Monitoring Mining Activities Using Sentinel-1A InSAR Coherence in Open-Pit Coal Mines
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Dataset
2.2.1. Sentinel-1A SAR Data
2.2.2. Sentinel-2A Optical Data
2.2.3. DEM
3. Methods
3.1. Generation of Coherence Images
3.2. Extraction of the Stable Points
3.3. Normalized Difference Activity Index (NDAI)
3.4. Change Detection Using RGB Composite
4. Results
4.1. Overall Change Detection Using Averaged NDAI Map
4.2. Interannual Change Detection Using RGB Composite Map
4.2.1. No. 1 Open-Pit Coal Mine
4.2.2. No. 2 Open-Pit Coal Mine
4.2.3. No. 3 Open-Pit Coal Mine
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yudovich, Y.E.; Ketris, M.P. Mercury in coal: A review Part 2. Coal use and environmental problems. Int. J. Coal Geol. 2005, 62, 135–165. [Google Scholar] [CrossRef]
- Ren, X.; Wang, H.; Liu, Y.; Zheng, J. Suitability of habitat distribution change analysis of Kalamaili Mountain Ungulate Nature Reserve. Xinjiang Agric. Sci. 2016, 53, 553–562. [Google Scholar]
- Liu, X. Evaluaton of Environmental Quality Based on GIS-Take Wucaiwan Coal Mine in Xinjiang as an Example. Master’s Thesis, China University of Geosciences, Beijing, China, 2018. [Google Scholar]
- Ananda, I.; Aswari, F.; Narmaningrum, D.; Nugraha, A.; Asidiqi, M.; Setiawan, Y. Modeling of erosion on Jelateng watershed using USLE method, associated with an illegal mining activities (PETI). In IOP Conference Series: Earth and Environmental Science, Proceedings of the 2nd International Conference of Indonesian Society for Remote Sensing (ICOIRS), Yogyakarta, Indonesia, 17–20 October 2016; IOP Publishing: Bristol, UK, 2016; Volume 47, p. 012025. [Google Scholar]
- Tong, X.; Liu, X.; Chen, P.; Liu, S.; Luan, K.; Li, L.; Liu, S.; Liu, X.; Xie, H.; Jin, Y.J.R.S. Integration of UAV-based photogrammetry and terrestrial laser scanning for the three-dimensional mapping and monitoring of open-pit mine areas. Remote Sens. 2015, 7, 6635–6662. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Li, K.; Chang, K.-J.; Sofia, G.; Tarolli, P. Open-pit mining geomorphic feature characterisation. Int. J. Appl. Earth Obs. Geoinf. 2015, 42, 76–86. [Google Scholar] [CrossRef]
- Gong, C.; Lei, S.; Bian, Z.; Liu, Y.; Zhang, Z.; Cheng, W.J.R.S. Analysis of the development of an erosion gully in an open-pit coal mine dump during a winter freeze-thaw cycle by using low-cost UAVs. Remote Sens. 2019, 11, 1356. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, F.S.; Gastauer, M.; Souza-Filho, P.W.M.; Nascimento, W.R.; Santos, D.C.; Costa, M.F.J.R.S. Land cover changes in open-cast mining complexes based on high-resolution remote sensing data. Remote Sens. 2020, 12, 611. [Google Scholar] [CrossRef] [Green Version]
- Asner, G.P.; Tupayachi, R. Accelerated losses of protected forests from gold mining in the Peruvian Amazon. Environ. Res. Lett. 2017, 12, 094004. [Google Scholar] [CrossRef]
- Wu, Q.; Song, C.; Liu, K.; Ke, L. Integration of TanDEM-X and SRTM DEMs and spectral imagery to improve the large-scale detection of opencast mining areas. Remote Sens. 2020, 12, 1451. [Google Scholar] [CrossRef]
- Fernández-Lozano, J.; González-Díez, A.; Gutiérrez-Alonso, G.; Carrasco, R.M.; Pedraza, J.; García-Talegón, J.; Alonso-Gavilán, G.; Remondo, J.; Bonachea, J.; Morellón, M. New Perspectives for UAV-Based Modelling the Roman Gold Mining Infrastructure in NW Spain. Minerals 2018, 8, 518. [Google Scholar] [CrossRef] [Green Version]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z. InSAR imaging of volcanic deformation over cloud-prone areas-Aleutian islands. Photogramm. Eng. Remote Sens. 2007, 73, 245–257. [Google Scholar] [CrossRef] [Green Version]
- Novellino, A.; Bateson, L.; Jordan, C. Ground motion baseline analysis of the cheshire uk geoenergy observatory. Sci. Rep. 2021, 11, 15684. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, L.; Ding, X.; Hu, J.; Li, Z.; Zhu, J. Slope deformation prior to Zhouqu, China landslide from InSAR time series analysis. Remote Sens. Environ. 2015, 156, 45–57. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, J.; Tian, B. The glacier movement estimation and analysis with InSAR in the Qinghai-Tibetan plateau. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; pp. II-578–II-581. [Google Scholar]
- Chaussard, E.; Wdowinski, S.; Cabral-Cano, E.; Amelung, F. Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sens. Environ. 2014, 140, 94–106. [Google Scholar] [CrossRef]
- Ng, A.H.-M.; Ge, L.; Zhang, K.; Chang, H.-C.; Li, X.; Rizos, C.; Omura, M. Deformation mapping in three dimensions for underground mining using InSAR–Southern highland coalfield in New South Wales, Australia. Int. J. Remote Sens. 2011, 32, 7227–7256. [Google Scholar] [CrossRef]
- Paradella, W.R.; Ferretti, A.; Mura, J.C.; Colombo, D.; Gama, F.F.; Tamburini, A.; Santos, A.R.; Novali, F.; Galo, M.; Camargo, P.O.; et al. Mapping surface deformation in open pit iron mines of Carajás Province (Amazon Region) using an integrated SAR analysis. Eng. Geol. 2015, 193, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Hartwig, M.E.; Paradella, W.R.; Mura, J.C. Detection and monitoring of surface motions in active open pit Iron mine in the Amazon region, using persistent scatterer interferometry with TerraSAR-X satellite data. Remote Sens. 2013, 5, 4719–4734. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Lu, X.; Chen, Z.; Zhang, G.; Ma, T.; Jia, P.; Li, B. Evaluating the Feasibility of illegal open-pit mining identification using insar coherence. Remote Sens. 2020, 12, 367. [Google Scholar] [CrossRef] [Green Version]
- Chaussard, E.; Kerosky, S. Characterization of Black Sand Mining Activities and Their Environmental Impacts in the Philippines Using Remote Sensing. Remote Sens. 2016, 8, 100. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, R.; Lakhera, R.; Dadhwal, V. InSAR coherence and phase information for mapping environmental indicators of opencast coal mining: A case study in Jharia Coalfield, Jharkhand, India. Can. J. Remote Sens. 2010, 36, 361–373. [Google Scholar] [CrossRef]
- Zhang, J. Insar Collaborative Monitoring Mode and Multi-Mode Computing Services for Geohazards Identification in Open-Pit Mining Area. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 43, 241–247. [Google Scholar] [CrossRef]
- Beijing Huaxia Mountain Ecological Environment Technology Co., Ltd. Water and Soil Conservation Plan Report of No.1 Open-Pit Coal Mine and Coal Preparation Plant (Phase I) in Wucaiwan Mining Area of Xinjiang Yihua Mining Co., LTD; Ministry of Water Resources of the People’s Republic of China: Beijing, China, 2018. [Google Scholar]
- Xinjiang Coal Design and Research Institute Co., Ltd. Wucaiwan Mine Area No. 2 Open-Pit Coal Mine Phase I Project Eia Report in Xinjiang Tianlong Hope Energy Co., LTD; Morning News in Xinjiang Uygur Autonomous Region: Xinjiang, China, 2018. [Google Scholar]
- Inner Mongolia Coal Mine Design Research Institute Co. Ltd. Feasibility Study Report of No.3 Open-Pit Coal Mine in Wucaiwan Mining Area, Zhundong Coalfield, Xinjiang; Inner Mongolia Autonomous Region Engineering Consulting Association: Inner Mongolia, China, 2019. [Google Scholar]
- Xu, X. Analysis of Spatial-Temporal Changes of Desert Vegetation and Causes in Wucaiwan Open-Pit Mining Area. Master’s Thesis, Henan Polytechnic University, Jiaozuo, China, 2020. [Google Scholar]
- Zhang, Y. Evaluation on Ecological Security of Wucaiwan Opencast Mine in Xinjiang. Master’s Thesis, Xinjiang University, Xinjiang, China, 2014. [Google Scholar]
- Zan, F.D.; Guarnieri, A.M. TOPSAR: Terrain Observation by Progressive Scans. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2352–2360. [Google Scholar] [CrossRef]
- Farkas, P.; Hevér, R.; Grenerczy, G. Geodetic integration of Sentinel-1A IW data using PSInSAR in Hungary. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 12–17 April 2015; p. 13483. [Google Scholar]
- Torres, R.; Snoeij, P.; Davidson, M.; Bibby, D.; Lokas, S. The Sentinel-1 mission and its application capabilities. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 1703–1706. [Google Scholar]
- Alaska Satellite Facility (ASF). Available online: https://www.asf.alaska.edu/ (accessed on 6 May 2021).
- Novellino, A.; Brown, T.J.; Bide, T.; Thục Anh, N.T.; Petavratzi, E.; Kresse, C. Using Satellite Data to Analyse Raw Material Consumption in Hanoi, Vietnam. Remote Sens. 2021, 13, 334. [Google Scholar] [CrossRef]
- Kumar, P.; Sajjad, H.; Tripathy, B.R.; Ahmed, R.; Mandal, V.P. Prediction of spatial soil organic carbon distribution using Sentinel-2A and field inventory data in Sariska Tiger Reserve. Nat. Hazards 2018, 90, 693–704. [Google Scholar] [CrossRef]
- Copernicus Data Center (CDC). Available online: https://scihub.copernicus.eu/ (accessed on 6 May 2021).
- Tang, W.; Motagh, M.; Zhan, W. Monitoring active open-pit mine stability in the Rhenish coalfields of Germany using a coherence-based SBAS method. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102217. [Google Scholar] [CrossRef]
- United States Geological Survey (USGS). Available online: https://earthexplorer.usgs.gov/ (accessed on 31 May 2021).
- Derauw, D. Phase unwrapping using coherence measurements. In Proceedings of the Synthetic Aperture Radar and Passive Microwave Sensing, Paris, France, 25–28 September 1995; pp. 319–324. [Google Scholar]
- Seymour, M.; Cumming, I. Maximum likelihood estimation for SAR interferometry. In Proceedings of the IGARSS’94-1994 IEEE International Geoscience and Remote Sensing Symposium, Pasadenca, CA, USA, 8–12 August 1994; pp. 2272–2275. [Google Scholar]
- Bouaraba, A. Coherent change detection using high resolution SAR images. Ph.D. Thesis, Ecole Militaire Polytechnique/Ecole Royale Militaire, Paris, France, 2014. [Google Scholar]
- SNAP. Available online: https://step.esa.int/main/toolboxes/snap/ (accessed on 2 June 2021).
- Ferretti, A.; Monti-Guarnieri, A.; Prati, C.; Rocca, F.; Massonet, D. InSAR Principles-Guidelines for SAR Interferometry Processing and Interpretation; ESA Publication: Noordwijk, The Netherlands, 2007. [Google Scholar]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Springer Science & Business Media: New York, NY, USA, 2001; Volume 2. [Google Scholar]
- Hoen, E.W.; Zebker, H.A. Penetration depths inferred from interferometric volume decorrelation observed over the Greenland ice sheet. Trans. Geosci. Remote Sens. 2000, 38, 2571–2583. [Google Scholar]
- Zebker, H.A.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Liu, J.G. Analysis of topographic decorrelation in SAR interferometry using ratio coherence imagery. Trans. Geosci. Ang Remote Sens. 2001, 39, 223–232. [Google Scholar]
- Yagüe-Martínez, N.; Prats-Iraola, P.; Gonzalez, F.R.; Brcic, R.; Shau, R.; Geudtner, D.; Eineder, M.; Bamler, R. Interferometric processing of Sentinel-1 TOPS data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2220–2234. [Google Scholar] [CrossRef] [Green Version]
- Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic aperture radar interferometry. Proc. IEEE 2000, 88, 333–382. [Google Scholar] [CrossRef]
- Jung, J.; Kim, D.-J.; Lavalle, M.; Yun, S.-H. Coherent change detection using InSAR temporal decorrelation model: A case study for volcanic ash detection. Trans. Geosci. Remote Sens. 2016, 54, 5765–5775. [Google Scholar] [CrossRef]
- Moon, J.; Lee, H. Analysis of Activity in an Open-Pit Mine by Using InSAR Coherence-Based Normalized Difference Activity Index. Remote Sens. 2021, 13, 1861. [Google Scholar] [CrossRef]
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef] [Green Version]
- Moon, J.; Kim, G.; Lee, H. Surface Change Detection in the March 5Youth Mine Using Sentinel-1 Interferometric SAR Coherence Imagery. Korean J. Remote Sens. 2021, 37, 531–542. [Google Scholar]
Parameter | Value |
---|---|
Wavelength | 5.6 cm |
Frequency | 5.405 GHz |
Polarization | VV |
Product Type | Level-1 SLC |
Revisit period | 12 days |
Incidence angle | 38.98° |
Pixel spacing in slant range | 2.33 m |
Pixel spacing in azimuth | 13.91 m |
Pass direction | Ascending |
Acquisition date | 3 January 2018 through 30 December 2020 |
No. 1 | No. 2 | No. 3 | |
---|---|---|---|
Coal mining area | 90.3% | 46.1% | 76.3% |
Overburden dumping area | 71.3% | 34.2% | 27.9% |
Coal transferring area | 32.6% | 26.1% | 55.6% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Yang, L.; Wang, W.; Chen, B.; Sun, X. Monitoring Mining Activities Using Sentinel-1A InSAR Coherence in Open-Pit Coal Mines. Remote Sens. 2021, 13, 4485. https://doi.org/10.3390/rs13214485
Wang L, Yang L, Wang W, Chen B, Sun X. Monitoring Mining Activities Using Sentinel-1A InSAR Coherence in Open-Pit Coal Mines. Remote Sensing. 2021; 13(21):4485. https://doi.org/10.3390/rs13214485
Chicago/Turabian StyleWang, Lili, Liao Yang, Weisheng Wang, Baili Chen, and Xiaolin Sun. 2021. "Monitoring Mining Activities Using Sentinel-1A InSAR Coherence in Open-Pit Coal Mines" Remote Sensing 13, no. 21: 4485. https://doi.org/10.3390/rs13214485
APA StyleWang, L., Yang, L., Wang, W., Chen, B., & Sun, X. (2021). Monitoring Mining Activities Using Sentinel-1A InSAR Coherence in Open-Pit Coal Mines. Remote Sensing, 13(21), 4485. https://doi.org/10.3390/rs13214485