extracted from the global forest change (GFC) and relative stocking
density of forest stands and justified the use of a 40% tree cover threshold for mapping forest in
flatland Ukraine. In contrast, the canopy cover threshold for the analogous product Landsat tree cover
continuous fields (LTCCF) is found to be 25%. Analysis of the global forest products, including discrete
forest masks Global PALSAR-2/PALSAR Forest/Non-Forest Map (JAXA FNF) and GlobeLand30, has
revealed a major misclassification of forested areas under severe fragmentation patterns of landscapes.
The study also examined the effectiveness of forest mapping over fragmented landscapes using dense
time series of Landsat images. We collected 1548 scenes of Landsat 8 Operational Land Imager (OLI)
for the period 2014–2016 and composited them into cloudless mosaics for the following four seasons:
yearly, summer, autumn, and April–October. The classification of images was performed in Google
Earth Engine (GEE) Application Programming Interface (API) using random forest (RF) classifier.
As a result, 30 m spatial resolution forest mask for flatland of Ukraine was created. The user’s and
producer’s accuracy were estimated to be 0.910 ± 0.015 and 0.880 ± 0.018, respectively. The total forest
area for the flatland Ukraine is 9440.5 ± 239.4 thousand hectares, which is 3% higher than official
data. In general, we conclude that the Landsat-derived forest mask performs well over fragmented
landscapes if forest cover of the territory is higher than 10–15%.

Keywords: flatland Ukraine; forest cover map; forest mask; fragmented landscapes; global forest
change; Google Earth Engine; Landsat imagery; random forest algorithm

1. Introduction

Reliable data on forest cover addresses a wide range of issues, particularly in informing
management decisions related to land-use and land-cover change. In recent decades, satellite imagery
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collected by the Landsat platforms in forestry applications has increased owing to the availability
of long time series of satellite observations of land cover and its dynamics. This has helped in
developing global forest cover products and advancements in automated methods for thematic image
processing. Changes in access policies to Landsat imagery archives [1] have resulted in several fine
spatial resolution forest cover products (e.g., forest masks) at global scales [2–4]. Thus, dense time
series of Landsat images have been recognized as an effective tool for monitoring the dynamics of
forested landscapes [5]. These time series images enable us to estimate forest conditions caused by
intra-annual variation in phenology and facilitate improved classification. Previous studies have
proven the superiority of satellite-based methods for characterizing and mapping forest vegetation
under different climatic conditions. Continuous improvements made in remote sensing technologies
have motivated researchers to summarize recent advances in application time series, ranging from
land cover classification [6] and tree species composition classification [7], to predicting detailed forest
inventory parameters [8].

Landsat images (Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), Operational
Land Imager (OLI)) are regarded as the standard Earth observation data for ecological monitoring over
large scales, and provide unique opportunities for assessing changes in forest cover [9,10]. Landsat
imagery is crucial for revealing trends in land cover changes and forest disturbances [11,12]. The
significant interest of forest resources assessment using Landsat images is explained by the fact that
forests could be mapped with higher accuracy compared to other types of vegetation. An important role
of the Landsat platform is its development of methods for the global monitoring of forest ecosystems [13].
As a result of national programs and international initiatives, several remote sensing-based products
have been released that characterize forest cover at regional [14], continental [15], and global [2–4]
scales. For example, the JAXA forest/non-forest (JAXA FNF) mask was the first high spatial resolution
(25 m) global forest map developed using synthetic aperture radar (SAR) data [16].

Proportional per-pixel estimates of tree cover represent important improvements of thematic
representation of forests over discrete maps. In 2013, two fine scale global maps were released,
characterizing forests in a continuous form [3,4]. Both global forest change (GFC) and Landsat tree
cover continuous fields (LTCCF) predict tree cover while forest cover should be considered for accurate
mapping, and to avoid misclassification in some landscapes [17]. Compared to its predecessors, i.e.,
coarse-scale Advanced Very-High-Resolution Radiometer (AVHRR) and Moderate Resolution Imaging
Spectroradiometer (MODIS) vegetation continuous fields, Landsat-based percent tree cover global
products reveal 100–1000 times more detailed information. In particular, the spatial resolution of
30 m is essential for forest dynamics assessment because many forest cover changes are detected at
this scale. Assessing the accuracy of Landsat-based tree cover products has been the focus of recent
research [18]. Methods for the evaluation and usage of the GFC map [3] have been discussed in terms
of reporting forest cover estimates at the national level [19,20]. Recommendations for the design and
implementation of a sampling frame using GFC data for map area assessment were provided as a
practical guide [21].

Repeated observations have decreased the probability of occurrence-missing observations and
advanced remote sensing techniques in several ways. Change metrics derived from time series allows
for depicting seasonal differences between forests and other types of vegetation, yielding an improved
classification of tree species composition [22,23]; predicting forest productivity [24]; and determining
forest structure and aboveground biomass [25,26]. There are good examples in the literature of using
time-series satellite images for mapping species composition [27,28]. Chrysalis et al. [29] have indicated
the importance of image acquisition dates for the mapping and estimation of forest parameters. The
authors concluded that multitemporal classification algorithms overperformed single-date as well as
one-seasonal approaches. Other studies have also shown that methods of image processing capturing
annual leaf phenology cycles contribute more to the accuracy of classification than the spatial resolution
of remote sensing data [22,23,30]. Employing data-rich time series approaches has therefore become
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an important development in this field and is predicted to replace bi-temporal image comparisons
relatively soon [13].

The large and continuously updated capacity of Landsat data facilitates the development of
MODIS-like methods for image composition. These are based on the analysis of time series aiming to
select the best available observations for each pixel over a study period [31]. The composing approach
could preferentially select the “greenest” dates having the maximum normalized difference vegetation
index (NDVI) value [32] or median pixel value at each spectral band [33]. Maximum value composites
have been proven to overcome the cloud shadowing problem but are likely to be skewed towards
the greenest dates. For the purposes of detecting trends in forest cover disturbances, the medoid
composing approach [34] was proposed by some authors [35]. In terms of mapping forests using dense
time series of Earth observations, different principles for extracting spectral metrics were examined.
Hansen et. al [32] demonstrated an approach in which spectral inputs for classification were extracted
using maximum NDVI composites for annual, summer, and autumn temporal mosaics, but specific
statistical rules (minimum, maximum, median values, 1st and 3rd quartiles) were employed to capture
seasonal phenology for growing season mosaic. Parente and Ferreira [36] have recently found that
spectro-temporal metrics derived from the percentile analysis of yearly NDVI values are associated
with seasonal responses of vegetation. We agree with the authors that this greatly enhances the ability
to detect dynamics in forest cover through the season and to produce more accurate tree species
composition maps.

The scale and detail of mapping have gradually evolved with development of finer spatial and
spectral resolutions of sensors. Freely available imagery such as Landsat, Sentinel, and commercial
Earth observation data (PlanetScope, RapidEye, SPOT etc.) have been applied for mapping large areas
of diverse land cover types [6,37]. Remote sensing technologies have been evolving rapidly, including
medium to very high resolution (VHR) optical sensors, SAR, and LiDAR (or Light Identification,
Detection and Ranging), which allows for more accurate land-cover mapping [8]. With the advancement
of this technology, multi-source remote sensing data fusion techniques are emerging that require new
classification algorithms [38]. When dealing with normally distributed unimodal data, supervised
parametric classification algorithms, e.g., maximum likelihood classification (MLC), deliver robust
results. However, they are not suitable when processing multi-modal input datasets due to underlying
assumptions of the normal distribution of data [39]. In contrast, non-parametric supervised classifiers
do not make any assumptions regarding frequency distribution and have therefore become increasingly
popular for classifying remotely sensed data, which rarely have normal distributions. Given this
technical advantage, popular non-parametric classifiers such as the classification and regression tree
(CART), random forest (RF), support vector machine (SVM) [40], and artificial neural network (ANN)
have recently been adopted for land-cover mapping [41].

Numerous spectral features are used to map forests using time series. Banskota et al. [5] have
provided at least four major groups of such features, namely: spectral band data, spectral ratio
indexes, tasseled cap transformation (TCT) bands, and spectral mixture indexes. Among modern
non-parametric modelling algorithms, RF has been used extensively in forest mapping practices due to
its robustness and ability to process a large number of predictor variables [42,43]. Previous studies
on forest vegetation mapping have indicated the need for reducing input-variable lists based on the
estimation of variable importance in RF regression algorithms [29]. Other studies highlight the utility
of transforming original spectral bands into the three TCT components of brightness, greenness, and
wetness [33]. However, nonparametric approaches for image classification perform well even if input
datasets include a significant number of predictors [15,26].

Dense time series demonstrates a high capacity for mapping forests but needs significant
investment in data processing. The calibration of classification algorithms requires extensive
computing resources, thus presenting a limiting factor for many users. The advent of the Google
Earth Engine (GEE) cloud-based computing [44] in recent years has helped facilitate broad-scale
studies using high-performance mapping algorithms [36,45,46]. GEE enables easy access to different
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publicly-available datasets, including the collection of Landsat pre-processed images, and dramatically
reduces the time required for generating accurate maps. GEE has also become highly effective for
classifying multi-temporal satellite imagery, global geospatial analysis, and visualization [33,47].

Recently, there has been an increasing need to understand better the importance of landscape
fragmentation processes [48,49]. Forest fragmentation refers to changes in forest cover and can be
measured using land-cover raster maps derived from satellite imagery. Urbanization, the conversion
of forested lands into agricultural lands, transportation infrastructure expansions, intensive forest
management are accepted as the major human activities causing fragmented landscapes [50]. In the
flatlands of Ukraine, fragmented forests induce potential errors during the process of forest cover
mapping using classification algorithms. Furthermore, assessing the extent of fragmented forests can
help to inform policy and decision making for forest management practices [51]. Thus, forest mapping
over fragmented landscapes is essential at the regional-scale.

The literature highlights some applications of remotely-sensed datasets and dense time series of
optical satellite images for global and nation-wide forest mapping. However, the application of these
datasets for characterizing a regional-scale pattern of forest cover has been limited. The aims of this
study were: (1) to examine the consistency of site-specific accuracy between four global forest products
at 25–30 m spatial resolution in fragmented landscapes in the flatlands of Ukraine and define their
utility for reporting forest area estimates, and (2) to investigate the role of dense Landsat 8 OLI time
series for producing a regional-scale forest mask. We also tested the performance of the cloud-based
GEE platform for seamlessly processing large amounts of spectral and thematic data with potential
to apply the platform for larger scales in future. This is perhaps the first attempt at comparing the
performance of global Landsat-based percent tree cover maps, discrete forest masks, and classification
time series from OLI observations over severely fragmented landscapes in Ukrainian flatlands.

2. Materials and Methods

2.1. Study Area

The study area covered 541,000 km2 (or approx. 90%) of Ukraine in Eastern Europe. This area
encompasses nearly all flatland landscapes of the country. The elevation ranges between 0–400 m.a.s.l
(from the southernmost point of the Black Sea lowlands to the Pre-Carpathian region in the west).
Land use is highly heterogeneous with multiple cropping systems that have historically defined the
distribution of forests. Forest cover varies substantially along a latitudinal gradient from 20–35% in
northern Polissya to the central forest-steppe zone, down to 4–6% in the steppe zone in the south
(Figure 1). The forests are impacted by different natural and anthropogenic factors that predefined the
mosaic pattern and combination of woody and open landscapes. The forests in Ukrainian Polissya are
fragmented due to clearcut harvesting and salvage logging [52]. Only narrow linear windbreaks and
preserved small patches of natural forests in river valleys have remained in the steppe zone. Coniferous
and hardwood deciduous stands occupy nearly 85% of the forested area in the region. More than 90%
of coniferous forests are composed by Scots pine (Pinus sylvestris L.). Common oak (Quercus robur
L.) dominates among deciduous hardwood species while ash (Fraxinus excelsior L.) and hornbeam
(Carpinus betulus L.) together occupy less than 5% of the total area. Silver birch (Betula pendula L.) and
alder (Alnus glutinosa (L.) Gaerth.) are major softwood deciduous tree species that, together with some
other rare species, cover the remaining 15% of forested area.
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the University of Maryland [3]. This product is based on the radiometrically corrected Landsat 5 TM 
and Landsat 7 ETM+ images for the year 2000, which were cleared from clouds, shadows, and water 
bodies. Image processing was performed in the form of per-pixel composite mosaics, which allowed 
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followed by the fitted model applied to the original 30-m Landsat data. 

Figure 1. The study area representing three main climatic zones of flatland Ukraine.

2.2. Remote Sensing Data

2.2.1. Global Forest Products

We analyzed four global forest products of 25–30 m spatial resolution: (1) global forest
change [3], (2) Landsat Tree Cover Continuous Fields [4], (3) JAXA forest/non-forest mask [16],
and (4) GlobeLand30 [2]. The GEE Application Programming Interface (API) provided direct access to
GFC and LTCCF while the other two datasets were uploaded as user assets into the platform.

Global forest change (GFC) is an open-access global map of forest cover changes developed at
the University of Maryland [3]. This product is based on the radiometrically corrected Landsat 5 TM
and Landsat 7 ETM+ images for the year 2000, which were cleared from clouds, shadows, and water
bodies. Image processing was performed in the form of per-pixel composite mosaics, which allowed to
derive a series of phenological metrics for the classification. Forest vegetation was defined in each
30 × 30 m pixel as trees taller than 5 m, and mapped in the “treecover 2000” layer of the GFS dataset as
per-pixel estimates of percent canopy cover. The GFC dataset includes additional layers that reflect
total (“loss”) and annual (“lossyear”) forest loss, and reforestation (“gain”) for the period from 2000.

Landsat tree cover continuous fields (LTCCF) is a global product of continuous estimates of
percentage of woody vegetation cover (taller than 5 m) produced at the University of Maryland [4].
The LTCCF was developed for the years circa- 2000, 2005, 2010 using a tree-cover rescaling algorithm.
The per-pixel canopy cover was predicted at 30 × 30 m using Landsat 5 TM and Landsat 7 ETM+

radiometrically corrected, cleared from clouds and shadows reflectance data and the vegetation cover
estimates derived from MODIS vegetation continuous fields as a reference. Thus, the spatial resolution
of each Landsat scene was aggregated to a spatial resolution of 250 m to train the classifier, followed by
the fitted model applied to the original 30-m Landsat data.
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Global PALSAR-2/PALSAR Forest/Non-Forest Map (JAXA FNF) is a global forest/non-forest mask
generated by Japan Aerospace Exploration Aerospace Agency [16]. The JAXA FNF is the first 25-m
spatial resolution global forest mask that was developed using active remote sensing, specifically ALOS
L-band SAR HH and HV polarization data. The forests were classified by applying regional-specific
backscatter thresholds to produce annual global mosaics for 2007–2010, the global map of forest and
non-forest cover, as well as maps of forest loss and gain.

GlobeLand30 is a global map of the land cover developed in the National Geomatic Center of
China [2]. The map was created using radiometrically and geometrically corrected Landsat TM and
ETM+ satellite images with a spatial resolution of 30 m. For the classification, automated approaches
of per-pixel processing augmented by object-based methods with expert knowledge of the natural
(form, geographical location, location) and cultural (types of land use) parameters of different types
of global land cover was developed. The classification introduced ten thematic land cover classes
including forest cover for the years 2000 and 2010.

2.2.2. Spectral Data

The remote sensing dataset consisted of 1548 Landsat 8 OLI images selected over the study area
for the period 2014–2016. Due to the large volume of information, GEE API was used for nearly all
phases of data processing. We focused on the Landsat Level-1T Top of Atmosphere (TOA) collection
and combined images into four seasonal mosaics: yearly, summer, autumn, and April–October.
To improve the quality of spectral data, we expanded the timeframe for image acquisition as well as
filtered-only images having cloud coverage of less than 20%. As a result, for each WRS-2 path/row
frame, 20–30 scenes of Landsat images were selected. The contribution of satellite images acquired
during 2014 and 2015 was approximately equal, but only 465 scenes were selected for 2016.

Atmospheric conditions have significant impacts on the quality of Landsat data. The most robust
approach for the radiometric correction of Landsat imagery is the LEDAPS (the Landsat ecosystem
disturbance adaptive processing system) [53], which estimates per-pixel surface reflectance. Wulder
et al. [54] reported that the surface reflectance imagery is vital in studies aimed at the detection of
changes in land cover. However, TOA correction was considered for a long time as a critical step
towards the inter-scene normalization of Landsat images and has been successfully applied in land
cover mapping [13,15,32,33]. In the current study, we focused on TOA reflectance images because the
Landsat surface reflectance products had only just become available through GEE in 2016, when the
major phases of the analyses were performed.

In the GEE environment, we applied a built-in cloud scoring algorithm to the selected Landsat
images for cloud screening. This assumes that clouds have higher reflectance in blue and all visible as
well as near-infrared bands, but reasonably lower reflectance in thermal bands. The algorithm uses the
normalized difference snow index (NDSI) to distinguish clouds and snow cover. We masked clouds
if cloud scores exceeded an 80% threshold. Images selected for the abovementioned seasons were
composed in seamless mosaics using a maximum value composite (MVC) approach. We followed
experiences published in previous studies [15,32] and combined images selecting only those pixels
that had maximum NDVI value for composing period. As a result, this allowed us to preferentially
select the greenest pixels and exclude cloud shadows from composites. However, only yearly, summer
and autumn mosaics were composed by this approach (Figure 2). The April–October mosaic was
incorporated in the study because it coincides with leaf-on periods in Ukraine. To address the phenology
phases in image classification, we selected pixels by applying some statistical rules: minimum and
maximum values, 1st and 3rd quartiles, and median of TOA reflectance. The feature space for
classification was constructed using TOA reflectance from visible, near-(NIR), shortwave-(SWIR) and
thermal-infrared (TIR) bands: Band 4 (0.64–0.67 µm), Band 5 (0.85–0.88 µm), Band 6 (1.57–1.65 µm),
Band 7 (2.11–2.29 µm), Band 10 (10.60–11.19 µm), Band 11 (11.50–12.51 µm). For Landsat TOA images,
we also calculated simple band ratios as follows: Band 4/Band 5, Band 4/Band 7, Band 5/Band 7.
Finally, the NDVI index was determined. Three bands (brightness, greenness, wetness) of tasseled cap
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transformation (TCT) were derived using the coefficient empirically derived for the Landsat 8 OLI
sensor [55].
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Figure 2. RGB images of seasonal composited mosaics (band combinations 6–5–4) of Landsat 8 OLI
images for the flatland Ukraine and country outline (white line): (a) summer; (b) autumn; (c) yearly;
(d) April–October. MVC composites were used for the visualization of (a), (b), and (c), and 1st quartiles
of pixel values derived from time series applied for (d).

In this study, we focused on Landsat-derived spectral features and indices that are commonly
used for characterization of vegetation phenology and forest dynamics [5]. Thus, the SWIR band is
widely applicable because of its sensitivity to vegetation moisture content and canopy density. NDVI
is a ratio of NIR and red-band wavelengths, which correlate with many biophysical parameters of
forests, such as live biomass. Additionally, NIR and TIR bands are highly affected by snow cover.
Moreover, the TCT bands are associated with physical parameters of land cover and widely applied in
ecological monitoring studies [27].

Dense time series of Landsat data addresses phenology-based methods for image classification
that depict the variation of spectral features in the yearly timeframe (Figure 2). The mosaics mark
seasonal patterns of land use and track phenological events, i.e., crop conditions, vegetation growth,
senescence, and dormancy, thus enhancing the spectral difference between vegetation classes. The
trends of high, medium, and low pixels’ values in infrared bands is depicted by percentiles derived
from time series for the period of April–October.

2.3. Reference Data

In our study, we developed two independent reference datasets using stratified random sampling
based on the guidelines for designing a sampling frame provided by Olofsson et al. [21,56]. Following
these recommendations, we adopted a stratified random sampling protocol that is very practical in
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terms of adequate reporting on overall map accuracy as well as class-specific accuracy estimates. This
design is advantageous in remote sensing in cases where the strata are of interest for reporting. We
employed a proportional-to-class allocation so that at least 50 sample units would fall into classes that
occupy a small area in the region. Thus, we slightly shifted the distribution from the proportional
allocation by increasing the sample size for rare classes. This allowed us to reduce standard errors in
accuracy estimation for “forest” class in a number of southern and eastern regions in flatland Ukraine
with low forest cover. We calculated the sample size distribution within mapped classes based on
formula #13 in Olofsson et al. [21] to reach the 2% standard error, and taking into consideration the
mapped proportions of each class and standard deviation for each stratum (as estimated using assumed
user’s accuracy of 0.9 for large classes and 0.7 for rare classes).

The first dataset was used for accuracy assessment of the global forest masks. For stratification, we
employed the GFC map that had information on forest change since 2000. Applying a 25% threshold
for canopy cover where forest loss and gain had not occurred, we created two major stable classes: (1)
permanent forest and (2) permanent not-forest. Since forest cover is highly influenced by anthropogenic
and natural disturbances, it was also important to get enough information for land cover classes where
forest change took place. Thus, we created two small change classes characterizing deforestation and
forest regeneration. They were both extracted from corresponding loss and gain layers of the GFC
dataset. The sample size for each of the 21 administrative regions (i.e., oblasts) of flatland Ukraine
varied from 220 to 250, assuming the standard error of the overall accuracy would achieve less than 2%
out of a yielded total of 4700 sample units.

All samples were visually interpreted using Google’s satellite images with submeter spatial
resolutions. For this task, we used the Collect Earth plugin feature for Google Earth that simplified
image analysis and the collection of reference data [57]. To match the minimal mapping units adopted
in forest inventory of Ukraine for the delineation of forest stands, we considered each sample unit
as a 0.25 ha plot. In cases where plots simultaneously covered different land cover classes or forest
stands, a central point class was assigned to these plots. We analyzed satellite images in time to
better distinguish between coniferous and deciduous forests for the reporting period of 2015. The
hierarchical image interpretation scheme was adopted that included eight first-order thematic classes
(water bodies, wetlands, settlements, other unproductive lands, croplands, grasslands, shrublands,
forests) subdivided into at least three second-order subclasses. For tree species composition, we
divided forest stands into three groups based on a portion of grid points that were overlaid on sample
unit: (1) coniferous, (2) deciduous (if the proportion of respectively coniferous or deciduous tree
species in canopy cover was 75 % or more), and (3) mixed. As an additional attribute, we included the
image date used for interpreting the sample points. This is a useful option available in Google Earth
(Open Foris plugin) for the correct analysis of the GFC map (losses and gains) and classification of
Landsat images, which allowed us to filter samples interpreted only for the 2015-time frame. Examples
of certain aspects of image interpretation are provided in Supplementary Figure S1.

The first reference dataset was also used for the classification of Landsat imagery over flatland
Ukraine. However, a new independent dataset was created for assessing the accuracy developed
from the Landsat 8 OLI data land cover map. The procedure of reference data collection for accuracy
assessment was the same as for assessing global products; however, the stratification was performed
based on the eight land cover classes. We treated wetlands, shrublands, water bodies, settlements,
and other unproductive areas as rare classes that occupy a relatively small area in comparison with
croplands, grasslands, and forests. Given that we had more thematic classes that were treated as strata,
the sample size of the second reference dataset for each region ranged from 410–460 sample points and
totalled 9237 for 21 oblasts of flatland Ukraine.

A forest inventory database (FID) containing estimates of attributes for each forest stand was also
employed in the study. We selected 15 forest enterprises equally distributed over flatland Ukraine to
test a per-pixel accuracy of percent tree cover that GFC and LTCCF data provided.
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2.4. Forest Mapping Approach

Forest cover on maps are more frequently represented as discreate classes. “Continuous fields” is
an alternative characterization approach that refers to the fraction of pixel area occupied by forests.
In terms of interpretation, continuous maps provide greater flexibility, allowing experts to select
an adequate threshold for the disaggregation of forested and unforested areas [58]. The method of
estimating forest area using continuous attributes (e.g., canopy cover) creates considerable opportunities
in forest mapping. Thus, choosing a various threshold value of canopy cover helps in defining what is
a "forest". For example, Sannier et al. [20] proposed selecting this value by controlling the accordance
of forest area estimates on the test areas uniformly distributed throughout the country. The proposed
technique is based on a comparison of precisely mapped forest area within a network of sampling
units and its estimates are derived from global datasets using the national definition of forest. In the
case of overestimation, the threshold would gradually increase, and in the case of underestimation the
threshold would be lowered. Schepaschenko et al. [17] have calibrated a country-specific threshold
for classifying hybrid percent tree cover map by matching the total forest area for each country with
national statistics. One of the major drawbacks of the foresaid approaches for our study is that the
national definition of forest in Ukraine relies on relative stocking density (0.3 and more), which could
not be directly calculated from global forest maps. Thus, we have investigated the relationship between
tree cover values at the pixel-level and actual relative stocking of forest stands from the forest inventory
records to justify a threshold for the classification of continuous global forest maps GFC and LTCCF
into binary maps. To derive the forested area from the JAXA FNF and GlobeLand30 maps, we applied
a binary classification approach. Figure 3 depicts the datasets and major steps of the analysis used in
our study.
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Figure 3. Flow-chart illustrating the use of global forest products and Landsat 8 OLI satellite
imagery in the current study: A–threshold (GFC and LTCCF) or binary (JAXA-FNF and GlobeLand30)
classifications; B,C–visual interpretation of historical Google Earth images for training and validation;
D–random forest classification; E–binary classification.

Examining the relationship between canopy cover and relative stocking density of forest stands
is necessary for the proper interpretation of the global percent tree map for Ukraine. In the present
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study, we refer to the biophysical definition of forests as an area covered by woody vegetation having
a predefined minimum canopy cover. According to Ukrainian regulation, the criteria for classifying
forested and unforested areas is relative stocking density of 0.3 estimated as a ratio between the sum
of the basal area of each plot to the basal area of the “normal stand”. To perform these comparisons
for the period of 2001–2015, we updated the canopy cover information derived from the GFC map
by flagging all pixels where forest loss occurred as unforested and assigned a canopy cover of 25%
for those pixels where there was a gain in forests. This was the same threshold value we used for the
forest mapping based on the LTCCF product.

The GFC provides data on forest dynamics starting from the year 2000. As the criteria for defining
changes i.e., transformation of forested to unforested areas and vice versa, vegetation taller than 5 m
in height and 25% tree canopy thresholds were chosen [3]. Due to the specifics of the distribution of
forested areas by tree species composition and its proportion in different climatic zones of the study
area, we analyzed the performance of the GFC map by applying thresholds for classifying tree cover
in order to identify the most suitable value for the study area. To find the specific threshold value of
canopy cover for the study region that depicts the difference between forested and unforested lands,
we extracted 10,000 plots (forest stands) from the forest inventory database having a relative stocking
density of 0.3–0.5. Then, we mapped them over the updated 2015 GFC datasets to get the canopy
cover values.

2.5. Random Forest Classification

Due to the large volume of spectral information and potential predictor variables, only
nonparametric methods for image classification were considered in the case of processing seasonal
Landsat mosaics. We chose the RF classifier which has been used extensively in Landsat time series
studies [29,33]. The RF method [59] belongs to the group of ensemble learning algorithms in which
the best results from multiple classification trees are selected using the votes. Training of the RF
classifier was performed using the bootstrap aggregating procedure (or bagging) in which about two
thirds of sample size and the other one third of observations were used for calculating the unbiased
assessment of out-of-bag (OOB) error. In the present study, we applied the randomForest package [60]
for statistical R software [61] for analysis. One of the advantages of the RF classifier is that it calculates
the variables’ importance using the out-of-bag (OOB) sample. As a result, the percentage increase in
classification error (%IncMSE) will show if the corresponding variables were to be excluded from the
training dataset. Many studies have shown how RF could be applied for optimizing a set of predictor
variables [29,62,63].

We composed over 50 spectral band and band ratios of Landsat 8 OLI time series in four seamless
mosaics (Table 1). In order to reduce the dimension of the feature space, we visually inspected all
bands and found that minimum pixel values in the April–October mosaic refer to shadowed areas,
while maximum values show artifacts that remained after cloud filtering. Afterwards, we used the RF
classifier and %IncMSE as a variable importance measure and ranked variables by their values.

Table 1. The list of predictor variables extracted from seasonal mosaics of Landsat 8 OLI images.

Spectral Features Selected for Yearly, Summer,
Autumn TOA Reflectance Seasonal Mosaics

Spectral Metrics Derived for April-October
TOA Reflectance Seasonal Mosaic

Band 4, Band 5, Band 6, Band 7, Band 10 Minimum and maximum values for: Band 4, Band 5,
Band 6, Band 7 and NDVINDVI

Band 4/Band 5 ratio 1st and 3rd quartiles for: Band 4, Band 5, Band 6,
Band 7 and NDVIBand 4/Band 7 ratio

Band 5/Band 7 ratio Median values for: Band 4, Band 5, Band 6, Band 7
and NDVITCT: Brightness, Greenness, Wetness



Remote Sens. 2020, 12, 187 11 of 24

Previous research [62] has shown that increasing the number of classification trees (ntree) improves
the stability of RF predictions, but incorporating more variables for splitting trees at each node (mtry)
enhances the discrimination between important and irrelevant variables. Thus, we used ntree = 500
as recommended by Belgiu and Drăguţ [64] and many other studies [62,65], but the optimal mtry
values of the RF classifier were estimated using the tuneRF function available in the randomForest
package for R. The calculation was performed separately for each seasonal mosaic and all mosaics
combined. As an option, classification with and without geographical coordinates was considered.
We have included geographic location variables to test their performance as an indirect measure of
environmental factors that influence vegetation distribution over flatland Ukraine.

The OOB error was estimated as a mean value from 50 runs of the RF algorithm and is presented
in Table 2. The higher accuracy of classification was obtained for the combined mosaic that includes
data from four selected seasons augmented by longitude and latitude (OOB = 25.4%) followed by
combined mosaic without geographical coordinates (OOB = 25.6%).

Table 2. Accuracy assessment analysis of land cover classification using different seasonal mosaics.

Seasonal
Mosaic

mtry
Spectral Data Spectral Data and Geographical

Coordinates

Number of
Predictors OOB Error, % Number of

Predictors OOB Error, %

Yearly 6 12 36.5 14 33.8
April-October 8 15 26.7 17 25.7
Summer 6 12 36.8 14 34.6
Autumn 6 12 33.0 14 31.6
Combined 14 51 25.6 53 25.4

To reduce the number of explanatory variables, we followed variable selection procedure based
on their importance [62]. In our study all variables were ranked by the decrease of %IncMSE values.
We used the forward selection approach by first selecting the two most important variables to build
the RF model. Then, we analyzed how the OOB error decreased by adding variables of diminishing
importance at each next step. We found that the inclusion of the first 10 predictors decreased OOB
error from 58% to 28% (Supplementary Figure S2a). The lowest OOB error (25%) was obtained after
inclusion of 36 most important variables for the combined mosaic (Supplementary Figure S2b). About
one-third of selected features was extracted from the April–October mosaic. Longitude was revealed
to be the first important predictor. This also proved that the inclusion of thermal bands of any mosaic
did not improve the classification accuracy of a combined mosaic. We also used a forward selection
technique for each seasonal mosaic and found that the combined dataset performed the best, and was
thus selected for further classification.

3. Results

3.1. Global Forest Maps

An aggregated sample of three climatic zones and groups of forest stands is shown in Figure 4.
This illustrates that the majority of deviations in the canopy cover of coniferous and deciduous forest
stands occurred in Polissya and steppe regions. The tree cover threshold for hardwood deciduous
forests that have marginal values of relative stocking are reasonably higher, and thus it is likely that
understory vegetation was captured by satellite images.
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Based on the presented data, no conclusion can be drawn about what level of tree canopy must be
applied to effectively map flatland forests in Ukraine. Therefore, we tested the performance of the GFC
map by applying 30% and 40% thresholds for classifying tree cover according to the distribution of
forested areas by tree species composition and its proportion in different climatic zones of the study
area. The results for each scenario were then compared to official data on forested area that were
reported by the State Forest Resources Agency of Ukraine for 2011 [66]. Data for each administrative
region (oblast) are presented in Figure 5.
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Figure 5 shows that the 40% threshold applied to canopy cover of the GFC map overperforms the
30% threshold, and represents a better agreement between mapped areas and official statistics. The
GFC map overestimated forested areas in almost all of the Polissya subregion while underestimating it
in the steppe zone. Official data include only areas classified as forest based on the national definition.
However, we understand that urban forests and forests that have regenerated naturally, for example,
could substantially contribute to the forested area estimated using earth observation data.

Based on a stratified random sample of 4700 reference points, we estimated the site specific
accuracy of the GFC data for each region of the study area. We found that user’s and producer’s
accuracy have latitudinal gradients and tend to decrease from north to south. The lowest producer’s
accuracy (0.3–0.4) is observed for regions where forests occupy less than 5% of the territory (Zaporizhia,
Mykolaiv and Dnipro oblasts). The accuracy of the GFC map for the forest steppe regions varied
between 0.7–0.9. The higher values (0.8–0.95) of both producer’s and user’s accuracies were observed
for the Polissya region.

We compared the spatial accuracy of discrete JAXA FNF and GlobeLand30 maps to forest masks
extracted for GFC and LTCCF through applying corresponding canopy cover thresholds of 40% and
25%. Based on the error matrices, we performed a site-specific accuracy assessment, which includes
Kappa statistics, of the overall user and producer accuracies [67] (Table 3).

Table 3. Accuracies of satellite-derived forest masks for flatland of Ukraine.

Product Name Kappa

Thematic Accuracy %

Overall
User Producer

Forest Non-Forest Forest Non-Forest

JAXA FNF 0.551 80 56 95 87 78
GlobeLand30 0.500 82 65 87 58 90

GFC 0.614 83 60 97 93 80
LTCCF 0.667 86 68 95 86 87

We found that the most sensitive methods/RS forest product for identifying forests was the
GFC map (producer’s accuracy = 93%) while the least sensitive was the GlobeLand30 (producer’s
accuracy = 58%). Nevertheless, all forest masks included commission errors that are characterized by
user’s accuracies values of 56–68%. The most common confusion occurred between forested areas
and grasslands with scattered trees, and un-stocked forest stands and shrublands. In this case, the
JAXA FNF mask had the lowest accuracy. Examples of the performance of forest masks in different
landscapes over the study area are shown in Supplementary Figure S3.

3.2. Landsat-Based Forest Mask

3.2.1. Forest Mask for Flatland UKRAINE

We performed the classification of seasonal mosaics on the GEE platform using the selected
36 covariates Supplementary Figure S2b. Forest cover mapping refers to the classification of spatially
continuous landscapes into discreate classes. Any remote sensing-derived map can potentially contain
some errors. Thus, the correction of pixel area estimates is important to derive adequate forested area.
While mapping forests, we assumed that any land cover class contains some percentage of misclassified
pixels associated with forests and vice versa (i.e., a forest is expected to elicit more confusion with
wetlands rather than with other water bodies). In order to propagate the uncertainty of land cover
estimates having different weights into forest mask [21], we used the multiclass classification rather
than binary approach. As a result, we created a thematic map for each administrative region that
included eight land cover classes predefined on an image interpretation phase. Finally, this was
transformed into a binary forest mask of flatland Ukraine (Figure 6).
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Figure 6. Forest mask of flatland Ukraine derived from classification of combined composited mosaics
of Landsat 8 OLI images.

The forest mask indicates that flatland forests in Ukraine are distributed unevenly. The forest
cover of the northern regions is significantly higher. We have also defined that most forests in steppe
and forest-steppe climatic zones are associated with river valleys. This, in turn, suggests a need to
focus sustainable forestry practices at the watershed scale, which can generate more ecosystem services
to a greater portion of Ukrainian society.

3.2.2. Accuracy Assessment of the Landsat-Based Forest Mask

Accuracy assessment of Landsat 8 OLI forest mask was performed using an independent stratified
reference dataset that includes 9237 points randomly distributed into eight land cover classes. Table 4
depicts the confusion between thematic classes.

We used Olofsson et al.’s [21] guidelines on “good practice” for revising the accuracy of thematic
maps and the propagation of their uncertainties to area estimates. The error matrix, expressed in terms
of proportion of area (Supplementary Table S1), allows us to estimate the adjusted area of class “forest”
that corrects map errors. There are two forested area proportions that can be derived from the error
matrix. The row total represents the proportion of mapped area (p̂k·) while the column total (p̂·k) is the
real proportion of that area determined from reference classification. Conceptually, the proportion p̂·k is
a subject of sampling variability, thus has a smaller bias than the proportion p̂k·, which is likely biased
due to classification errors. The map class area should be estimated using the proportion estimated
from the reference classification p̂·k. We also used the “good practice” guidelines for calculating the
standard error of the proportion of area to build 95% confidence intervals for forested area estimates,
as well as confidence intervals of user’s and producer’s accuracies.
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Table 4. The error matrix of Landsat-derived land cover classification over flatland Ukraine.

Map Class
Reference Class

Total
Water Bodies Wetlands Settlements Other Unproductive Lands Croplands Grasslands Shrubland Forests

Water bodies 859 23 3 13 0 0 1 1 900
Wetlands 34 744 15 2 14 17 24 50 900
Settlements 2 4 774 32 45 16 7 18 898
Other unproductive lands 1 3 475 412 4 0 1 2 898
Croplands 0 11 4 0 2048 138 6 25 2232
Grasslands 0 66 13 7 148 801 47 94 1176
Shrublands 1 62 37 0 161 101 341 197 900
Forests 3 35 6 0 23 34 19 1213 1333
Total 900 948 1327 466 2443 1107 446 1600 9237
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The mapping has shown that forests occupy 17.4 ± 0.4% of Ukrainian flatlands, or 9440.5 ± 239.4
thousands ha. The Landsat-derived forest mask overestimates forested area compared to official data
(14.4% and approximately 776.7 thousand ha, respectively) by about 3%. We refer this fact to different
interpretations of forests during satellite images classification and the national definition of forests.
Some overestimation may be the result of the MVC procedure for image composing applied for the
2014–2016 timeframe. Since this procedure preferentially selects pixels covered by vegetation, some
forest loss that had occurred during this period might be treated as forest. The user’s accuracy of
the developed forest mask for flatland Ukraine is estimated to be 0.910 ± 0.015, while the producer’s
accuracy is lower: 0.880 ± 0.018. The land cover map showed an overall accuracy of 0.877 ± 0.008.
However, we revealed the zonal gradient in accuracy distribution can be seen from accuracies of
regional estimates of forested areas, which is presented in Table 5.

Table 5. Regional estimates of Landsat-derived forested area in flatland Ukraine (at 95%
confidence level).

Capitals of the
Administrative Regions

(Oblasts) *

Forested Area, Thousands ha Adjusted
Proportion

User’s
Accuracy

Producer’s
AccuracyMapped Adjusted

Polissya climatic zone
Chernihiv 817.9 803.6 ± 51.2 0.251 ± 0.016 0.947 ± 0.051 0.963 ± 0.036
Kyiv 707.2 765.4 ± 55.1 0.264 ± 0.019 0.966 ± 0.039 0.893 ± 0.056
Lutsk 723.2 717.8 ± 44.3 0.356 ± 0.022 0.936 ± 0.046 0.943 ± 0.038
Rivne 748.3 731.8 ± 51.0 0.365 ± 0.025 0.912 ± 0.052 0.933 ± 0.042
Sumy 556.4 558.8 ± 53.4 0.233 ± 0.022 0.912 ± 0.068 0.909 ± 0.062
Zhytomyr 1119.5 1151.9 ± 57.5 0.386 ± 0.019 0.972 ± 0.031 0.946 ± 0.038

Forest steppe climatic zone
Cherkasy 383.7 430.2 ± 52.7 0.205 ± 0.025 0.940 ± 0.066 0.840 ± 0.091
Kharkiv 468.6 537.4 ± 73.7 0.169 ± 0.023 0.960 ± 0.055 0.838 ± 0.108
Khmelnytskyi 338.5 357.0 ± 32.5 0.173 ± 0.016 0.960 ± 0.055 0.909 ± 0.068
Kropyvnytskyi 211.6 241.8 ± 79.3 0.098 ± 0.032 0.780 ± 0.116 0.681 ± 0.214
Lviv 783.9 771.2 ± 73.0 0.353 ± 0.033 0.909 ± 0.070 0.924 ± 0.058
Poltava 319.2 323.6 ± 59.7 0.112 ± 0.021 0.820 ± 0.108 0.808 ± 0.123
Ternopil 219.8 217.1 ± 8.6 0.157 ± 0.006 0.980 ± 0.039 0.993 ± 0.003
Vinnytsia 450.2 469.1 ± 68.4 0.177 ± 0.026 0.880 ± 0.091 0.846 ± 0.100

Steppe climatic zone
Dnipro 229.6 299.0 ± 76.8 0.093 ± 0.024 0.900 ± 0.084 0.693 ± 0.174
Donetsk 283.5 277.3 ± 65.5 0.103 ± 0.024 0.820 ± 0.108 0.835 ± 0.175
Kherson 60.4 65.0 ± 11.4 0.024 ± 0.004 0.840 ± 0.103 0.787 ± 0.119
Luhansk 334.8 380.6 ± 69.2 0.140 ± 0.025 0.880 ± 0.091 0.777 ± 0.128
Mykolaiv 90.6 137.0 ± 56.9 0.057 ± 0.024 0.900 ± 0.084 0.594 ± 0.245
Odessa 185.2 260.4 ± 74.9 0.078 ± 0.022 0.900 ± 0.084 0.640 ± 0.181
Zaporizhia 79.6 88.3 ± 17.7 0.032 ± 0.006 0.820 ± 0.108 0.747 ± 0.135

* Every region (oblast) has the same name as the capital city except Lutsk (Volyn oblast) and Kropyvnytsky
(Kirovohrad oblast) cities.

In general, the produced forest mask significantly overestimates official forested areas for regions
of Polissya climatic zone, in some instances by up to 150,000 ha. The map showed both the user’s and
producer’s accuracies greater than 90%, indicating that there were not substantial commission and
omission errors. Thus, we conclude that Landsat 8 OLI composited mosaics perform well in areas
with a high proportion of forest cover. While the proportion of forest cover decreases, the producer’s
accuracies become lower than user’s accuracy, indicating that omission errors of forested area tends
to increase. In fact, we received the lowest producer’s accuracy values (< 0.75) for the steppe zone,
especially for regions with less than 6% forest cover (Mykolaiv, Odessa, Dnipro, Zaporizhia, Kherson).
Moreover, adjusted forest area for the last two listed regions are underestimated in comparison to the
official inventory data [66] by up to 50,000 ha. Besides the spatial resolution of Landsat data, which has
proven to be challenging for depicting narrow windbreaks (with 10–20 m width), the underestimation
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of forested area can result in the degradation of windbreak systems in some southern regions of
Ukraine (i.e., steppe zone).

Based on the regional and zonal distribution of forested area estimates, we conclude that the
adopted approach could be applicable for northern regions of Ukraine where forests occupy more than
20% of the area. A good example of how forest cover percentage impacts the accuracy of forest mask
is Lviv oblast that we assigned to the forest steppe zone, however, it has 35.5 ± 3.3% of forest cover
based on our estimates. The forest cover of the forest steppe zone varies between 10–15% and forests
here are fragmented as small patches near rivers flood plains. Nevertheless, we conclude that spatial
resolution of Landsat data is enough to map forests over the forest steppe zone. The forest cover in
the steppe zone decreases dramatically, which results in rather more fragmentation than the other
zones. As expected, we found that the lower proportion of forest cover reflects the lower producer’s
map accuracy.

4. Discussion

4.1. The Consistency of Tree Cover Estimates

As many studies have demonstrated, canopy cover is a primary characteristic that is important
for mapping forests. Proportional per-pixel estimates of tree cover allow us to characterize forested
areas in a continuous form, which better represents the vegetation canopy mosaics resulting from
natural factors or human activity. Tree canopy cover maps could be transformed into discrete ones by
applying an adequate threshold. As a result, the use of such datasets is of great importance for areas
lacking more reliable national maps [20]. In addition to our study, the accuracy of percent tree cover
maps has been demonstrated in previous studies [58,68]. However, the LTCCF is an analog of GFC
and thus does not include data on forest cover changes.

There are some possible reasons why forested areas in Polissya appeared to be higher than the
official data. The discrete forest mask included all woody vegetation that was not formally included
in the forested area, yet interpreted from remote sensing data as forests. Following the collapse of
the Soviet Union, many non-productive agricultural fields were abandoned and gradually recovered
into forested areas through natural regeneration. This, coupled with expanding urban forests, was
unaccounted for in the official data, thus resulting in 6–8% of the overestimations [66]. The opposite
appears to occur in the southern and eastern steppe regions. We ascribed an underestimation in forest
cover to the spatial resolution of the GFC map, which does not match with narrow linear windbreaks
that contribute to most of the forested area in the steppe regions. This has resulted in the degradation
forested areas with canopy densities decreasing over the last few decades.

We used 4700 sample points of the training dataset to assess the congruence between both products.
Figure 7 shows that tree cover estimates provided by GFC and LTCCF data are in accordance, yet
the variability of data is narrower for LTCCF and attains saturation when the tree cover reaches 50%.
As a result, the threshold of 40% was adopted for the GFC as a criterion for mapping forested and
non-forested areas should be lowered down to 25%.

A more detailed comparison of the performance of GFC and LTCCF datasets for the flatlands in
Ukraine is shown in Supplementary Figure S4. According to GFC data, only a small portion of the
sample size that fell within the forested areas has tree cover lower than 40% (Supplementary Figure
S4a) and most observations collected on non-forested areas have zero canopy cover (Supplementary
Figure S4b). We believe the threshold of 40% is a good choice for the classification of the GFC dataset
since this value provides a good baseline from which the number of correctly classified data sufficiently
increases. In addition, some attention should be paid to the concentration of forest-related reference
data near point 0% (Supplementary Figure S4a).
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Figure 7. Scatter plot of percent tree cover estimates of GFC against LTCCF products.

In contrast, the quality of the LTCCF dataset is much lower. Firstly, it incorrectly represents tree
cover for forested areas in a range that does not exceed 80% (Supplementary Figure S4c) and a small
proportion of the sample size that is interpreted as non-forested areas has a canopy cover equal to
0% (Supplementary Figure S4b). We refer this drawback to the methodology of rescaling MODIS
vegetation continuous fields to Landsat-based resolution in a severely fragmented landscape of our
study area [4].

According to GFC data, about 60% of the forest-related observations having 0% tree cover are
windbreaks. This means that most windbreaks on the steppe zone were not identified by GFC. The
situation is more critical with LTCCF dataset in which nearly all linear shelterbelts were classified as
non-forested areas. Supplementary Figure S5 represents the distribution of observation from reference
dataset that were interpreted as windbreaks depending on tree cover value for both GFC and LTCCF
datasets. This, in turn, provides some explanation as to why the forested area in the steppe zone of
flatland Ukraine shown in Figure 5 had been underestimated by GFC data in comparison with the
official state forestry data.

Thus, we concluded that in the case with GFC datasets the commission errors most likely would
appear for the range of tree cover of 45–60% when non-forested areas would be classified as forests.
The omission errors address mainly the misclassification of windbreaks and are typical for southern
regions of flatland Ukraine. However, this drawback is more associated with the LTCCF dataset that
lacks a precise estimation of tree cover for small patches of forests, i.e., <1 ha.

Our analysis shows the advantages of GFC dataset over LTCCF in that: (i) it characterizes forest
canopy cover in a range of 0–100%; (ii) tree cover for most of the non-forested areas is realistically
estimated to be 0%; and (iii) it is associated to lower commission and omission errors. It is also
important to note that GFC maps have become popular because they represent forest change. In using
these maps, we found that user’s accuracy for forest loss as estimated by GFC data was 70% while for
forest gain was only 42%. We also found that the forest gain layer is not precise enough if a signal
combination is as follows: loss→ gain.

One of the major disadvantages of the mask is that it classifies irrigated croplands on the steppe
(Kherson, Zaporizhia oblasts) as forest. This problem is quite common for all products except the
Globeland30 map, which was improved using an expert knowledge-based verification approach [2].
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None of the global maps analyzed in the study is effective for mapping narrow (10–20 m) windbreaks.
The misclassification errors in forest steppe zone mainly refer to orchards that are included in forest
masks. The continuous forest maps GFC and LTCCF are more precise under fragmented landscapes and
perform well in urban environments and mosaic patterns created by clear-cut harvesting. Nevertheless,
their accuracies are not enough for mapping wetlands, especially those located in deltas of major rivers
(e.g., Dnipro, Dnister).

4.2. Seasonal Dynamics of Spectral Features

The classification of different vegetation land cover is generally used as a prerequisite for
extracting the correct forest mask from satellite images. Our study reveals that the time series of
satellite observations track phenology changes. We combined all selected Landsat 8 OLI images by
months and extracted median values for each spectral band and band combinations. Supplementary
Figure S6 represents the yearly dynamics of six reference land cover classes in band combinations
of red and infrared spectra as an example. Most of these band combinations were associated with
unique spectral profiles. For example, the ratio of red (Band 4) and near-infrared (Band 5) spectral
ranges of Landsat images were revealed to have the lowest value for forested areas during a yearly
timeframe. In the classification process, “forest” was also distinguished well in Band 6/Band 7 ratio as
having higher values for nearly all months in a year except January. This may be due to snow cover on
croplands that have the highest values. After plotting spectral profiles of selected land cover classes
for all spectral features used in the study (Table 1, Supplementary Figure S2b), we conclude that most
of them contribute to the total accuracy of classification. We also found that thermal infra-red data
(Band 10) is essential for land cover classification because of differences in temperature of water bodies,
infrastructure, forested and non-forested areas.

We analyzed the potential for discrimination of coniferous, deciduous, and mixed forest stands
using time series of Landsat 8 OLI satellite images. The reflectance of these forest groups also has a
specific trend over the year. Coniferous and deciduous forests could be identified with high accuracy
during leaf-off periods in winter, early spring (March, April) and late autumn (October, November).
The rather opposite trends in the spectral reflectance of coniferous and deciduous stands are captured
in Band 4 and Band 5 of Landsat time series. Although the discrimination of tree species in the red
band is insufficient, we noticed that this improved when deciduous forests have no green biomass and
refer to higher values in Band 4 (Supplementary Figure S6c). The reflectance of coniferous tree species
in the near-infrared spectrum (Band 5) dominates during the leaf-off period, albeit with the start of
vegetation phase reflectance of deciduous species that increases more rapidly (Supplementary Figure
S6d). Spectral reflectance of coniferous stands is higher than deciduous ones over the year in both
short-wave infrared Landsat bands (Bands 6 and 7). We found that thermal bands for identification of
abovementioned groups of tree species did not significantly reduce the classifier error. Mixed forest
stands as they were identified in this study tend to have intermediate reflectance values but likely to
produce confusion with both coniferous and deciduous stands. This problem requires the application
of more advanced methods for predicting tree species composition using sample-based forest inventory
data [69,70].

Classification accuracy could not be assessed directly from Table 4 because the sample counts
from different map classes have different weights. Based on our use of Olofsson et al.’s [21] guidelines,
we found that sample counts that populate the error matrix should be substituted by area proportions
that correspond with them in the forest cover map. The known area and proportion of each stratum
should be accounted for to describe sampling design. The forest mask provides different accuracies for
Polissya, forest steppe, and steppe climatic zones of Ukraine. Thus, in the north of Ukraine (Polissya),
both producer’s and user’s accuracies ranged from 0.90 to 0.97 and tend to decrease further south
(forest steppe and steppe zones). In the case of Landsat-based forest masks, we found the same
tendency in underestimation of forested areas in the steppe zone (Zaporizhia, and Kherson oblasts). It
was revealed again that the lowest accuracy (0.6–0.75) is associated with regions where forests occupy
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less than 6%. As a result, we concluded that the Landsat-based mask has higher accuracy compared to
those extracted from global datasets but performs well only in Polissya and Forest-steppe climatic
zones of Ukraine. For these zones, the forest mask captures fragmented forest patterns.

Our study shows that on the regional scale, due to fragmented and unevenly distributed forests,
global products provide forest cover masks with various levels of uncertainty. The continuous forest
maps GFC and LTCCF are recommended for the rough estimation of forest cover in the flatlands of
Ukraine rather than discrete products such as GlobeLand30 and JAXA FNF. However, it is critically
important to choose the right canopy cover threshold value for identifying forest stands clearly. Similar
studies have found that GFC and LTCCF do not perform well for the accurate description of regrowth
that usually follows disturbances. Spatial patterns of forests and inconsistent forest inventory statistics
at the state level may cause a significant underestimation (up to 30% less compared to official data) of
the forested area [71]. Thus, the effective mapping of forest successions plays an important role in
assessing forest characteristics in severely fragmented forest cover, such as those in flatland Ukraine.
We also acknowledge that the Landsat-based forest mask we developed for this research has similar
limitations. Therefore, we suggest higher spatial resolution satellite images coupled with advanced
approaches for image time series processing [12,72] should be employed to increase the accuracy of
forest mapping in the steppe zone. In addition, considering topographic information from digital
elevation models could improve forest type mapping as it provides axillary data in terms of the spatial
pattern of forest distribution.

5. Conclusions

This study addresses the specific issues of forest mapping under fragmented landscapes in the
flatlands of Ukraine. We assessed the site-specific accuracy of a global forest mask having 25–30 m
spatial resolution and compared it to Landsat-based classification. Based on the derived results, several
conclusions could be drawn. First, global forest masks lack accuracy for the precise quantification of
severely mosaiced forested areas. Continuous forest cover products GFC and LTCCF overperform
the discrete analogues in terms of accuracy because provide options for selecting optimal tree cover
threshold value. Second, Landsat 8 OLI images are the primary source of spectral data used for
forest classification because they allow to realize sophisticated algorithms for image classification.
Phenology-based methods have revealed to be robust for estimation of forested areas for our study and
provided an accuracy of about 88–91%, which we believe is satisfactory at the regional scale. We found
that Landsat-derived forest mask performs with high levels of both user’s and producer’s accuracies
for Polissya and forest steppe climatic zones of Ukraine where forests occupy more than 15%. However,
we encourage the employment of satellite images of higher spatial resolution for areas that have a low
level of forest cover. Thus, the GEE platform enhances the image processing routine, allowing for the
performance of more complex procedures of data composition, classification, and accuracy assessment
at a large scale.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/1/187/s1,
Figure S1: Examples of collection of reference data using Google image analysis in time: (a) the plot is interpreted
as unforested (Lon = 33,370,047; Lat = 51,672,211); (b) the plot is classified as forested (Lon = 29,324,394; Lat =
51,324,563); (c) for the period of 2010 the plot is forested but (d) in 2015 is classified as unforested (Lon = 29,060,559;
Lat = 49,968,467); (e) in 2004 the plot is unforested whereas (f) in 2015 is interpreted as forested (Lon = 34,403,828;
Lat = 50,597,736). Figure S2: Impact of predictor variables onto the classification accuracy (panel a) shows the
relationship between the number of variables and out-of-bag classification error, (panel b) shows the ranked
predictors’ impact onto the decrease of MSE of a model). Figure S3: Examples of global forest masks performance
over different landscapes of flatland of Ukraine: (a) irrigated croplands (Kherson oblast, Lon = 33.8736, Lat =
46.5905); (b) wetlands (Odessa oblast, Lon = 30.0580, Lat = 46.4889); (c) water bodies (Volyn (Lutsk) oblast, Lon =
24.1981, Lat = 51.4958); settlements (Kyiv oblast, Lon = 30.6755, Lat = 50.4186); (e) clearcuts, meadows, unstocked
forest crops (Zhytomyr oblast, Lon = 29.5300, Lat = 50.7236). Figure S4: Distribution of reference sample units
on tree cover values: (a) GFC forested areas; (b) GFC non-forested areas; (c) LTCCF forested areas; (d) LTCCF
non-forested areas. F represents samples that would be classified as forests, NF—non-forests if a threshold of 40 %
is applied to GFC and 25% to LTCCF datasets. Figure S5: Distribution of tree cover values of windbreaks: (a)
GFC; (b) LTCCF. F represents samples that would be classified as forests, NF—non-forests if a threshold of 40 % is
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applied to GFC and 25% to LTCCF datasets. Figure S6: Examples of monthly dynamics of spectral features of
Landsat 8 OLI time series: (a,b) land cover classes; (c,d) groups of forest stands. Table S1: The error matrix of
Landsat-derived land cover classification over flatland Ukraine expressed in terms of the proportion of area as
suggested in Olofsson et al. (2014).
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