Spatiotemporal Monitoring of a Grassland Ecosystem and Its Net Primary Production Using Google Earth Engine: A Case Study of Inner Mongolia from 2000 to 2020
Abstract
:1. Introduction
- (1)
- to analyze the LUCC spatiotemporal process in Inner Mongolia every 11 years from 2000 to 2020, and especially the change of grassland.
- (2)
- to estimate the Inner Mongolia grassland NPP and its spatiotemporal change every year for 2000–2020.
- (3)
- to evaluate the influence of LUCC and meteorological factors on the spatiotemporal change of grassland NPP.
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. NDVI Data
2.2.2. Meteorological Data
2.2.3. Land-Cover Data
2.2.4. NPP Observation Data
2.3. Research Method
2.3.1. Estimation of NPP Based on the CASA Model
2.3.2. Analysis of the NPP Change Volatility and Trends
2.3.3. Analysis of the Main Influencing Factors
3. Results
3.1. Characteristics and Variation of LUCC in Inner Mongolia
3.2. Spatial and Temporal Distribution of Grassland NPP in Inner Mongolia
3.2.1. Validation of the NPP Calculation
3.2.2. Characteristics of the Grassland NPP Distribution
3.2.3. The Change Trend Distribution of Grassland NPP
3.3. Influence of LUCC on the Change of Grassland NPP in Inner Mongolia
3.4. Correlation between Grassland NPP and Meteorological Factors
4. Discussion
4.1. Uncertainty Analysis
4.2. LUCC and the NPP Response to LUCC
4.3. NPP Response to the Meteorological Factors
4.4. Importance of the Segmented Long Time Series Study and GEE
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Y.; Fang, J.; Ma, W.; Guo, D.; Mohammat, A. Large-scale pattern of biomass partitioning across China’s grasslands. Glob. Ecol. Biogeogr. 2010, 19, 268–277. [Google Scholar] [CrossRef]
- Mao, D.; Wang, Z.; Li, L.; Ma, W. Spatiotemporal dynamics of grassland aboveground net primary productivity and its association with climatic pattern and changes in Northern China. Ecol. Indic. 2014, 41, 40–48. [Google Scholar] [CrossRef]
- Deng, L.; Shangguan, Z.; Wu, G.; Chang, X. Effects of grazing exclusion on carbon sequestration in China’s grassland. Earth-Sci. Rev. 2017, 173, 84–95. [Google Scholar] [CrossRef]
- Lei, T.; Feng, J.; Lv, J.; Wang, J.; Song, H.; Song, W.; Gao, X. Net Primary Productivity Loss under different drought levels in different grassland ecosystems. J. Environ. Manag. 2020, 274, 111144. [Google Scholar] [CrossRef]
- Kemp, D.; Han, G.; Hou, X.; Michalk, D.L.; Hou, F.; Wu, J.; Zhang, Y. Innovative grassland management systems for environmental and livelihood benefits. Proc. Natl. Acad. Sci. USA 2013, 110, 8369–8374. [Google Scholar] [CrossRef] [Green Version]
- Millennium Ecosystem Assessment Board. Ecosystems and Human Well-Being: Desertification Synthesis; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Faour, G.; Mhawej, M.; Nasrallah, A. Global trends analysis of the main vegetation types throughout the past four decades. Appl. Geogr. 2018, 97, 184–195. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Li, Y.; Wang, D.; Han, G.; Hou, F. Overview of grassland and its development in China. In Proceedings of the 21st International Grassland Congress/8th International Rangeland Congress, Hohhot, China, 5 July 2008. [Google Scholar]
- Chen, Y.; Fischer, G. A New Digital Georeferenced Database of Grassland in China; Interim Report IR-98-062/September; International Institute for Applied Systems Analysis (IIASA): Laxenburg, Austria, 1998. [Google Scholar]
- Jin, H.; Bao, G.; Chen, J.; Chopping, M.; Jin, E.; Mandakh, U.; Jiang, K.; Huang, X.; Bao, Y.; Vandansambuu, B. Modifying the maximal light-use efficiency for enhancing predictions of vegetation net primary productivity on the Mongolian Plateau. Int. J. Remote Sens. 2020, 41, 3740–3760. [Google Scholar] [CrossRef]
- Wang, Z.; Deng, X.; Song, W.; Li, Z.; Chen, J. What is the main cause of grassland degradation? A case study of grassland ecosystem service in the middle-south Inner Mongolia. Catena 2017, 150, 100–107. [Google Scholar] [CrossRef]
- Pan, Q.; Xue, J.; Tao, J.; Xu, M.; Zhang, W. Current status of grassland degradation and measures for grassland restoration in northern China. Chin. Sci. Bull. 2018, 63, 1642–1650. [Google Scholar] [CrossRef]
- Gang, C.; Zhou, W.; Chen, Y.; Wang, Z.; Sun, Z.; Li, J.; Qi, J.; Odeh, I. Quantitative assessment of the contributions of climate change and human activities on global grassland degradation. Environ. Earth Sci. 2014, 72, 4273–4282. [Google Scholar] [CrossRef]
- Xue, Z.; Kappas, M.; Wyss, D. Spatio-temporal grassland development in Inner Mongolia after implementation of the first comprehensive nation-wide grassland conservation program. Land 2021, 10, 38. [Google Scholar] [CrossRef]
- Li, X.; Gao, J.; Brierley, G.; Qiao, Y.; Zhang, J.; Yang, Y. Rangeland degradation on the Qinghai-Tibet Plateau: Implications for rehabilitation. Land Degrad. Dev. 2013, 24, 72–80. [Google Scholar] [CrossRef]
- Chen, H.; Shao, L.; Zhao, M.; Zhang, X.; Zhang, D. Grassland conservation programs, vegetation rehabilitation and spatial dependency in Inner Mongolia, China. Land Use Policy 2017, 64, 429–439. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Tong, L.; Khalifa, M.; Wang, Q.; Gang, C.; Wang, Z.; Li, J.; Sun, Z. Assessing the effects of climate variation and human activities on grassland degradation and restoration across the globe. Ecol. Indic. 2019, 106, 105504. [Google Scholar] [CrossRef]
- Hu, Q.; Pan, F.; Pan, X.; Zhang, D.; Li, Q.; Pan, Z.; Wei, Y. Spatial analysis of climate change in Inner Mongolia during 1961–2012, China. Appl. Geogr. 2015, 60, 254–260. [Google Scholar] [CrossRef]
- Zhou, W.; Li, J.; Yue, T. Research Progress of the Grassland Carbon Cycle and Grassland Degradation in China; Springer: Singapore, 2019; pp. 1–16. [Google Scholar]
- Yan, Y.; Liu, X.; Wen, Y.; Ou, J. Quantitative analysis of the contributions of climatic and human factors to grassland productivity in northern China. Ecol. Indic. 2019, 103, 542–553. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, H.; Huang, L.; Chen, C.; Lin, X.; Hu, Z.; Li, J. Grassland degradation remote sensing monitoring and driving factors quantitative assessment in China from 1982 to 2010. Ecol. Indic. 2017, 83, 303–313. [Google Scholar] [CrossRef]
- Hu, Y.; Nacun, B. An analysis of land-use change and grassland degradation from a policy perspective in Inner Mongolia, China, 1990–2015. Sustainability 2018, 10, 4048. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Dries, L.; Heijman, W.; Huang, J.; Zhu, X.; Hu, Y.; Chen, H. The impact of ecological construction programs on grassland conservation in Inner Mongolia, China. Land Degrad. Dev. 2017, 29, 326–336. [Google Scholar] [CrossRef] [Green Version]
- Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; Green, S. Satellite remote sensing of grasslands: From observation to management. J. Plant Ecol. 2016, 9, 649–671. [Google Scholar] [CrossRef] [Green Version]
- Reinermann, S.; Asam, S.; Kuenzer, C. Remote sensing of grassland production and management—A review. Remote Sens. 2020, 12, 1949. [Google Scholar] [CrossRef]
- Yang, H.; Hu, D.; Xu, H.; Zhong, X. Assessing the spatiotemporal variation of NPP and its response to driving factors in Anhui province, China. Environ. Sci. Pollut. Res. 2020, 27, 14915–14932. [Google Scholar] [CrossRef]
- Wang, X.; Tan, K.; Chen, B.; Du, P. Assessing the spatiotemporal variation and impact factors of net primary productivity in China. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wang, Z.; Lai, C.; Wu, X.; Zeng, Z.; Chen, X.; Lian, Y. Response of net primary production to land use and land cover change in mainland China since the late 1980s. Sci. Total Environ. 2018, 639, 237–247. [Google Scholar] [CrossRef]
- Yang, H.; Zhong, X.; Deng, S.; Xu, H. Assessment of the impact of LUCC on NPP and its influencing factors in the Yangtze River basin, China. Catena 2021, 206, 105542. [Google Scholar] [CrossRef]
- Liu, J.; Chen, J.M.; Cihlar, J.; Chen, W. Net primary productivity distribution in the BOREAS region from a process model using satellite and surface data. J. Geophys. Res. Space Phys. 1999, 104, 27735–27754. [Google Scholar] [CrossRef]
- Field, C.B.; Randerson, J.T.; Malmström, C.M. Global net primary production: Combining ecology and remote sensing. Remote Sens. Environ. 1995, 51, 74–88. [Google Scholar] [CrossRef] [Green Version]
- Prince, S.D.; Goward, S.N. Global primary production: A remote sensing approach. J. Biogeogr. 1995, 22, 815. [Google Scholar] [CrossRef]
- Xiao, X.; Hollinger, D.; Aber, J.; Goltz, M.; Davidson, E.; Zhang, Q.; Moore, B. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens. Environ. 2004, 89, 519–534. [Google Scholar] [CrossRef]
- Hadian, F.; Jafari, R.; Bashari, H.; Tartesh, M.; Clarke, K.D. Estimation of spatial and temporal changes in net primary production based on Carnegie Ames Stanford Approach (CASA) model in semi-arid rangelands of Semirom County, Iran. J. Arid. Land 2019, 11, 477–494. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Li, Y.; Wan, Y.; Qin, X.; Jiangcun, W.; Liu, Y. Dynamics of alpine grassland NPP and its response to climate change in Northern Tibet. Clim. Chang. 2009, 97, 515–528. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.; Wang, Z.; Li, J.; Xu, Z. Dynamics and drivers of grasslands in the Eurasian steppe during 2000. Sustainability 2021, 13, 5887. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, H.; Zhang, A.; Cui, X.; Zhao, A. Spatiotemporal variations and its influencing factors of grassland net primary productivity in Inner Mongolia, China during the period 2000. J. Arid. Environ. 2019, 165, 106–118. [Google Scholar] [CrossRef]
- Rogan, J.; Chen, D. Remote sensing technology for mapping and monitoring land-cover and land-use change. Prog. Plan. 2004, 61, 301–325. [Google Scholar] [CrossRef]
- Hao, H.; Ren, Z. Land use/land cover change (LUCC) and eco-environment response to LUCC in Farming-Pastoral Zone, China. Agric. Sci. China 2009, 8, 91–97. [Google Scholar] [CrossRef]
- Wen, Y.; Liu, X.; Bai, Y.; Sun, Y.; Yang, J.; Lin, K.; Pei, F.; Yan, Y. Determining the impacts of climate change and urban expansion on terrestrial net primary production in China. J. Environ. Manag. 2019, 240, 75–83. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.; Wang, Z.; Yang, Y.; Li, J. Impact of human activities and climate change on the grassland dynamics under different regime policies in the Mongolian Plateau. Sci. Total Environ. 2020, 698, 134304. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Google Earth Engine applications since inception: Usage, trends, and potential. Remote Sens. 2018, 10, 1509. [Google Scholar] [CrossRef] [Green Version]
- Praticò, S.; Solano, F.; Di Fazio, S.; Modica, G. Machine learning classification of Mediterranean Forest Habitats in Google Earth Engine based on Seasonal Sentinel-2 time-series and input image composition optimisation. Remote Sens. 2021, 13, 586. [Google Scholar] [CrossRef]
- Tassi, A.; Gigante, D.; Modica, G.; Di Martino, L.; Vizzari, M. Pixel- vs. Object-based Landsat 8 data classification in Google Earth Engine using random forest: The case study of Maiella National Park. Remote Sens. 2021, 13, 2299. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Yin, S.; Wu, W.; Zhao, X.; Gong, C.; Li, X.; Zhang, L. Understanding spatiotemporal patterns of global forest NPP using a data-driven method based on GEE. PLoS ONE 2020, 15, e0230098. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, C.; Hwang, T.; Novick, K.; Coulston, J.W.; Vose, J.; Dannenberg, M.P.; Hakkenberg, C.R.; Mao, J.; Woodcock, C.E. Land cover change-induced decline in terrestrial gross primary production over the conterminous United from 2001 to 2016. For. Meteorol. 2021, 308–309, 108609. [Google Scholar] [CrossRef]
- Melton, F.S.; Grimm, R.; Huntington, J.L.; Herring, J.; Erickson, T.; Hall, M.; Anderson, M.; Bastiaanssen, W.; Daudert, B.; Doherty, C.; et al. OpenET: Filling the Biggest Gap in Water Data for the Western United States; AGU: Washington, DC, USA; p. H53B-07. 2018. [Google Scholar]
- Mhawej, M.; Faour, G. Open-source Google Earth Engine 30-m evapotranspiration rates retrieval: The SEBALIGEE system. Environ. Model. Softw. 2020, 133, 104845. [Google Scholar] [CrossRef]
- Fadel, A.; Mhawej, M.; Faour, G.; Slim, K. On the application of METRIC-GEE to estimate spatial and temporal evaporation rates in a mediterranean lake. Remote Sens. Appl. Soc. Environ. 2020, 20, 100431. [Google Scholar] [CrossRef]
- Vos, K.; Splinter, K.D.; Harley, M.; Simmons, J.A.; Turner, I.L. CoastSat: A Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imagery. Environ. Model. Softw. 2019, 122, 104528. [Google Scholar] [CrossRef]
- DeVries, B.; Huang, C.; Armston, J.; Huang, W.; Jones, J.W.; Lang, M.W. Rapid and robust monitoring of flood events using Sentinel-1 and Landsat data on the Google Earth Engine. Remote Sens. Environ. 2020, 240, 111664. [Google Scholar] [CrossRef]
- Martín-Ortega, P.; García-Montero, L.G.; Sibelet, N. Temporal patterns in illumination conditions and its effect on vegetation indices using Landsat on Google Earth Engine. Remote Sens. 2020, 12, 211. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Du, P.; Chen, D.; Lin, C.; Zheng, H.; Guo, S. Characterizing urbanization-induced land surface phenology change from time-series remotely sensed images at fine spatio-temporal scale: A case study in Nanjing, China (2001–2018). J. Clean. Prod. 2020, 274, 122487. [Google Scholar] [CrossRef]
- Abunnasr, Y.; Mhawej, M. Downscaled night air temperatures between 2030 and 2070: The case of cities with a complex- and heterogeneous-topography. Urban Clim. 2021, 40, 100998. [Google Scholar] [CrossRef]
- Guo, S.; Du, P.; Xia, J.; Tang, P.; Wang, X.; Meng, Y.; Wang, H. Spatiotemporal changes of glacier and seasonal snow fluctuations over the Namcha Barwa–Gyala Peri massif using object-based classification from Landsat time series. ISPRS J. Photogramm. Remote Sens. 2021, 177, 21–37. [Google Scholar] [CrossRef]
- Ren, H.; Shang, Y.; Zhang, S. Measuring the spatiotemporal variations of vegetation net primary productivity in Inner Mongolia using spatial autocorrelation. Ecol. Indic. 2020, 112, 106108. [Google Scholar] [CrossRef]
- Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-day L3 Global 250m SIN Grid V006; NASA EOSDIS Land Processes DAAC; NASA: Washington, DC, USA, 2015. [CrossRef]
- Didan, K. MYD13Q1 MODIS/Aqua Vegetation Indices 16-day L3 Global 250m SIN Grid V006; NASA EOSDIS Land Processes DAAC; NASA: Washington, DC, USA, 2015. [CrossRef]
- Sha, Z.; Bai, Y.; Lan, H.; Liu, X.; Li, R.; Xie, Y. Can more carbon be captured by grasslands? A case study of Inner Mongolia, China. Sci. Total Environ. 2020, 723, 138085. [Google Scholar] [CrossRef]
- Chen, J.; Ban, Y.; Li, S. Open access to Earth land-cover map. Nature 2014, 514, 434. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Pastorello, G.; Trotta, C.; Canfora, E.; Chu, H.; Christianson, D.; Cheah, Y.-W.; Poindexter, C.; Chen, J.; Elbashandy, A.; Humphrey, M.; et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 2020, 7, 27. [Google Scholar] [CrossRef]
- Yu, G.; Wen, X.; Sun, X.; Tanner, B.D.; Lee, X.; Chen, J. Overview of ChinaFLUX and evaluation of its eddy covariance measurement. Agric. For. Meteorol. 2006, 137, 125–137. [Google Scholar] [CrossRef]
- Guo, D.; Song, X.; Hu, R.; Zhu, X.; Jiang, Y.; Cai, S.; Zhang, Y.; Cui, X. Large-scale analysis of the spatiotemporal changes of net ecosystem production in Hindu Kush Himalayan Region. Remote Sens. 2021, 13, 1180. [Google Scholar] [CrossRef]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Pang, J.; Xu, Z.; Liu, C. Weather Generator and Database in the SWAT Model. J. China Hydrol. 2007, 27, 25–30. [Google Scholar]
- Wu, Y.; Wu, Z.; Liu, X. Dynamic changes of net primary productivity and associated urban growth driving forces in Guangzhou city, China. Environ. Manag. 2020, 65, 758–773. [Google Scholar] [CrossRef]
- Ruimy, A.; Saugier, B.; Dedieu, G. Methodology for the estimation of terrestrial net primary production from remotely sensed data. J. Geophys. Res. Space Phys. 1994, 99, 5263–5283. [Google Scholar] [CrossRef]
- Zhu, W.; Pan, Y.; He, H.; Yu, D.; Hu, H. Simulation of maximum light use efficiency for some typical vegetation types in China. Chin. Sci. Bull. 2006, 51, 457–463. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. Indag. Math. 1950, 12, 85. [Google Scholar]
- Jiang, W.; Yuan, L.; Wang, W.; Cao, R.; Zhang, Y.; Shen, W. Spatio-temporal analysis of vegetation variation in the Yellow River Basin. Ecol. Indic. 2015, 51, 117–126. [Google Scholar] [CrossRef]
- Hussain, M.M.; Mahmud, I. pyMannKendall: A python package for non parametric Mann Kendall family of trend tests. J. Open Source Softw. 2019, 4, 1556. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Griffin: London, UK, 1975. [Google Scholar]
- Kamali, A.; Khosravi, M.; Hamidianpour, M. Spatial–temporal analysis of net primary production (NPP) and its relationship with climatic factors in Iran. Environ. Monit. Assess. 2020, 192, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, L.; Yin, L.; Shen, J.; Li, S. Exploring the complex relationships and drivers of ecosystem services across different geomorphological types in the Beijing-Tianjin-Hebei region, China (2000–2018). Ecol. Indic. 2021, 121, 107116. [Google Scholar] [CrossRef]
- Zhu, X.; Li, C.; Tang, L. Assessing the Spatiotemporal Dynamic of NPP in Desert Steppe and Its Response to Climate Change from 2003 to 2017: A Case Study in Siziwang Banner; SPIE: Washington, DC, USA, 2019; Volume 11149. [Google Scholar] [CrossRef]
- Liu, X.; Pei, F.; Wen, Y.; Li, X.; Wang, S.; Wu, C.; Cai, Y.; Wu, J.; Chen, J.; Feng, K.; et al. Global urban expansion offsets climate-driven increases in terrestrial net primary productivity. Nat. Commun. 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Zhong, J.; Lan, H.; Wang, Z.; Sha, Z. Association analysis between spatiotemporal variation of net primary productivity and its driving factors in Inner Mongolia, China during 1994. Ecol. Indic. 2019, 105, 355–364. [Google Scholar] [CrossRef]
- Turner, D.P.; Ritts, W.D.; Cohen, W.B.; Gower, S.T.; Zhao, M.; Running, S.W.; Wofsy, S.C.; Urbanski, S.; Dunn, A.L.; Munger, J.W. Scaling Gross Primary Production (GPP) over boreal and deciduous forest landscapes in support of MODIS GPP product validation. Remote Sens. Environ. 2003, 88, 256–270. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Pan, Y.; Long, Z.; Chen, Y.; Li, J.; Hu, H. Estimating net primary productivity of terrestrial vegetation based on GIS and RS: A case study in Inner Mongolia, China. J. Remote Sens. 2005, 9, 300–307. [Google Scholar] [CrossRef]
- Mu, S.; Li, J.; Yang, H.; Gang, C.; Chen, Y. Spatio-temporal variation analysis of grassland net primary productivity and its relationship with climate over the past 10 years in Inner Mongolia. Acta Pratacult. Sin. 2013, 22, 6–15. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, X.; Huang, L.; Yang, G.; Fan, L.; Wei, P.; Chen, G. An improved CASA model for estimating winter wheat yield from remote sensing images. Remote Sens. 2019, 11, 1088. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Bian, J.; Lei, G.; Huang, C. Estimating the maximal light use efficiency for different vegetation through the CASA model combined with time-Series remote sensing data and ground measurements. Remote Sens. 2012, 4, 3857–3876. [Google Scholar] [CrossRef] [Green Version]
- Tong, S.; Dong, Z.; Zhang, J.; Bao, Y.; Guna, A.; Bao, Y. Spatiotemporal variations of land use/cover changes in Inner Mongolia (China) during 1980. Sustainability 2018, 10, 4730. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wu, W.; Liu, X.; Fath, B.D.; Sun, H.; Liu, X.; Xiao, X.; Cao, J. Land use/cover change and regional climate change in an arid grassland ecosystem of Inner Mongolia, China. Ecol. Model. 2017, 353, 86–94. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Q.; Yan, Y.; Zhang, X.; Niu, J.; Svenning, J.-C. Ecological restoration is the dominant driver of the recent reversal of desertification in the Mu Us Desert (China). J. Clean. Prod. 2020, 268, 122241. [Google Scholar] [CrossRef]
- Shi, Y.; Jin, N.; Ma, X.L.; Wu, B.Y.; He, Q.S.; Yue, C.; Yu, Q. Attribution of climate and human activities to vegetation change in China using machine learning techniques. Agric. For. Meteorol. 2020, 294, 108146. [Google Scholar] [CrossRef]
- Guo, D.; Song, X.; Hu, R.; Cai, S.; Zhu, X.; Hao, Y. Grassland type-dependent spatiotemporal characteristics of productivity in Inner Mongolia and its response to climate factors. Sci. Total Environ. 2021, 775, 145644. [Google Scholar] [CrossRef]
- Wu, N.; Liu, G.; Liu, A.; Bai, H.; Chao, L. Monitoring and driving force analysis of net primary productivity in native grassland: A case study in Xilingol steppe, China. J. Appl. Ecol. 2020, 31, 1233–1240. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, X.; Liang, S.; Zhou, T.; Huang, K.; Tang, B.; Zhao, W. Time-lag effects of global vegetation responses to climate change. Glob. Chang. Biol. 2015, 21, 3520–3531. [Google Scholar] [CrossRef]
Date Type | Date Name | Time | Provider |
---|---|---|---|
NDVI data | MOD13Q1 | Every 16 days from February 2000 to 2020 | Google Earth Engine by NASA LP DAAC at the USGS EROS Center |
MYD13Q1 | Every 16 days from July 2002 to 2020 | ||
Meteorological data | Temperature, precipitation, and sunshine duration | Monthly from 2000 to 2020 | China Meteorological Data Service Center |
Land-cover data | GlobeLand30 | 2000, 2010, 2020 | China National Geomatics Center |
NPP observation data | FLUXNET2015 | Monthly from 2007 to 2009 and 2011 | Lawrence Berkeley National Laboratory (USA) |
ChinaFLUX | Monthly from 2004 to 2008 | Institute of Geographic Sciences and Natural Resources Research (China) |
Site ID | Site Name | Time | Land Use Type | Latitude | Longitude |
---|---|---|---|---|---|
CN-Du2 | Duolun Grassland | 2007–2008 | Grassland | 42.05N | 116.28E |
CN-Du3 | Duolun Degraded Meadow | 2009 | Grassland | 42.06N | 116.28E |
CN-Sw2 | Siziwang Grazed | 2011 | Grassland | 41.79N | 111.90E |
NMG | Inner Mongolia | 2004–2008 | Grassland | 43.33N | 116.40E |
NPP Change Trend | ||
---|---|---|
Significantly improved | ||
Insignificantly improved | ||
Significantly degraded | ||
Insignificantly degraded |
2010 | |||||||||||
Cultivated Land | Forest | Grassland | Shrubland | Wetland | Water Area | Artificial Surfaces | Bare Land | Total | Losses | ||
2000 | Cultivated land | 134,912.69 | 554.44 | 9,813.00 | 114.31 | 92.88 | 207.63 | 1024.88 | 79.50 | 146,799.31 | 11,886.63 |
Forest | 233.81 | 126,442.06 | 8964.25 | 20.25 | 14.75 | 27.75 | 4.63 | 0.31 | 135,707.81 | 9265.75 | |
Grassland | 5173.50 | 8753.63 | 512,974.56 | 4750.00 | 596.31 | 364.50 | 1090.56 | 3288.31 | 536,991.38 | 24,016.81 | |
Shrubland | 8.69 | 299.38 | 515.94 | 1337.81 | 2.75 | 2.19 | 1.50 | 96.13 | 2,264.38 | 926.56 | |
Wetland | 391.75 | 111.75 | 1861.81 | 52.69 | 4621.56 | 441.06 | 12.31 | 238.69 | 7731.63 | 3110.06 | |
Water area | 246.13 | 66.19 | 1018.06 | 14.38 | 632.69 | 3835.81 | 8.88 | 316.69 | 6138.81 | 2303.00 | |
Artificial surfaces | 517.50 | 9.88 | 397.44 | 6.19 | 5.94 | 8.31 | 6336.44 | 16.25 | 7297.94 | 961.50 | |
Bare land | 80.25 | 0.69 | 15,733.63 | 38.00 | 48.00 | 237.63 | 99.38 | 296,475.88 | 312,713.44 | 16,237.56 | |
Total | 141,564.31 | 136,238.00 | 551,278.69 | 6333.63 | 6014.88 | 5124.88 | 8578.56 | 300,511.75 | |||
Gains | 6651.63 | 9795.94 | 38,304.13 | 4995.81 | 1393.31 | 1289.06 | 2242.13 | 4035.88 | |||
Change | −5235.00 | 530.19 | 14,287.31 | 4069.25 | −1716.75 | −1013.94 | 1280.63 | −12,201.69 | |||
2020 | |||||||||||
Cultivated Land | Forest | Grassland | Shrubland | Wetland | Water Area | Artificial Surfaces | Bare Land | Total | Losses | ||
2010 | Cultivated land | 126,092.94 | 611.06 | 10,865.88 | 62.31 | 96.00 | 328.81 | 3299.88 | 207.44 | 141,564.31 | 15,471.38 |
Forest | 892.38 | 128,634.81 | 6405.00 | 108.06 | 19.94 | 71.69 | 86.38 | 19.75 | 136,238.00 | 7603.19 | |
Grassland | 26,495.25 | 7067.31 | 502,358.50 | 685.56 | 1665.44 | 719.25 | 3482.19 | 8805.19 | 551,278.69 | 48,920.19 | |
Shrubland | 299.38 | 109.13 | 397.25 | 5255.88 | 10.94 | 11.38 | 107.69 | 142.00 | 6333.63 | 1077.75 | |
Wetland | 229.56 | 6.25 | 1280.88 | 2.44 | 3586.38 | 494.50 | 66.75 | 348.13 | 6014.88 | 2428.50 | |
Water area | 229.94 | 20.63 | 341.63 | 1.81 | 271.81 | 3929.94 | 16.19 | 312.94 | 5124.88 | 1194.94 | |
Artificial surfaces | 1040.25 | 13.31 | 391.63 | 14.88 | 1.50 | 11.31 | 7065.94 | 39.75 | 8578.56 | 1512.63 | |
Bare land | 980.81 | 1.25 | 19,679.31 | 98.69 | 120.31 | 366.44 | 381.44 | 278,883.50 | 300,511.75 | 21,628.25 | |
Total | 156,260.50 | 136,463.75 | 541,720.06 | 6229.63 | 5772.31 | 5933.31 | 14,506.44 | 288,758.69 | |||
Gains | 30,167.56 | 7828.94 | 39,361.56 | 973.75 | 2185.94 | 2003.38 | 7440.50 | 9875.19 | |||
Change | 14,696.19 | 225.75 | −9558.63 | −104.00 | −242.56 | 808.44 | 5927.88 | −11,753.06 | |||
2020 | |||||||||||
2000 to 2020 | Cultivated Land | Forest | Grassland | Shrubland | Wetland | Water Area | Artificial Surfaces | Bare Land | Total | Losses | |
2000 | Cultivated land | 126,460.88 | 738.81 | 14,918.88 | 118.44 | 159.06 | 343.94 | 3872.25 | 187.06 | 146,799.31 | 20,338.44 |
Forest | 688.81 | 123,179.88 | 11,613.56 | 50.44 | 20.75 | 64.94 | 74.94 | 14.50 | 135,707.81 | 12,527.94 | |
Grassland | 26,130.44 | 12,131.13 | 477,849.56 | 4862.81 | 1545.69 | 739.50 | 4181.69 | 9550.56 | 536,991.38 | 59,141.81 | |
Shrubland | 83.63 | 251.25 | 706.94 | 1003.56 | 50.69 | 13.25 | 11.38 | 143.69 | 2264.38 | 1260.81 | |
Wetland | 644.31 | 91.63 | 2519.75 | 46.63 | 3,224.25 | 475.19 | 82.13 | 647.75 | 7731.63 | 4507.38 | |
Water area | 309.13 | 52.69 | 582.44 | 10.56 | 654.31 | 4070.50 | 33.69 | 425.50 | 6138.81 | 2068.31 | |
Artificial surfaces | 967.06 | 17.31 | 442.38 | 15.06 | 2.88 | 12.06 | 5792.63 | 48.56 | 7297.94 | 1505.31 | |
Bare land | 976.25 | 1.06 | 33,086.56 | 122.13 | 114.69 | 213.94 | 457.75 | 277,741.06 | 312,713.44 | 34,972.38 | |
Total | 156,260.50 | 136,463.75 | 541,720.06 | 6229.63 | 5772.31 | 5,933.31 | 14,506.44 | 288,758.69 | |||
Gains | 29,799.63 | 13,283.88 | 63,870.50 | 5226.06 | 2,548.06 | 1862.81 | 8713.81 | 11,017.63 | |||
Change | 9461.19 | 755.94 | 4728.69 | 3965.25 | −1,959.31 | −205.50 | 7208.50 | −23,954.75 |
Study Period (Years) | OLS Method | Theil–Sen Method | ||
---|---|---|---|---|
Growth Rate (g C/(m2∙yr)) | p-Value | Growth Rate (g C/(m2∙yr)) | p-Value | |
2000–2010 | 0.27 | 0.85 | −0.47 | 1.00 |
2010–2020 | 3.14 | 0.22 | 2.55 | 0.28 |
2000–2020 | 2.43 | <0.01 | 2.16 | <0.05 |
LUCC | 2000–2010 | 2010–2020 | 2000–2020 | ||||||
---|---|---|---|---|---|---|---|---|---|
Area (km2) | Total NPP (Tg C) | Average NPP (g C/m2) | Area (km2) | Total NPP (Tg C) | Average NPP (g C/m2) | Area (km2) | Total NPP (Tg C) | Average NPP (g C/m2) | |
Total area of lost grassland | 24,016.81 | 8.29 | 345.23 | 48,920.19 | 14.96 | 305.79 | 59,141.81 | 17.63 | 298.16 |
Grassland to cultivated land | 5173.50 | 1.77 | 342.51 | 26,495.25 | 8.36 | 315.49 | 26,130.44 | 7.41 | 283.39 |
Grassland to bare land | 3288.31 | 0.35 | 105.47 | 8805.19 | 0.89 | 100.72 | 9550.56 | 0.97 | 101.87 |
Grassland to forest | 8753.63 | 5.06 | 578.19 | 7067.31 | 4.18 | 590.83 | 12,131.13 | 7.04 | 580.32 |
Grassland to others | 6801.38 | 1.11 | 163.41 | 6552.44 | 1.54 | 234.71 | 11,329.69 | 2.22 | 195.58 |
Total area of new grassland | 38,304.13 | 9.65 | 251.91 | 39,361.56 | 10.73 | 272.55 | 63,870.50 | 16.38 | 256.40 |
Cultivated land to grassland | 9813.00 | 3.24 | 330.65 | 10,865.88 | 4.49 | 412.76 | 14,918.88 | 6.02 | 403.38 |
Bare land to grassland | 15,733.63 | 0.74 | 46.94 | 19,679.31 | 1.62 | 82.48 | 33,086.56 | 2.32 | 69.97 |
Forest to grassland | 8964.25 | 4.96 | 553.08 | 6405.00 | 3.89 | 606.86 | 11,613.56 | 6.94 | 597.87 |
Others to grassland | 3793.25 | 0.71 | 186.70 | 2411.38 | 0.73 | 304.05 | 4251.50 | 1.10 | 258.75 |
Research Case | Average Yearly NPP (g C/m2) | Growth Rate (g C/(m2∙yr)) | Time Range | NPP Model or Data Sources |
---|---|---|---|---|
Zhu et al. [85] | Around 250 | – | 2002 | CASA |
Mu et al. [86] | 281.30 | 0.33 | 2001–2010 | CASA |
Jin et al. [10] | 271.10 | 4.36 | 2001–2015 | CASA |
Zhao et al. [37] | Ranged from 81.21 to 365.53 | 4.53 | 2000–2014 | MODIS MOD17A3 |
This study | 278.63 | 2.43 | 2000–2020 | CASA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, R.; Tan, K.; Wang, X.; Pan, C.; Xin, L. Spatiotemporal Monitoring of a Grassland Ecosystem and Its Net Primary Production Using Google Earth Engine: A Case Study of Inner Mongolia from 2000 to 2020. Remote Sens. 2021, 13, 4480. https://doi.org/10.3390/rs13214480
Ji R, Tan K, Wang X, Pan C, Xin L. Spatiotemporal Monitoring of a Grassland Ecosystem and Its Net Primary Production Using Google Earth Engine: A Case Study of Inner Mongolia from 2000 to 2020. Remote Sensing. 2021; 13(21):4480. https://doi.org/10.3390/rs13214480
Chicago/Turabian StyleJi, Renjie, Kun Tan, Xue Wang, Chen Pan, and Liang Xin. 2021. "Spatiotemporal Monitoring of a Grassland Ecosystem and Its Net Primary Production Using Google Earth Engine: A Case Study of Inner Mongolia from 2000 to 2020" Remote Sensing 13, no. 21: 4480. https://doi.org/10.3390/rs13214480
APA StyleJi, R., Tan, K., Wang, X., Pan, C., & Xin, L. (2021). Spatiotemporal Monitoring of a Grassland Ecosystem and Its Net Primary Production Using Google Earth Engine: A Case Study of Inner Mongolia from 2000 to 2020. Remote Sensing, 13(21), 4480. https://doi.org/10.3390/rs13214480